

 ii

DOS 4.5
File and Volume

Disk Management System

Walland Philip Vrbancic, Jr.

 ii

Copyright © 2022 January 1
Walland Philip Vrbancic, Jr.

All rights reserved.

No part of this publication may be reproduced,

stored in a retrieval system,
 or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

DOS 4.5 File and Volume Disk Management System
and this Publication are the

Confidential and Proprietary Intellectual Properties
of

Walland Philip Vrbancic, Jr.

ISBN 978-0-578-38584-6

 iii

I am proud to dedicate this Book on the
DOS 4.5 File and Volume Disk Management System

and all of my previous achievements
to my loving Parents Walland and Melba

who continuously nourished my intellectual curiosities
with games, toys, books, education, and unconditional love.

I am truly fortunate for all of the love and support

I have always received from my sister Marile.

I am also grateful to my partner
Carlton D. Wong

who delightfully pretends to understand
what the Hell I am talking about!

Excellence is never an accident!
It is always the result of high intention, sincere effort, and intelligent execution;

it represents the wise choice of many alternatives;
choice, not chance, determines one’s destiny.


~~~ Aristotle ~~~ 
 
 

If I have seen further than others it is because I have stood on the shoulders of giants. 
 

~~~ Isaac Newton ~~~ 


 iv

Disclaimer of All Liability

Do not use the DOS 4.5 File and Volume Disk Management System software or this
Book for any mission-critical applications or for any purpose in which a software error or
a software failure could cause you financial or material loss. The DOS 4.5 File and
Volume Disk Management System software and this Book are designed to enhance your
Apple][computing experience, but they may contain design flaws that could inhibit the
proper operation of your computer or they may result in the loss of recorded data on any
storage device connected to your computer. You assume all risks associated with the
operation of your computer and the potential loss of your recorded data when using the
DOS 4.5 File and Volume Disk Management System software or this Book. If these
terms are not acceptable to you, please do not use the DOS 4.5 File and Volume Disk
Management System software or this Book.

Walland Philip Vrbancic, Jr., the administrator of www.applecored.net, makes no
warranties either expressed or implied with respect to the DOS 4.5 File and Volume Disk
Management System software or with respect to this Book, its quality, performance, or
fitness for any particular purpose. Any risk of incidental or consequential damages
resulting from the use of the DOS 4.5 File and Volume Disk Management System
software or the use of information contained in this Book shall be assumed by you, the
User. In no event shall Walland Philip Vrbancic, Jr., or www.applecored.net be liable for
any direct, indirect, incidental, or consequential damages resulting from any defect,
deficiency, or neglect in the DOS 4.5 File and Volume Disk Management System
software or in this Book.

While all possible attempts have been made to ensure that the information contained
within this publication is complete and accurate, the author shall have no liability or
responsibility for any errors or omissions, or for any damages or the loss of recorded data
resulting from the use of the information, circuit diagrams, and example software
programs contained herein. The author reserves the right to implement any changes
and/or any improvements to the DOS 4.5 File and Volume Disk Management System
software or to the contents of this publication at any time and without any prior notice to
you, the User, or to the general Apple][community.

Apple and all Apple hardware and software brand names are the trademarks of Apple Computer, Inc.,
registered in the United States of America and in other countries.

All other brand names and trademarks are the property of their respective owners.

 v

Preface

When Brian Wiser and Bill Martens discovered my original DOS 4.1 software and
documentation at www.applecored.net in 2017, they immediately contacted me and wanted
Apple Pugetsound Program Library Exchange (Call-A.P.P.L.E.) to publish my DOS 4.1
Manual. Ha! If only this would have happened back in 1982. That’s when my co-worker,
Randy at Rockwell, and I were actively reading many publications featuring Apple software and
hardware, and Call-A.P.P.L.E. was one of our favorite publications. Needless to say, to be
published by any of those early computer journals would have been crazy exciting at that time,
and it would have certainly been a cherished memory for a lifetime. I actually was very close to
completing all of the capabilities I wanted in DOS 4.1 when I agreed to have Call-A.P.P.L.E.
publish the DOS 4.1 Manual for Build 45. I also provided Call-A.P.P.L.E. with demo diskette
images for both DOS 4.1L and DOS 4.1H. A month or so after Build 45 was published and
available for purchase, I completed DOS 4.1 with Build 46. Only the DOS 4.1 Build 46
software and documentation in PDF form are available at www.applecored.net.

I remember telling Wiser and Martens that I wanted both versions of DOS 4.1 to provide the
user with virtually the same computing experience, albeit the HELP command is found only in
DOS 4.1H. This desire proved to be somewhat troublesome in that I was limited in memory for
DOS 4.1L, whereas I had ample memory for DOS 4.1H. Actually, it was the unused memory in
DOS 4.1H that was the impetus to introduce the HELP command in the first place. At the onset
of our negotiations, I warned Wiser and Martens that I could not stop creating more
functionality in DOS 4.1, but they were rather insistent on publishing the DOS 4.1 Manual for
the Apple][community in its current stage of development. In 2021 I had the opportunity to
republish the DOS 4.1 Manual as a book in the format that I originally intended. This
publication is Build 46.

My next area of exploration for an Apple DOS was an attempt to port DOS 4.1H to Auxiliary
memory. I was absolutely successful, I might add, but I could not successfully design an
interface between Lisa (my most favorite 65C02 assembler) and this new DOS I created to
reside in Auxiliary memory. Over the course of several months of significant effort, I could not
realize a viable solution that would be elegant, save memory, and provide the roadmap for
interfacing other utilities and tools to this unique DOS. But this effort was certainly not wasted!
I documented what I had learned about Main and Auxiliary memory management and I moved
forward to other areas of exploration.

I had already decided to use DOS 4.1H as my initial model for DOS 4.3. Yes, DOS 4.3 does
retain the “H” designation for “High” memory. However, I did not want to develop a
companion “Low” memory DOS version in parallel, so I did not develop a DOS 4.3L. I simply
refer to this new DOS as DOS 4.3. The question then became, can Lisa be ported to and
function in Auxiliary memory? The answer to that question turns out to be a resounding “Yes!”
With DOS 4.3 in the memory of the Language Card partition in Main memory and Lisa in the
memory of the Language Card partition in Auxiliary memory, the user has access to virtually all

 vi

of Main memory below 0xBE00 for source code, object code, and the complete symbol list. I
saw this exciting configuration as the path to many new and potential possibilities.

Now, if I can relocate Lisa to Auxiliary memory, what about doing the same for Big Mac? I
have to say that that challenge was a bit uneventful because relocating Big Mac to the memory
of the Language Card partition in Auxiliary memory was even easier to accomplish. My main
focus in Big Mac was to align Sourceror and Big Mac in terms of their SWEET16 sourcing and
assembling capabilities, though I do not believe Big Mac has ever been able to assemble all of
its own SWEET16 opcodes. This task turned out to be an extraordinarily massive undertaking
since I wanted Sourceror and Big Mac to disassemble/assemble my personal version of the
SWEET16 opcodes. I realized that Big Mac could not even assemble its own unique SWEET16
EVAL opcode because the EVAL opcode did not even exist. This tells me that Mr. Bredon
probably could not even use Big Mac to assemble his own Big Mac source code unless he
possibly hardcoded these undefined opcodes as byt statements. I have to confess that there still
remain two SWEET16 branches in my disassembled (and verified) Big Mac source code that are
absolutely wrong, and I do not know their solution to this day. They occur at memory addresses
0xD2C1 and 0xD2DF. Furthermore, I have yet to discover how to force their execution in
order to analyze the resulting behavior in Big Mac. I suspect these particular code sequences
may be part of MACRO handling, something I have had no reason to use. After all is said and
done, Big Mac and DOS 4.3 complemented each other beautifully.

While moving past DOS 4.3 to begin the development of the DOS 4.5 File and Volume Disk
Management System, I discovered even more layers of File Manager functionality that I could
code so much more effectively. DOS 4.3 certainly contains all the necessary solutions to
properly close files and flush volumes when the DOS CLOSE command is issued from within an
Applesoft program. Yet, the code resolutions found in DOS 4.3 still do not exhaust my list of
all the additional capabilities I wanted in my final release of an Apple][DOS. All of the
capabilities contained in DOS 4.5 are detailed in Section I.2.

I know the user will discover many, if not all of the fascinating developments I have included in
the DOS 4.5 File and Volume Disk Management System. The user will be left wondering how
he or she was able to accomplished anything useful in a timely fashion without having had those
developments in any other version of a previous Apple][Disk Operating System. I would take
that as my greatest compliment.

Enjoy the ride!

 vii

 viii

 ix

 x

This page intentionally left blank.

 xi

 xii

 xiii

 xiv

 xv

 xvi

 xvii

 xviii

 xix

 xx

DOS 4.5 File and Volume
Disk Management System

I. Designing Another New DOS

This publication describes the process and the products I created when I decided to design and program
another enhanced Disk Operating System (DOS) for my Apple //e. Wherever I am able, I have included
schematic diagrams, code samples, equations, figures, tables, and representative screen shots to help
explain what I have created and many of the reasons why I did so. As in my previous designs of an
Apple][DOS, i.e. DOS 4.1 and DOS 4.3, this has been an incredible journey for me. With DOS 4.5 I
have again re-imagined that time when I mostly lived, breathed, and worked on Apple][computers,
hardware, and software development continuously for a good period of my life many, many years ago.

1. Introduction

I have been an avid Apple][computer enthusiast, hobbyist, and professional software programmer since
1983 when I became the proud owner of an Apple][+ computer. Besides the Apple][+ computer, my
initial system included an Apple][Language Card, an Apple Disk][Drive with a Disk][Interface Card,
an Amdek color monitor, and an Epson MX100 printer with a Grappler+ Printer Interface card. During
those early years I designed and built my own Apple][peripheral slot cards, I made electrical and
hardware modifications to my Apple][+ motherboard and keyboard, and I wrote a substantial number of
software programs initially using Applesoft BASIC (Applesoft hereafter) and then a few months later, I
wrote software in 6502 assembly language. I soon acquired a Videx UltraTerm video display card and a
Microsoft Z80 Softcard. With the Z80 Softcard I was able to write complex Fortran programs that
analyzed tomographic reconstructions of the human spinal column. A year or so later I added the
Southern California Research Group quikLoader and PROmGRAMER cards to my system, a Johnathon
Freeman Designs (JFD) Parallel Printer Buffer, and an Axlon RAM Disk 320 with its interface card.

I used C language in my professional programming career for the design and development of ultra-high-
speed data collection systems for tactical radar and sensor development. Now that I am retired from the
aerospace industry, I have always wanted to dig into, tear apart, and learn the intricacies of the last
available version of DOS 3.3 for the Apple][series of computers. I thought the last DOS 3.3 version
was published on August 25, 1980. Then I recently came across another DOS 3.3 version published
years later on January 1, 1983. That later DOS contains even more patches for the DOS APPEND
command and for Apple //e initialization. What I learned from the 1980 publication flabbergasted me:
the software is exciting in its originality and concept vis-à-vis it was released just after the publication of
Integer BASIC. However, I found the software to be somewhat juvenile in its structure and in its
implementation. Apparently, very little attention was given to software design and review. It appeared
to me that Apple made a strong push to release something or anything to consumers and vendors in

 2

order to begin marketing software products on diskettes and hardware products to read and write those
diskettes. And history does reveal that Apple Computer did outsource DOS and contracted for it to be
delivered within thirty-five days for $13,000 in April, 1978. Paul Laughton at Shepardson
Microsystems wrote Apple’s initial disk operating system using Hollerith cards, a card reader/writer,
and a minicomputer.

Now that I have the time and the continuing curiosity to delve into Apple][DOS, I have the unique
opportunity to create my own version of DOS that contains the power and the flexibility I always
thought DOS ought to and could have. I call this version of Apple][DOS, the DOS 4.5 File and
Volume Disk Management System, and it requires an Apple][that contains memory in the Language
Card partition for its complete operation. This publication describes my fifth build of DOS 4.5. What a
ride I have been on! Why? To see what I could do for this brilliant machine and its equally magnificent
architecture! I hope that you find my journey into DOS 4.5 as fascinating as I found developing it.

2. Overview of the Improvements and Enhancements in DOS 4.5

I know there are a great many ProDOS users in the global Apple][community, but I never became at all
interested in ProDOS. The work I did at Hughes Aircraft in the mid 1980’s consisted of using assembly
language for programming an operating system executive and hardware interface driver routines on
Gould SEL 2780, 6780, and 9780 mainframe computers. These computers hosted a proprietary
operating system that allowed our team to simulate the hardware of a Radar Digital Processor (RDP)
traveling above the earth’s surface in virtually real time. In order to accomplish that goal and simulate
real time navigation, the computer’s file system was essentially flat: every software developer had their
own directory, and these user directories contained no subdirectories. I was very comfortable with the
idea of a flat file system as it was very much like Apple’s DOS 3.3. I was simply not comfortable with a
slew of subdirectories exemplified by Apple’s ProDOS. My thought was always “How does one recall
the path to follow in order to find anything?” With the advent of the Macintosh computer and later
when I became familiar with the UNIX file system, my subdirectory fears vanished and I cannot
imagine a modern computer file system without subdirectories. However, I still remain passionate about
Apple][DOS and I leave ProDOS to those who are comfortable with that operating system architecture.
Though what I have seen of ProDOS recently, I believe it could definitely use a facelift, seriously. I also
believe that ProDOS is far better suited on a machine with a 16-bit microprocessor much like that found
in the Apple //GS.

I am sure many are curious and want to know what is new and different in DOS 4.5, and what makes
this version of the DOS File and Volume Disk Management System so special. Looking back over my
previous publications of DOS 4.1 and DOS 4.3, I realized that I should have included this enhancement
information with every version and for each software build, if only for historical reasons. Like, which
version and build did I solve the Track 0x00 utilization quest? Which version and build did I start
labeling volumes? Which version and build did I solve the Disk Full logic error? Taken all together,
I have done an incredible amount of research, writing, and software development to reach the level of
perfection that is contained in DOS 4.5 with Build 5. And, to say the least, I have done an incredible
amount of unit testing for each and every logical function under normal and abnormal (i.e. error)
conditions. However small the list of improvements and enhancements unique to DOS 4.5 may seem, I
have spent countless hours developing and testing those improvements and enhancements alone and in
concert with the overall DOS 4.5 command repertoire and its system functional capabilities.

 3

Module Description of Improvement or Enhancement

CMD1 Move CMDINDX to keyboard variables and clear keyboard variables before, not after parsing a new DOS
command. No need to range check SV and USER parameters.

CMD2
Modified TS to read sector data into caller’s specified buffer. Added ENTRMON routine that calls
INITPTRS before entering RAM Monitor. Removed COPYVALS after moving CD to File Manager with
CDHNDLR. Moved DOADRINC to CMD2.

CMD3 Rewrote GREP so that it no longer requires a character string marker for a multiple-word character string
search, and less code was required (Aha! Moment)

CMD4

FMDRVR now copies VALSPHAS to FMPHASE, CONFIG is set to default if R keyword is included,
PHASE is set to default if R keyword is included, MAXFILES is set to default if R keyword is included,
SAVALRD writes CONFIG, PHASE, and MAXFILES values into the Value Read Buffer if DOS is in the
RUN mode, SV writes its value into the Value Read Buffer if DOS is in the RUN mode (Aha! Moment),
CD uses File Manager to read VTOC for CONFIG value, PRTSDV now prints volume lock status.

MNGR1

External File Manager entry uses FILALC/NOFILALC values to set KEYWORD1 for file allocation
control, now FMTBLJMP uses memory placement of File Manager routines to selectively copy FM
Context Block SDV values to FMWORK since Byte Offset and Range Length are overloaded values in
FMWORK.

MNGR2

TOUCH only copies VALSCNFG to DOSCONFG if R keyword is included to save the DOS configuration,
DELETE handler rewritten and its logic reordered, CATALOG handler does not show build information if
DOSVRSN < 0x33 or DOSBUILD = 0, FREESECT now clears SECBTMAP before calling RORBITMP,
not after. Added CDHNDLR.

MNGR3 ALLOCSEC modified to perform up to 4 scans of the VTOC bitmap, ALLOCNTR moved to CMDVALS.
DATA1 Moved CMDUSER before CMDHELP, set KWRANGEH for drive to 81.

BUFR1
Moved CMDINDX after MONVAL in keyword variables and put ALLOCNTR after CMDLNIDX where
CMDINDX was, removed TRKNUMBR from FMWORK, set VALRDBUF to 8 bytes. File buffer is now
0x0245 bytes in size. Added 7-byte SCRCHTBL table (Aha! Moment) and adjusted SPAREBUF size.

BUFR2 Removed WATRKNUM in WORKAREA (parallel variable to TRKNUMBR).

RWTS1
If slot number index to SCRCHTBL is zero, RWTS scratchpad RAM locations for track and phase are
cleared for drives 1 and 2, and calls BLDNIBL when RWTS is called the first time for that slot number
(Aha! Moment). BLDNIBL dynamically builds RDNIBL and WRNIBL tables in same page with NBUF2.

RWTS2 PHASE value better managed and DISKFMT now initially formats track 0x00, reduces SYNCNT, then
formats entire volume starting with track 0x00.

MNGEXVAL
Modified this function to return the Y-reg incremented twice when reading/writing 16-bit values and once
when read/writing 8-bit values found in the CMDVALS and FMWORK Data structures. Removed access to
the INITVALS Data structure.

MNGEXUSR Removed the call to CLRVALS from this function. The call to CLRVALS is now properly made by
DOSINIT just prior to the COLDSTRT entry point.

HELP Any key press other than ESC, RTN, or arrow keys select the display of the DOS 4.5 Management screen.

USER The USER handler now resides in Main memory, its call to the USER address returns to Main memory,
and finally USER re-enables RAM memory in the Language Card partition to complete its processing.

Table I.2.1. Major Improvements and Enhancements to DOS 4.5

DOS 4.5 is designed to reside either in Main memory or in the memory of the Language Card partition.
The version of DOS 4.5 that resides fully in Main memory is DOS 4.5L, and its executable code begins
at 0x9F00, its variables and data buffers begin at 0x9A8A, and its two file buffers begin at 0x9600
where HIMEM is set, the very same memory location as in DOS 3.3. In comparison, DOS 4.1 sets
HIMEM to 0x9625 when MAXFILES is set to three file buffers. Thus, the additional code that
comprises DOS 4.5L is essentially the size of one file buffer. Unlike DOS 3.3 or DOS 4.1L, DOS 4.5L
is a single, continuous object code image that is 0x2100 bytes in size. On the other hand, the version
of DOS 4.5 that resides in the memory of the Language Card partition is DOS 4.5H, and it occupies both

 4

banks of memory from 0xD000 to 0xDFFF and the remaining memory of the partition from 0xE000
to 0xF7FF. The Apple][user has complete freedom to use all of Main memory below 0xBE00 where
HIMEM is set.

The foundation for DOS 4.5 is DOS 4.3H which includes the HELP command. In order to better
appreciate all of the improvements and the enhancements I have added to DOS 4.5, I have tabulated
those changes according to each software module as shown in Table I.2.1. Please realize that nothing in
DOS 4.3 was removed in order to provide the code space required by all of these improvements and
enhancements in DOS 4.5. I simply spent a sizable amount of time and effort re-working certain
modules to yield the same or better functionality in far less code space. I can truthfully say that I
experienced several Aha! Moments that certainly assisted in making these improvements and
enhancements to DOS 4.5 possible.

3. DOS 4.5 Software Development Strategies

Let’s begin with some software design and development strategies. In order to design reliable and
powerful software for a particular machine or platform, one must understand the complete architecture
of that machine. I believe this design approach is fully applicable even to the Apple][computer: either
code or data occupies fixed addressable memory where some defined memory locations are reserved for
the stack, text, graphics, control, and peripheral slot cards. Code is further restricted in the Apple][by
the rather limited 6502-microprocessor Instruction Set. My obvious goal strategy is to design software
in such a way as to create the most functionality using the least amount of code and data space. I believe
this methodology yields the greatest range of code effectiveness.

I highly recommend obtaining and referring to a number of reference publications for the Apple][
hardware. I have used the Apple][Reference Manual, the Apple //e Reference Manual, the Apple //e
Technical Reference Manual, the Apple][The DOS Manual Disk Operating System, Beneath Apple
DOS by Don Worth and Pieter Lechner, Understanding the Apple][by Jim Sather, and What’s Where
in the APPLE A Complete Guide to the Apple Computer by William F. Luebbert to obtain much of my
understanding in how the Apple][hardware functions. I have also referred to the APPLESOFT][
manual to obtain my understanding of Apple’s Applesoft programming language. It is an absolutely
required reference manual to have in order to learn that BASIC programming language. These
references provides the reader a fairly complete understanding of the architecture of the Apple][
computer as well as how to create software programs using the Applesoft language. No reference
manual is perfect and people do make mistakes, however these manuals contain very few errors.

In order to study how other people have approached the hardware architecture of the Apple][in creating
their software applications, it is necessary to obtain their source code or generated source code from
their object code, the code that actually executes from within the Apple][memory. Rarely have I ever
found published source code. Glen Bredon designed Sourceror as a subsidiary tool to his assembler Big
Mac that creates Big Mac source code files from assembly language object code files. Big Mac can also
save source code as text files so that Big Mac source code can be migrated to other assemblers like Lisa.

For my assembly language programming I use Gerard Putter’s application Virtual][, Version 9.3, to
create my software applications, and that is the platform I use to perform my initial, though simulated
software testing. Once I am satisfied with a software program or utility operating within the Virtual][

 5

environment, I transfer the volume image containing that software program or utility to an Enhanced
Apple //e. I have found some discrepancies between Virtual][and my Enhanced Apple //e particularly
when I am enabling memory in the Language Card partition: two successive writes to memory address
0xC083 does not write enable Bank 2 in the Language Card partition in my Enhanced Apple //e as it
does in Virtual][. Two successive reads of memory address 0xC083 function the same in both my
Enhanced Apple //e and in Virtual][to enable Bank 2 memory. I have brought this to the attention of
Mr. Putter. Also, Main memory is not initialized at power-up in quite the same way in my Enhanced
Apple //e as it is in Virtual][. I believe DOS 3.3 always assumes that an Apple][powers up with all
bytes in page-zero memory set to 0xFF. Virtual][also makes this same assumption. I know I have
been caught unaware that all bytes in Auxiliary page-zero memory are not always set to 0xFF at power-
up. Therefore, I have included a call to SETNORM during Boot Stage 2 to ensure that page-zero
memory location 0x32 is, indeed, set to 0xFF. I have used AUXMOVE to manually stash some ProDOS
code in Auxiliary memory from within Virtual][. The code disappears (becomes overwritten) when I
then boot into DOS 4.5. This does not happen in the Enhanced Apple //e: the ProDOS code or any
stashed code can still be safely found in Auxiliary memory even after a DOS reboot. Always, always,
always make final tests using real hardware.

Memory Page Description Description

0x00 Page-zero variables, pointers, routines, and special
addressing modes

0x01 Stack for the 6502-microprocessor
0x02 INPUT buffer, Applesoft interpretation buffer
0x03 User buffer, DOS vectors and routines

0x04-0x07 Text or LORES graphics Page 1

0x08-0x0B Applesoft program start, Text or LORES graphics Page 2,
or available for software

0x0C-0x1F Available for software
0x20-0x3F HIRES graphics Page 1, or available for software
0x40-0x5F HIRES graphics Page 2, or available for software
0x60-0xBF Available for software

0xC0 System Soft Switches
0xC1-0xC7 Peripheral-card ROM memory for slots 1-7, or CX ROM

0xC8-0xCF Peripheral-card expansion ROM memory for slots 1-7, or
CX ROM

0xD0-0xDF Bank 2, ROM Applesoft Interpreter routines Bank 1
0xE0-0xF7 ROM Applesoft Interpreter routines
0xF8-0xFF ROM Monitor routines

Table I.3.1. Apple][Memory Utilization

Before beginning any discussion of a complicated subject like a file and volume disk management
system for the Apple][, it is usually easier to understand such a system if each component of that system
is shown as part of a Big Picture. That Big Picture is shown in the following three tables, Tables I.3.1,
I.3.2, and I.3.3. Though certainly not to any particular scale, Table I.3.1 shows how memory is utilized
in the Apple][and where the basic Apple][system hardware and software components can be found in

 6

Main memory and in the memory of the Language Card partition which is shown in the more shaded
bottom lines in each of these three tables. The basic components shown in Table I.3.1 are the 6502-
microprocessor memory requirements, the DOS vectors and routines, text and LORES graphic pages,
HIRES graphic pages, system Soft Switches, peripheral-card and CX ROM memory, where the ROM
Applesoft interpreter is found, and where the ROM Monitor resides. If any of the components shown in
Table I.3.1 are unfamiliar, it would be to your advantage now to locate and study one or more of the
above referenced publications to refresh and increase your understanding of that component. Even the
Apple][Reference Manual that came with my Apple][+ computer contains invaluable information
applicable to the entire family of Apple][computers. I even own a few SAMS Publications that have
provided me with enhanced understanding of many of the components shown in Table I.3.1.

Memory Page Description Description
0x00-0x03 System, 6502-microprocessor memory utilization
0x04-0x07 Text Page 1
0x08-0x95 Available for software
0x96-0x99 DOS 4.5L HIMEM, DOS 4.5L file buffers

0x9A-0x9E DOS 4.5L working variables, workarea buffer, VTOC
and catalog buffers, nibble buffers

0x9F-0xBE DOS 4.5L Command and File Manager, RWTS, and all
other software routines

0xBF DOS 4.5L bootstrap routines
0xC0 System Soft Switches

 0xC1-0xCF Peripheral-card ROM memory for slots, CX ROM
0xD0-0xDF Bank 2 ROM routines Bank 1
0xE0-0xF7 ROM routines
0xF8-0xFF ROM Monitor routines

Table I.3.2. Apple][Memory Utilization with DOS 4.5L Installed

Memory Page Description Description
0x00-0x03 System, 6502-microprocessor memory utilization
0x04-0x07 Text Page 1
0x08-0xBD Available for software

0xBE-0xBF DOS 4.5H HIMEM, DOS 4.5H Language Card partition
software interface, DOS 4.5H bootstrap routines

0xC0 System Soft Switches
 0xC1-0xCF Peripheral-card ROM memory for slots, CX ROM

0xD0-0xDF RAM Bank 2, DOS 4.5H Command and File Managers RAM Bank 1, DOS RWTS
0xE0-0xE6 RAM DOS 4.5H Command and File Managers
0xE7-0xEC RAM DOS 4.5H working variables and workarea buffer
0xED-0xF7 RAM DOS 4.5H file buffers
0xF8-0xFF RAM Monitor routines

Table I.3.3. Apple][Memory Utilization with DOS 4.5H Installed

 7

Table I.3.2 is similar to Table I.3.1 except that the 6502-microprocessor and ROM components have
been diminished from view in lieu of showing visually where DOS 4.5L and its components are placed
in memory. DOS 4.5L is typically configured to have two file buffers, and those buffers begin at
0x9600 and end at 0x9A89 in memory. From 0x9A8A to 0x9EFF is where the working variables
and workarea buffer, the VTOC and catalog buffers, and the nibble buffers, the write translate, and the
read translate tables are defined. The DOS 4.5L software routines reside in the continuous span of
memory from 0x9F00 to 0xBFFF.

Table I.3.3 is also similar to Table I.3.1 and it, like Table I.3.2, shows visually where DOS 4.5H and its
components are placed in memory. In order to manage the DOS 4.5H routines located in the memory of
both banks in the Language Card partition, a set of software interface routines that control the utilization
of memory in the Language Card partition is located in Page 0xBE. Page 0xBF contains the DOS
bootstrap routines which are similar in nature to those same routines found in DOS 4.5L.

The following sections discuss the utilization of Apple][memory in great detail. It may be helpful to
occasionally refer to Tables I.3.1 to I.3.3 in order to fully understand how that memory utilization relates
to the entire hardware and software management of the Apple][computer by either version of the DOS
4.5 File and Volume Disk Management System. The Apple][computer is truly a brilliantly designed
machine and it has an equally magnificent architecture. I hope you find my presentation of the Apple][
computer vis-à-vis DOS 4.5 interesting, enlightening, and useful in view of your own hardware and
software experiences with this delightful machine.

4. Page-Zero Utilization

The Instruction Set for the 6502-microprocessor (as well as the 65C02-microprocessor) includes certain
microprocessor instructions that utilize variables located in the first 256 bytes, or page, of addressable
memory, that is, locations 0x0000 to 0x00FF. I designate this area of memory to be page-zero.

When Steve Wozniak designed the Apple ROM Monitor (a collection of low-level software routines),
he allocated a number of page-zero locations for its variables and pointers. Similarly, Applesoft, DOS,
and virtually all other assembly language programs use page-zero locations in order to utilize those
specific instructions. The 6502-microprocessor contains an accumulator called the A-register and two
index registers called the X-register and the Y-register. Page-zero instructions using these registers
include load and store instructions, indexed load and store instructions, indexed indirect addressing
instructions using the X-register, and indirect indexed addressing instructions using the Y-register.
Page-zero wraparound occurs with indexed and indexed indirect addressing instructions using the X-
register and indexed addressing instructions of the X-register using the Y-register, but page-zero
wraparound does not occur with indirect indexed addressing instructions using the Y-register. Yes,
initially, addressing modes can certainly be a little bit confusing.

When developing a new assembly language program, it is critical to select page-zero locations that do
not conflict with the Apple ROM Monitor, Applesoft, or DOS depending on whether those ROM
applications and the applications that reside in the memory of the Language Card partition are important
to the new program. Knowing which page-zero locations are used by or critical to ROM and resident
applications can greatly simplify the selection of unused or available page-zero locations. Because DOS
3.3 supports Integer BASIC, a few page-zero locations are used to process that file type. DOS 4.5 also

 8

uses those same page-zero locations for processing the Applesoft CHAIN command, for example, and
many other DOS command enhancements. There are definitely obvious page-zero locations that cannot
be used except for how they were intended, like the horizontal and vertical cursor locations CH and CV,
respectively. Then, there are less obvious, rather dubious page-zero locations from 0x00 to 0x1F that
are used by some Applesoft commands. These page-zero locations are fair game for new programs that
do not use the Applesoft interpreter or Steve Wozniak’s SWEET16 interpreter. Figure I.4.1 shows all of
the used and the unused page-zero locations, and the Key defines those applications that use those
particular locations according to my references and the best of my ability to decipher the ROM routines
that make use of page-zero memory. The shaded areas in Figure I.4.1 are unused page-zero locations
that are most likely not used by the Apple //e Monitor or Applesoft, so they are more than likely the
better page-zero locations to select. Table I.4.1 summarizes all of the available page-zero locations that
are not utilized by the ROM routines and by DOS 4.5 shown in Figure I.4.1. Keep in mind that indirect
indexed addressing mode instructions using the Y-register do require a page-zero byte-pair, so it is even
more critical that neither address byte is clobbered by software external to a new assembly language
program.

0x 0 1 2 3 4 5 6 7 8 9 A B C D E F
00 1234 134 34 34 34 4 4 4 4 4 4 4

10 4 4 4 4 4 4 4 4 4 4 4 4 4 24 2 3

20 134 134 134 134 1346 134 1456 1456 1346 1346 13456 13456 1456 1456 123456 123456

30 14 12 134 1246 123 1236 136 136 136 136 123 123 12345 12345 123456 123456

40 156 156 1236 1236 1236 1 1 1 1 1 56 56 6 6 13 13

50 346 346 4 4 4 4 24 24 24 24 46 6 6 6 4 4

60 4 4 4 4 4 4 4 46 46 46 46 46 46 346 346 346

70 346 4 4 346 346 4 46 4 4 4 4 4 4 4 4 4

80 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

90 4 4 4 4 34 34 4 4 4 4 4 34 34 4 4 4

A0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 46

B0 46 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

C0 4 4 4 4 4 4 4 4 4 4 4 4 4 4

D0 4 4 4 4 4 4 46 46 6 4 4 4 4 4 4

E0 4 4 4 4 4 4 4 34 34 4

F0 4 4 4 14 14 4 4 4 4 4 34

Figure I.4.1. Page-Zero Memory Utilization

Key
1 – used by the ROM Monitor 4 – used by Applesoft
2 – used by the Mini Assembler 5 – used by RWTS
3 – used by the Apple //e CX ROM 6 – used by DOS 4.5

 9

Start End Description
0x06 0x09 4 bytes free
0xCE 0xCF 2 bytes free
0xD7 0xD7 1 byte free
0xE3 0xE3 1 byte free
0xEB 0xEF 5 bytes free
0xFA 0xFE 5 bytes free

Table I.4.1. Available Page-Zero Locations Summary

Tables I.4.2 and I.4.3 list all of the page-zero locations utilized by DOS 4.5 and defined in the DOS 4.5
source code file INCL.L. There are certainly common page-zero locations that all software routines
can use as temporary variables and pointers. The 6502-microprocessor is not time-shared and there is
no context switching between routines, so if a routine uses some common page-zero locations, that
routine should complete all calculations and processing using those locations and not expect to find
those same results sometime later. Examples of common page-zero locations would be A1L/A1H at
0x3C/0x3D, A2L/A2H at 0x3E/0x3F, A3L/A3H at 0x40/0x41, A4L/A4H at 0x42/0x43,
OPRND at 0x44 and 0x45, and the first three bytes of DSCTMP at 0x9D:0x9F. As is shown in Tables
I.4.2 and I.4.3, all of these page-zero locations are defined in the DOS 4.5 file INCL.L. Using these
page-zero locations to move or copy data would be safe and not interfere with the ROM Monitor or
Applesoft processing. Actually, several ROM Monitor routines require that some of these page-zero
locations just mentioned contain your data before using those routines. The ROM Monitor routine
MOVE at 0xFE2C is one such example that uses A1L/A1H and A2L/A2H to move data in memory. It is
really up to the user to confirm and verify that the selected page-zero memory locations do not interfere
with other routines external to and required by any new software developed by a user.

Address Parameter Description
0x24 CH horizontal cursor location
0x25 CV vertical cursor location
0x26 BUFRADRZ ROM firmware boot data field buffer address
0x26 TEMPZ RWTS temporary 8-bit variable
0x27 TEMP2Z RWTS temporary 8-bit variable
0x28 BASEZ text screen line address
0x2A ASPTRSAV DOS CHAIN array descriptor addresses
0x2A CURTRKZ RWTS requested track
0x2B SLOT16Z boot slot * 16
0x2C DRVFLAG RWTS data-changing drive flag
0x2C ADRDATMK RWTS address/data mark
0x2C ADRFIELD RWTS sector address field array
0x2D SECFNDZ RWTS sector address field sector found
0x2E TRKFNDZ RWTS sector address field track found
0x2F VOLFNDZ RWTS sector address field volume found

Table I.4.2. Page-Zero Utilization in DOS 4.5 – Part 1

 10

Address Parameter Description
0x32 INVFLG text screen inverse/normal flag
0x33 PROMPT text screen prompt character
0x34 PHASE RWTS requested phase number
0x35 PAGECNT boot/initialization DOS image page count
0x35 SAVXYREG save X-reg or Y-reg 8-bit variable
0x35 SYNCNT RWTS synchronization byte count
0x36 CSWL output device handler address
0x38 KSWL input device handler address
0x3C ROMTEMPZ ROM firmware boot temporary 8-bit variable
0x3C MOTORTIM RWTS motor on-time 16-bit count
0x3C A1 general purpose temporary 16-bit variable
0x3D ROMSECTR ROM firmware boot requested sector
0x3E BUFADR2Z RWTS data field buffer address
0x3E ODDBITSZ RWTS temporary 8-bit variable
0x3E A2 general purpose temporary 16-bit variable
0x3F SECTORZ RWTS address field sector
0x40 ROMDATA ROM firmware boot address field track found
0x40 FILEBUFZ file context block parameter buffer address
0x40 TRACKZ RWTS address field track
0x41 ROMTRACK ROM firmware boot requested track
0x41 VOLUMEZ RWTS address field volume
0x42 A4 general purpose temporary 16-bit variable
0x42 BUFADRZ general purpose sector data buffer address
0x44 DIRINDX VTOC and TSL data index
0x4A IOBADR RWTS IOCB buffer address
0x4C DOSPTR DOS general purpose pointer address
0x50 LINNUM Applesoft line number 16-bit variable
0x5A DOSTEMP1 DOS general purpose 8-bit variable
0x5B DOSTEMP2 DOS general purpose 8-bit variable
0x5C DOSBUFR DOS general purpose 16-bit variable/address
0x67 ASPGMST Applesoft program start address
0x69 ASVARS Applesoft simple variables pointer
0x6B ASARYS Applesoft array pointer
0x6D ARYEND Applesoft end of array pointer
0x6F ASSTRS Applesoft end of character string storage pointer
0x73 ASHIMEM Applesoft HIMEM address
0x76 ASRUN Applesoft RUN flag
0x9D DSCTMP Applesoft temporary character string descriptor data
0xAF ASPEND Applesoft end of program address
0xD6 PROTECT Applesoft program write-protect 8-bit flag
0xD8 ASONERR Applesoft ONERR 8-bit error flag
0xD9 RKEYWORD DOS R keyword 8-bit variable

Table I.4.3. Page-Zero Utilization in DOS 4.5 – Part 2

 11

Index

APPEND Command 156
Apple][... 1

Building a New ROM 106
Disabled ROM Routines 106
Memory Utilization ... 5
Memory Utilization, DOS 4.5H........................... 6
Memory Utilization, DOS 4.5L 6
Memory Utilization, Page-Zero 8
ROM HLIN Drawing ... 87
ROM Modifications ... 87
Signature Bytes, Original................................. 113
Signature Bytes, Revised 114
Transformations for a New ROM 108

Apple][+ Keyboard Modification 335
74LS153 Truth Table 335
Generation of Unavailable Characters 336
Modification Circuit .. 334

Apple][+ Memory Upgrade 330
Satellite Board Circuit Diagram 331
Satellite Board Connections 331
Satellite Board Operation 332, 333

Applesoft Formatter Program 267
Assembly Routines 171

Direct Subroutine Call 171
Indirect Subroutine Call 171

Asynchronous Data Transfer Program 288
AUTOBRK Entry Address 177
AUTORSET Vector Address 178
Axlon RAM Disk 320 Data Storage 250

Firmware Structure .. 256
Modified RAM Card Circuit Diagram 254
Original RAM Card Circuit Diagram 253
Original RAM Card Soft Switches 252
RAM Card Circuit Modifications 255

BCFGNDX Variable Byte 189
DOS 4.5 Example Program 32

Big Mac Program .. 211
Assembly Directives .. 215
Branch Instructions .. 218
Format Byte Definition 219
Macro Directives ... 216
Mnemonic Hashing Algorithm 214
Multiple Addressing Mode Instructions 219
Single Byte Instructions 217
SWEET16 Register Instructions 218
Text Directives .. 215

Binary File Installation Program 269
BLDNMBR Variable Byte 184
BLDVRSN Variable Byte............................. 184
BLOAD Command 152
BOOTADR Variable Byte 191
Booting Process .. 22

Configuration Data Structure 23
Data Management Structure Block 22
DOS 4.5H Image Mapping 26
DOS 4.5H TS Mapping 24
DOS 4.5L Image Mapping 26
DOS 4.5L TS Mapping 24
RWPAGES Routine ... 23

BOOTPGS Variable Byte 191
BRUN Command .. 152
BSAVE Command .. 153
CALLFM Entry Address 173
CALLRWTS Entry Address 173
CAT Command ... 134
CATALOG Command 134
Catalog Structure .. 17

Entry Definition ... 19
Entry Offsets .. 19
File Type Definition... 19
Sector Definition .. 18

CD Command ... 136
CFFA Data Storage 221

1 GB Block Utilization 225
DOS 3.3 Patches .. 227
DVTS Variable Range 223
Firmware Structure .. 222
Interface Control Registers 223

CHAIN Command .. 149
CHAIN Processing.. 77

Array Descriptor Definition 80
Element Descriptor Definition 80
Example Applesoft Program 78
Simple Descriptor Definition 80

CHAR Editor Program 312
ClientServer Program.................................... 295

A2V2/ADT System Components 295
Commands and Responses 299
Computer System Components 296
Configuration Data Control Block 300
Error Codes, Client .. 309

 12

Error Codes, Server ... 309
Error Source Routines, Client 310
Error Source Routines, Server 311
GETPAGE Calculation 306
Read/Write Data Control Block....................... 307
Track/Sector Data Control Block 303
Transfer Data Control Block 303

Clock Access ... 71
Applesoft Clock Data Generation 73
Assembly Clock Data Generation 73
Supported Clock Indexes 72

CLOSE Command 157, 163
Commands, DOS 4.5 117

Applesoft File Commands 149
Binary File Commands 152
Command List ... 120
Command Table .. 118
Data File Design Considerations 167
Data Sizing Equations 168
File System Commands 134
Keyword Definitions 120
Keyword Minimum/Maximum Ranges 120
Random-Access Data File Commands 162
Random-Access Design Considerations 167
Sequential Text File Commands 155
System Commands .. 122
Valid Keyword Table 117

CONFIG Command 122
Bit Definitions ... 123

Data Structures .. 66
CMDVALS Definition 67
File Buffer Definition .. 70
FMWORK Definition .. 69
INITVALS Definition 30
VTOCVALS Definition 60

Date and Time ... 14
DATE Command .. 124
DELETE Command 136
DIFF Command .. 137
Disk][... 39

3 Half-Phase Tracks ... 43
4 Half-Phase Tracks ... 43
Cam Table and Carriage 42
Function Write Indexing 54
Functional Read Indexing 53
I/O Memory Switches .. 48
P5 ROM ... 47
P6 ROM ... 47
Read Disk Byte .. 49
Read Write Protect ... 49
Sequencer Command Codes 53
Sequencer Control Switches 48
Set Read Mode ... 49

Stepper Motor Illustration 44
Write Auto-Sync Bytes 50
Write Data Bytes .. 51

Disk Window Program 194
DOS 4.5... 1

Commands See Commands, DOS 4.5
Enhancements to DOS ... 3
Error Processing ... 76
Improvements to DOS ... 3
Introduction .. 1
Operational Environment 193
Overview .. 2
ProDOS Algorithm .. 82
Software Strategies .. 4
Using DOS Commands 85

DOSCOLD Entry Address 172
DOSWARM Entry Address 172
EDITROM Program...................................... 111
EPROM Operating System 196

Catalog File Entry .. 205
File Types .. 201
QLBINEOS Example Code 207
quikLoader Bank Switching 199
quikLoader EPROM 0 201
quikLoader Firmware Structure 200
quikLoader Schematic 198

EXEC Command .. 157
File Developer Program 233
File Manager ... 57

CD Context Block .. 65
Command Codes .. 58
Commands and Parameter List 56
Error Messages .. 62
INIT Boot Disk Types 59
INIT Context Block ... 60
Input/Output Context Block 57
Input/Output Subcodes 58
TOUCH Context Block 63
TS Context Block... 64
URM Context Block .. 63
WTS Context Block ... 65

First Class Peripherals Sider Data Storage ... 260
Firmware Structure .. 263
Modified Logical Block Structure 262
Original Logical Block Structure 262

Garbage Collector ... 101
Applesoft ROM Entry 101
Array Element Processing 103
Simple Descriptor Processing 102
Verification Timing Results 105

GETFMCB Routine Address 174
GETIOCB Routine Address 175

 13

GETPAGE Routine in ClientServer 307
Global Program Line Editor Program 249
GOTOMON Description Notes 182
GOTOMON1 Entry Address 183
GOTOMON2 Entry Address 183
GREP Command ... 138
HELP Command ... 125
HOOKDOS Entry Address 176
ICON Maker Program................................... 316

DELTA Calculation ... 322
ICON Complex Colors 320
ICON Drawing Command Examples 320
ICON Drawing Commands 318
ICON Simple Colors 320

IN# Command ... 127
INIT Command ... 139

Available Data Sectors 140
INITDOS Vector Address............................. 188
INITVAL Vector Address 189

DOS 4.5 Example Program 31
JFD Parallel Printer Buffer 282

8035-Microprocessor Memory Map 284
Port Utilization .. 285
Primary R3 R/W Block 286
Secondary R3 System Flag 287
SELRB0 Utilization ... 286
SELRB1 Utilization ... 286
User Flag F1 .. 285

Keyspan Adapter ... 295
Lazer's Interactive Symbolic Assembler 235

Command-Line Commands 245
READSCRN Routine 237
SAVESCRN Routine 238
SETSCRN Routine .. 237
USR Command .. 238

LENGTH Program .. 312
LIST Command .. 141
LLOAD Command 154
LOAD Command .. 150
LOCK Command .. 142
LS Command .. 134
LSAVE Command .. 154
MASKIRQ Vector Address 181

Interrupt Handler Status Byte 181
MAXFILES Command 127

DOS 4.5H File Buffers 128
DOS 4.5L File Buffers 128

Memory Initialization 32
Boot Sequence Steps ... 35
Building RDNIBL ... 34
Building RDNIBLBT .. 33

Building WRNIBL ... 34
Page 0x03 Routines ... 36
Scratchpad Definition .. 33

MNGDISK Vector Address 185
Attaching Example Program 27
Detaching Example Program 27

MNGUSER Vector Address 187
DOS 4.5 Example Program 28
LOADMAC Example Program 29

MNGVALS Vector Address 186
8-Bit Example Program 68
LOADLEN Example Program 71

MON Command.. 129
MORE Command ... 141
MV Command .. 143
NBUF1PG Address Byte 190
NMASKIRQ Entry Address 180
NOMON Command 130
Null Modem Adapter 296
OPEN Command 159, 164
Page-Zero .. 7

Available Locations ... 9
DOS 4.5 Utilization ... 9
General Utilization ... 8

PHASE Command .. 130
POSITION Command 159
PR# Command .. 132
PRERRADR Vector Address 176

Big Mac Example Program 38
Program Global Editor Program 246
PWRSTATE Variable Byte 178
RanaSystems EliteThree Data Storage 257

Firmware Structure .. 259
RDCLKVSN Vector Address 175

Get Date and Time Program 37
Get DOS Version Program 37

READ Command 160, 165
Real Time Clock Card 276

Circuit Diagram ... 277
Clock Registers .. 279
Configuration Register 278
Firmware Structure .. 281
Interrupt Rate Selection 279
Peripheral Interface I/O Addresses 278
RTC58321 Clock Pinout 276

RENAME Command 143
RM Command ... 136
RUN Command .. 150
RWTS ... 39

DOS 4.5 Routines Timing 83
Error Codes .. 41

 14

Error Messages .. 62
I/O Command Codes ... 41
I/O Context Block Definition 39
ProDOS Routines Timing 83

SAVE Command .. 151
SCRG PROmGRAMER Card 274
SCRG quikLoader See EPROM Operating

System
Soft Switches .. 90

CFFA Control .. 95
Memory and Video .. 91
Original Control ... 94
Original Input/Output 92, 93
Original Management .. 93
quikLoader Control .. 96
RAM Card Control .. 96
RAM Disk Control .. 96
Rana Control .. 96
Sider Control.. 96
Status Switch Flags .. 92
Zip Chip ... 95

Sourceror Program .. 266
SV Command .. 132
SWEET16 Metaprocessor 97

Control Registers ... 98
Non-Register Opcodes 98
Register Opcodes ... 99

TLOAD Command 160
TOUCH Command 143
TrackScan Program 289

TS Command .. 144
TSAVE Command .. 161
TSL Structure .. 21

Block Definition .. 21
TW Command ... 161
UNLOCK Command 145
URM Command .. 146
USA19H142P1.1 Keyspan Driver 296
USER Command ... 133
USRAHAND Entry Address 179
USRYHAND Entry Address 180
VERIFY Command 147
Virtual][...................... 4, 73, 107, 131, 243, 288

Character Bitmap File 110
Character Generator ROM 109
Character Set XML File 109
Icon Bitmap File .. 110

Volume Manager Program 228
VTOC .. 11

16 Sector Bitmap ... 14
32 Sector Bitmap ... 14
Bitmap Definition .. 15
DOS 3.3 Bitmap ... 16
DOS 3.3 Structure Block 12
DOS 4.5 Structure Block 13

VTOC Manager Program 210
WRITE Command 162, 166
WTS Command .. 147
XFERADR Transfer Address 177

 15

