

DOS 4.3

File Management System

Walland Philip Vrbancic, Jr.

 ii

Copyright © 2020 January 1
Walland Philip Vrbancic, Jr.

All rights reserved.

No part of this publication may be reproduced,

stored in a retrieval system,
 or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

DOS 4.3 File Management System
and this Publication are the

Confidential and Proprietary Intellectual Properties
of

Walland Philip Vrbancic, Jr.

ISBN 978-0-578-71547-6

 iii

I am ever so proud to dedicate this Book on the
DOS 4.3 File Management System
and all my previous achievements
to my Parents Wally and Melba

who continuously nourished my intellectual curiosity.

I am ever so grateful to my partner
Carlton D. Wong

who delightfully pretends to understand
what the Hell I am talking about!

If I have seen further than others it is because I have stood on the shoulders of giants.
~~~ Isaac Newton ~~~ 



 

 iv 

Disclaimer of All Liability 
 
 
 
 
 
Do not use the DOS 4.3 File Management System or this Book for any mission-critical 
applications or for any purpose in which a software error or a software failure could 
cause you financial or material loss.  The DOS 4.3 File Management System and this 
Book are designed to enhance your Apple ][ computing experience, but they may 
contain design flaws that could inhibit the proper operation of your computer or result 
in the loss of recorded data on any storage device connected to your computer.  When 
using the DOS 4.3 File Management System or this Book, you assume all risks 
associated with the operation of your computer and the potential loss of your data.  If 
these terms are not acceptable to you, please do not use the DOS 4.3 File Management 
System or this Book. 
 
Walland Philip Vrbancic, Jr., the administrator of applecored.net, makes no warranties 
either expressed or implied with respect to the DOS 4.3 File Management System or 
with respect to this Book, its quality, performance, or fitness for any particular purpose.  
Any risk of incidental or consequential damages resulting from the use of the DOS 4.3 
File Management System or the use of information contained in this Book shall be 
assumed by you, the User.  In no event will Walland Philip Vrbancic, Jr., or 
applecored.net be liable for any direct, indirect, incidental, or consequential damages 
resulting from any defect or deficiency in the DOS 4.3 File Management System or in 
this Book. 
 
While all possible attempts have been made to ensure that the information contained 
within this publication is complete and accurate, the author shall have no liability or 
responsibility for any errors or omissions, or for any damages or data loss resulting 
from the use of the information, circuit diagrams, and example software programs 
contained herein.  The author reserves the right to make any changes and/or any 
improvements to the DOS 4.3 File Management System or to the contents of this 
publication at any time and without any prior notice. 
 
 
 
 
 
 

Apple and all Apple hardware and software brand names are trademarks of Apple Computer, Inc., 
registered in the United States and in other countries. 

All other brand names and trademarks are the property of their respective owners. 



 

 v 

Preface 
 
 
When Brian Wiser and Bill Martens discovered my DOS 4.1 documentation and 
software at applecored.net, they immediately contacted me and wanted Apple 
Pugetsound Program Library Exchange (A.P.P.L.E.) to publish my DOS 4.1 Manual.  
Ha!  If only this would have happened back in 1982.  That’s when my co-worker, 
Randy at Rockwell, and I were actively reading many publications on Apple software 
and hardware, and Call-A.P.P.L.E. was one of our favorite publications.  Needless to 
say, to be published by any of those computer journals at that time would have been 
crazy exciting, and certainly a cherished memory for a lifetime.  I actually was very 
close to finishing DOS 4.1 when I agreed to have Call-A.P.P.L.E. publish the DOS 4.1 
Manual, Build 45, and provide demo diskette images for DOS 4.1L and DOS 4.1H. 
 
I wanted both versions of DOS 4.1 to provide the user with virtually the same 
computing experience, albeit the HELP command is found only in DOS 4.1H.  This 
desire proved to be somewhat troublesome in that I was limited in memory for DOS 
4.1L and I had ample memory for DOS 4.1H.  It was the unused memory in DOS 4.1H 
that was the impetus to introduce the HELP command in the first place.  At the onset I 
warned both Wiser and Martens that I could not stop creating more functionality in 
DOS 4.1, but they were rather insistent on printing the DOS 4.1 Manual for the Apple ][ 
community as it was.  I finished DOS 4.1 with Build 46.  Only Build 46 can now be 
found at applecored.net as well as its respective PDF. 
 
My next area of exploration for Apple DOS was an attempt to port DOS 4.1H to 
Auxiliary memory.  I was absolutely successful, I might add, but I could not 
successfully design an interface between Lisa (my most favorite 65C02 assembler) and 
this DOS residing in Auxiliary memory.  Over the course of several months in effort, I 
could not realize a viable solution that would be elegant, save memory, and provide the 
roadmap for interfacing other utilities and tools to this DOS.  But this effort was 
certainly not wasted!  I documented what I had learned about Main and Auxiliary 
memory management and moved forward to other areas of exploration. 
 
I decided that I would use DOS 4.1H as my initial model for DOS 4.3.  Yes, DOS 4.3 
does retain the “H” designation for High memory.  However, there is no DOS 4.3L.  So, 
I simply refer to my new DOS as DOS 4.3.  The question then became, can Lisa be 
ported and function in Auxiliary memory?  The answer to that question turns out to be a 
resounding “Yes!”  With DOS 4.3 in Main Language Card memory and Lisa in 
Auxiliary Language Card memory, the user has access to virtually all of Main memory 
below 0xBE00 for source code, object code, and the symbol list.  I saw this 
configuration simply as an exercise of many potential and new possibilities. 



 

 vi 

 
Now, if I can relocate Lisa to Auxiliary memory, what about doing the same thing for 
Big Mac?  I have to say that this challenge was a bit uneventful because relocating Big 
Mac to Auxiliary Language Card memory was even easier to accomplish.  My main 
focus in Big Mac was to align Sourceror and Big Mac in terms of their SWEET16 
sourcing and assembling abilities, though I do not believe Big Mac has ever been able 
to assemble all of its own SWEET16 opcodes.  This task turned out to be an 
extraordinary undertaking:  I wanted Sourceror and Big Mac to disassemble/assemble 
MY version of the SWEET16 opcodes.  I discovered that Big Mac could not even 
assemble its own unique SWEET16 EVAL opcode.  This tells me that Bredon probably 
did not even use Big Mac to assemble his own Big Mac source code.  I have to confess 
that there still remain two SWEET16 branches in my disassembled Big Mac source code 
that are wrong, and I do not know their solution to this day.  They occur at memory 
addresses 0xD2C1 and 0xD2DF.  Furthermore, I have yet to discover how to force 
their execution in order to analyze the resulting behavior in Big Mac.  I suspect these 
particular instructions may be part of MACRO handling, something I have had no reason 
to use.  Big Mac and DOS 4.3 now complement each other beautifully. 
 
During my journey in developing the DOS 4.3 File Management System, I discovered 
many more layers of File Manager functionality that were almost coded correctly.  It 
beleaguered me no end when I would issue a CLOSE statement on the Apple command 
line in DOS 3.3 or in DOS 4.1, and something would be flushed to the volume in focus.  
What was it?  Why?  I found even more examples of questionable logic, wrong logic, 
and desperate logic.  I literally tore apart many of those “weird” routines used by the 
CLOSE statement so that now DOS commands will finish completely and data will be 
properly flushed.  All these issues and many, many more have been resolved in DOS 
4.3.  The final frontier I tore apart was the RWTS manager and format algorithm.  Using 
a utility of my own design to scan a track for its raw data and display the structure of 
that raw data allowed me to develop my own algorithm for a complete and 
revolutionary RWTS manager. 
 
I know the user will discover many fascinating developments in the DOS 4.3 File 
Management System:  he will be left wondering how he accomplished anything in a 
timely fashion without having had those developments in any other version of a 
previous Apple Disk Operating System.  I would take that as my greatest compliment. 
 
 
 

Enjoy the ride! 
 
  



 

 vii 
  



 

 viii 
  



 

 ix 
 



 

 x 



 

 xi 
  



 

 xii 
  



 

 xiii 
  



 

 xiv 
  



 

 xv 
   



 

 xvi 
  



 

 xvii 
 



 

 

I.  Designing Another New DOS 
This publication describes the process and products I created when I decided to design and program an 
enhanced Disk Operating System (DOS) for my Apple //e.  Wherever I am able, I have included 
schematic diagrams, code samples, equations, figures, tables, and representative screen shots to help 
explain what I have created and the reasons why I did so.  As in my previous design of an Apple ][ 
DOS, i.e. DOS 4.1L and DOS 4.1H, this has been an incredible journey for me.  With DOS 4.3 I have 
again re-imagined that time when I mostly lived, breathed, and worked on Apple ][ computers, 
hardware, and software development continuously for a good period of my life many, many years ago. 
 
 
1.  Introduction 
I have been an avid Apple ][ computer enthusiast, hobbyist, and professional software programmer 
since 1983 when I became the proud owner of an Apple ][+ computer.  Besides the Apple ][+, my 
initial system included an Apple ][ Language Card, a Disk ][ with an Apple ][ Disk Controller slot 
card, an Amdek color monitor, and an Epson MX100 printer with a Grappler+ Printer Interface slot 
card.  During those early years I designed and built my own Apple ][ peripheral slot cards, made 
electrical and hardware modifications to my Apple ][+ motherboard and keyboard, and wrote a 
substantial number of software programs using Applesoft BASIC (Applesoft hereafter) and 6502 
assembly language.  I soon acquired a Videx UltraTerm video display slot card and a Microsoft Z80 
slot card.  With the Z80 card I began writing Fortran programs that analyzed tomographic 
reconstructions of the human spinal column.  A year or so later I added the Southern California 
Research Group quikLoader and PROmGRAMER slot cards, a Johnathon Freeman Designs (JFD) 
Parallel Printer Buffer, and an Axlon RAM Disk 320 and its interface slot card to my system. 
 
I used C language in my professional programming career for the software development of ultra-high-
speed data collection systems for tactical radar and sensor development.  Now that I am retired from 
the aerospace industry I have always wanted to dig into, tear apart, and learn the intricacies of the last 
available DOS for the Apple ][+.  That DOS, DOS 3.3, was published on August 25, 1980.  Then I 
recently came across another version of DOS 3.3 published years later on January 1, 1983.  That DOS 
contains even more patches for the DOS APPEND command and a patch for Apple //e initialization.  
What I learned from the 1980 publication flabbergasted me:  the software is exciting in its originality 
and concept vis-à-vis it was released just after the publication of Integer BASIC.  However, I found the 
software to be somewhat juvenile in structure and implementation.  Apparently, very little attention 
was given to software design and review.  It appeared to me Apple made a strong push to release 
“something or anything” to consumers and vendors in order to begin marketing software products on 
diskettes.  And history does reveal that Apple Computer did outsource DOS and contracted for it to be 
delivered within 35 days for $13,000 in April, 1978.  Paul Laughton at Shepardson Microsystems 
wrote Apple’s initial disk operating system using Hollerith cards, a card reader, and a minicomputer. 
 
Now that I have the time and the continuing curiosity to delve into Apple ][ DOS, I have the unique 
opportunity to create my own version of DOS that contains the power and the flexibility I always 
thought DOS ought to and could have.  I call this version of Apple ][ DOS, DOS 4.3 File Management 
System, and it requires an Apple ][ that contains Language Card memory.  This document describes 
my eighth build of DOS 4.3.  What a ride I have been on!  Why?  To see what I could do with this 
brilliant machine and its magnificent architecture! 



 

 2 

2.  Brief Overview of DOS 4.3 
I know there are a great many ProDOS users in the Apple ][ community, but I never became interested 
in ProDOS.  The work I did at Hughes Aircraft in the mid 1980’s consisted of using assembly 
language for programming an operating system executive and interface driver routines on Gould SEL 
2780, 6780, and 9780 mainframe computers.  These computers hosted a proprietary operating system 
that allowed our team to simulate a radar processor traveling above the earth’s surface in virtually real 
time.  In order to accomplish that goal and simulate real time navigation, the computer’s file system 
was essentially flat:  each user had their own directory, and these user directories contained no 
subdirectories.  I was very comfortable with the idea of a flat file system and it was very much like 
Apple’s DOS 3.3.  I was simply not comfortable with a slew of subdirectories exemplified by Apple’s 
ProDOS.  My thought was always “How does one remember the path to follow in order to find 
anything?”  With the advent of the Macintosh computer and later when I became familiar with the 
UNIX file system, my subdirectory fears vanished and I cannot imagine a modern computer file 
system without subdirectories.  However, I still remain passionate about Apple ][ DOS and I leave 
ProDOS to those who are comfortable with that operating system architecture.  Though what I have 
seen of ProDOS recently, I believe it could definitely use a facelift, seriously.  I also believe that 
ProDOS is better suited on a machine with a 16-bit processor much like that found in the Apple //gs. 
 
I am sure many are curious and want to know what is new and different in DOS 4.3, and what makes 
this version of the DOS File Management System so special.  Looking back over my previous build 
manuals for DOS 4.1, I realized that I should have included this vital build enhancement information 
with every build, if only for historical reasons.  Like, which build did I solve the Track 0x00 
utilization quest?  Which build did I start labeling volumes?  Which build did I solve the Disk Full 
logic error?  Taken all together, I have done an incredible amount of research, writing, and software 
development to reach DOS 4.3, Build 8.  And, to say the least, I have done an incredible amount of 
testing for every function under normal and abnormal (i.e. error) conditions.  However small the list of 
items unique to DOS 4.3 may appear, I have spent countless hours developing and testing those items 
alone and in concert with the entire DOS 4.3 command repertoire. 
 
DOS 4.3 is specifically designed to reside in Main Language Card memory.  Language Card memory 
begins at address 0xD000, and it includes two banks of memory from 0xD000 to 0xDFFF and one 
bank of memory from 0xE000 to 0xFFFF.  The user has complete freedom to use all memory below 
0xBE00 where HIMEM is set.  The foundation for DOS 4.3 was DOS 4.1H which introduced the 
HELP command.  However, I have completely redesigned HELP in how it looks and how it works in 
DOS 4.3, though it provides the same information.  I have added a companion command to the DOS 
TS command called WTS.  WTS (Write Track/Sector) allows the user to modify a single byte at a time 
on any sector of a disk volume.  And, DOS 4.3 introduces the DOS TOUCH command that will update 
any file’s date and time stamp.  Of course, if a file is locked nothing about the file can be changed nor 
can the file be deleted, unless there is an override available.  DOS 4.3 provides that override for the 
DOS RENAME, TOUCH, and DELETE commands.  Thus, DOS 4.3 introduces two additional File 
Manager opcodes to support WTS and TOUCH.  DOS 4.3 introduces the DOS PHASE command which 
allows the user to set the number of Disk ][ stepper motor half-phases between adjacent tracks.  
Finally, DOS 4.3 introduces the CONFIG command which gives the user ultimate control over many 
DOS 4.3 display and input functions.  Not that I allowed a single error to reside in any DOS 4.1 build, 
there are sometimes better programming methodologies.  DOS 4.3 does contain many of the DOS 4.1 
routines rewritten having a far better design in subverting virtually all possible DOS command 
programming consequences due to user naiveté.  Let’s begin with some software design strategies. 



 

 3 

3.  DOS 4.3 Software Development 
In order to design reliable software for a particular machine or platform, one must understand the 
machine’s complete architecture.  I believe this design approach is fully applicable to the Apple ][ 
computer:  either code or data occupies fixed addressable memory where some defined memory 
locations are reserved for the stack, text, graphics, control, and peripheral slot cards.  Code is further 
restricted in the Apple ][ by the rather limited 6502-microprocessor Instruction Set.  My obvious goal 
strategy is to design software in such a way as to create the most functionality with the least amount of 
code and data space.  I believe this methodology will yield the highest degree of code effectiveness. 
 
I use Gerard Putter’s application Virtual ][, Version 9.3, to create my software applications, and that is 
the platform I use to perform the initial, though simulated testing.  Once I am satisfied with a program 
or a utility operating within the Virtual ][ application, I transfer the volume image containing that 
program or utility to an Enhanced Apple //e.  I have found some discrepancies between Virtual ][ and 
my Enhanced Apple //e particularly in enabling Language Card memory:  two successive writes to 
memory address 0xC083 does not write enable Language Card Bank 2 memory in my Enhanced 
Apple //e as it does in Virtual ][.  Two successive reads of memory address 0xC083 functions the 
same in both my Enhanced Apple //e and in Virtual ][ as they should.  I have brought this to the 
attention of Mr. Putter.  Also, Main memory is not initialized at power-up in quite the same way in my 
Enhanced Apple //e as it is in Virtual ][.  I believe DOS 3.3 always assumed that an Apple ][ will 
power-up with all of page-zero memory set to 0xFF.  Virtual ][ also makes this same assumption.  I 
know I have been caught unaware that all of Auxiliary page-zero memory is not always set to 0xFF at 
power-up.  Therefore, I have included a call to SETNORM during Boot Stage 2 to ensure that page-zero 
memory location 0x32 is, indeed, set to 0xFF.  I have used AUXMOVE to manually “hide” some 
ProDOS code in Auxiliary memory within Virtual ][.  The code disappears (is overwritten) when I 
boot with DOS 4.3.  This does not happen in the Enhanced Apple //e:  the code can still be safely 
found in Auxiliary memory after a reboot.  Always, always, always make final tests on real hardware. 
 
Before beginning any discussion of a complicated subject like a disk operating system or file 
management system for the Apple ][, it is usually easier to understand such a system if each 
component of that system is shown as part of a Big Picture.  That Big Picture is shown in Table I.3.1.  
Though certainly not to any scale, Table I.3.1 shows how memory is utilized in the Apple ][ and where 
the basic hardware and software components are found in Main memory.  I exclude any discussion of 
Auxiliary memory as found in the Apple //e at this time.  The basic components shown in Table I.3.1 
are the 6502 microprocessor memory requirements, the DOS vectors and routines, text and LORES 
graphic pages, HIRES graphic pages, DOS file buffers, DOS software manager locations, Soft 
Switches, peripheral-card memory, Read/Write Track/Sector (RWTS) and HELP routines, Applesoft 
interpreter, and the ROM and RAM Monitor.  The following pages will discuss the Apple ][ memory 
utilization in great detail.  It may be helpful to refer to Table I.3.1 occasionally in order to fully 
understand how those details relate to the entire hardware and software management of the Apple ][ 
computer by the DOS 4.3 File Management System. 
 
If any of the components shown in Table I.3.1 are unfamiliar, it would be to your advantage now to 
locate one or more Apple publications and refresh your understanding of that component.  Even the 
Apple ][ Reference Manual that came with my Apple ][+ computer contains invaluable information 
applicable to the entire family of Apple ][ computers.  I even own a few SAMS Publications that have 
provided me with enhanced understanding of many of the components shown in Table I.3.1. 
 
  



 

 4 

Memory Page Description Description 
0x00 Page-zero variables, pointers, routines, and 

special addressing modes  

0x01 Stack for the 6502 microprocessor  
0x02 Input buffer, Applesoft interpretation buffer  
0x03 User buffer, DOS vectors and routines  

0x04-0x07 Text or LORES graphics Page 1  
 

0x08-0x0B Applesoft program start, Text or LORES graphics 
Page 2, or available for software 

 
 

0x0C-0x1F Available for software  
 

0x20-0x3F HIRES graphics Page 1, or available for software  
 

0x40-0x5F HIRES graphics Page 2, or available for software  
 

0x60-0xBD Available for software  
 

0xBE-0xBF DOS 4.3 HIMEM, DOS 4.3 Language Card 
interface, DOS 4.3 bootstrap routines 

 
 

0xC0 System Soft Switches  
 

0xC1-0xC7 Peripheral-card ROM memory for slots 1-7, or 
CX ROM 

 
 

0xC8-0xCF Peripheral-card expansion ROM memory for slots 
1-7, or CX ROM 

 
 

0xD0-0xDF Bank 2, ROM Applesoft Interpreter, DOS 4.3 
Command and File Managers 

Bank 1, DOS 4.3 
RWTS and HELP 

0xE0-0xEB ROM Applesoft Interpreter, DOS 4.3 Command 
and File Managers 

 
 

0xEC-0xEF ROM Applesoft Interpreter, DOS 4.3 working 
variables and file buffers 

 
 

0xF0-0xF7 ROM Applesoft Interpreter, DOS 4.3 file buffers  
 

0xF8-0xFF ROM Monitor and RAM Monitor  
 

 
Table I.3.1.  Apple ][ Memory Utilization with DOS 4.3 

 
 
 
The Apple ][ computer is truly a brilliant machine and it has a magnificent architecture.  I hope you 
find my presentation of DOS 4.3 vis-à-vis the Apple ][ computer interesting, enlightening, and useful 
in view of your own hardware and software experiences with this delightful computer. 
 
  



 

 5 

4.  Page-Zero Utilization 
The Instruction Set for the 6502-microprocessor (and the 65C02 processor as well) includes special 
processor instructions that utilize variables located in the first 256 bytes, or page, of addressable 
memory, that is, locations 0x0000 to 0x00FF.  I designate this area of memory “page-zero.”  When 
Steve Wozniak designed the Apple Monitor, he allocated a number of page-zero locations for its 
variables and pointers.  Similarly, Applesoft, DOS, and virtually all other user assembly language 
programs use page-zero locations in order to utilize those special instructions.  The 6502-
microprocessor contains an accumulator, the A-register, and two index registers, the X-register and the 
Y-register.  Page-zero instructions using these registers include load and store instructions, indexed 
load and store instructions, indexed indirect addressing instructions using the X-register, and indirect 
indexed addressing instructions using the Y-register.  Page-zero wraparound occurs with page-zero 
indexed addressing and indexed indirect addressing instructions using the X-register and page-zero 
indexed addressing instructions of the X-register using the Y-register, but not with indirect indexed 
addressing instructions using the Y-register.  Yes, it is a little confusing, but not too complicated. 
 
When developing a user assembly language program, it is critical to select page-zero locations that do 
not conflict with the Apple Monitor, Applesoft, or DOS depending on whether those ROM and 
language card applications are important to the user program.  Knowing which page-zero locations are 
used by or critical to resident applications can greatly simplify the selection of unused or available 
page-zero locations.  Because DOS 3.3 supports Integer BASIC, a few page-zero locations were used 
to process that file type.  DOS 4.3 also uses those same page-zero locations for processing the 
Applesoft CHAIN command, for example, and other DOS command enhancements.  There are 
definitely obvious page-zero locations that cannot be used except for how they were intended, like the 
horizontal and vertical cursor locations CH and CV, respectively.  Then, there are less obvious, rather 
dubious page-zero locations that are used by some Applesoft commands from 0x00 to 0x1F.  These 
page-zero locations are fair game for user programs that do not use the Applesoft interpreter or Steve 
Wozniak’s SWEET16 interpreter.  Figure I.4.1 shows all the used and the unused page-zero locations 
and the applications that use those particular locations according to my references and the best of my 
ability to decipher the code that uses those locations.  The shaded locations in Figure I.4.1 are unused 
page-zero locations that probably are not used by the Apple //e Monitor or Applesoft, so they are more 
than likely the better locations to select.  Tables I.4.1 and I.4.2 lists all the page-zero locations utilized 
by DOS 4.3.  Table I.4.3 summarizes all the available page-zero locations not utilized by the ROM 
routines and DOS 4.3.  Keep in mind that indirect indexed addressing instructions using the Y-register 
do require a page-zero byte-pair, so it is even more critical that neither address byte is clobbered by 
software external to a user’s assembly language program. 
 
There are certainly common page-zero locations that all software routines can use as temporary 
variables and pointers.  The 6502-microprocessor is not time-shared and there is no context switching 
between routines, so if a routine uses some common page-zero locations, it should complete all 
processing using those locations and not expect to find its results sometime later.  Examples of 
common page-zero locations would be A1L/A1H at 0x3C/0x3D, A2L/A2H at 0x3E/0x3F, 
A3L/A3H at 0x40/0x41, A4L/A4H at 0x42/0x43, OPRND at 0x44, and the first three bytes of 
DSCTMP at 0x9D:0x9F.  Using these page-zero locations to move or copy data would be safe and 
not interfere with the Monitor, Applesoft, or DOS processing.  Actually, several Monitor routines 
require that some of these locations just mentioned contain your data before using those routines.  The 
Monitor routine MOVE at 0xFE2C is one such example.  It is really up to the user to confirm and 
verify that the selected page-zero memory locations do not interfere with other routines external to and 
required by the user software. 



 

 6 

0x 0 1 2 3 4 5 6 7 8 9 A B C D E F 

00 12 
34 134 34 34 34 4     4 4 4 4 4 4 

10 4 4 4 4 4 4 4 4 4 4 4 4 4 24 2 3 

20 134 134 134 134 13 
46 134 14 

56 
14 
56 

13 
46 

13 
46 

13 
456 

13 
456 

14 
56 

14 
56 

123 
456 

123 
456 

30 14 12 134 12 
46 123 12 

36 136 136 136 136 123 123 12 
345 

12 
345 

123 
456 

123 
456 

40 156 156 12 
36 

12 
36 

12 
36 1 1 1 1 1 56 56 6 6 13 13 

50 346 346 4 4 4 4 24 24 24 24 46 6 6 6 4 4 

60 4 4 4 4 4 4 4 46 46 46 46 46 46 346 346 346 

70 346 4 4 346 346 4 46 4 4 4 4 4 4 4 4 4 

80 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

90 4 4 4 4 34 34 4 4 4 4 4 34 34 4 4 4 

A0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 46 

B0 46 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

C0 4 4 4 4 4 4 4 4 4 4 4 4 4 4   

D0 4 4 4 4 4 4 46  46 6 4 4 4 4 4 4 

E0 4 4 4  4 4 4 4 34 34 4      

F0 4 4 4 14 14 4 4 4 4 4      34 

 
Figure I.4.1.  Page-Zero Memory Utilization 

 
 
 

Key 
1 – used by the Monitor  4 – used by Applesoft 
2 – used by the Mini Assembler  5 – used by RWTS 
3 – used by the Apple //e CX ROM  6 – used by DOS 4.3 

 
 
 



 

 7 

Address Parameter Description 
0x24 CH horizontal cursor location 
0x25 CV vertical cursor location 
0x26 BUFRADRZ ROM boot data field buffer address 
0x26 TEMPZ RWTS temporary 8-bit variable 
0x27 TEMP2Z RWTS temporary 8-bit variable 
0x28 BASEZ text screen line address 
0x2A ASPTRSAV DOS CHAIN array descriptor addresses 
0x2A CURTRKZ RWTS requested track 
0x2B DRVFLAG RWTS data-changing drive flag 
0x2B SLOT16Z boot slot * 16 
0x2B SYNCNT RWTS format sync byte count 
0x2C DATAFNDZ RWTS address field address 
0x2D SECFNDZ RWTS address field sector found 
0x2E TRKFNDZ RWTS address field track found 
0x2F VOLFNDZ RWTS address field volume found 
0x32 INVFLG text screen inverse/normal flag 
0x33 PROMPT text screen prompt character 
0x35 PAGECNT boot/initialization DOS image page count 
0x36 CSWL output device handler address 
0x38 KSWL input device handler address 
0x3C ROMTEMPZ ROM boot temporary 8-bit variable 
0x3C MOTORTIM RWTS motor on-time 16-bit count 
0x3C A1 general purpose temporary 16-bit variable 
0x3D ROMSECTR ROM boot requested sector 
0x3E BUFADR2Z RWTS data field buffer address 
0x3E ODDBITSZ RWTS temporary 8-bit variable 
0x3E A2 general purpose temporary 16-bit variable 
0x3F SECTORZ RWTS address field sector 
0x40 ROMDATA ROM boot address field track found 
0x40 FILEBUFZ file context block parameter buffer address 
0x40 TRACKZ RWTS address field track 
0x41 ROMTRACK ROM boot requested track 
0x41 VOLUMEZ RWTS address field volume 
0x42 A4 general purpose temporary 16-bit variable 
0x42 BUFADRZ general purpose sector data buffer address 
0x44 DIRINDX VTOC and TSL data index 
0x4A IOBADR RWTS IOCB buffer address 
0x4C DOSPTR DOS general purpose pointer address 

 
Table I.4.1.  DOS 4.3 Page-Zero Utilization – Part 1 

 
  



 

 8 

0x50 LINNUM Applesoft line number 16-bit variable 
0x5A DOSTEMP1 DOS general purpose 8-bit variable 
0x5B DOSTEMP2 DOS general purpose 8-bit variable 
0x5C DOSBUFR DOS general purpose buffer address 
0x67 ASPGMST Applesoft program start address 
0x69 ASVARS Applesoft simple variables pointer 
0x6B ASARYS Applesoft array pointer 
0x6D ARYEND Applesoft end of array pointer 
0x6F ASSTRS Applesoft end of string storage pointer 
0x73 ASHIMEM Applesoft HIMEM address 
0x76 ASRUN Applesoft RUN flag 
0x9D DSCTMP Applesoft temporary string descriptor 
0xAF ASPEND Applesoft end of program address 
0xD6 PROTECT Applesoft program write-protect flag 
0xD8 ASONERR Applesoft ONERR error flag 
0xD9 RKEYWORD DOS R keyword 8-bit variable 

 
Table I.4.2.  DOS 4.3 Page-Zero Utilization – Part 2 

 
 
 

Start End Description 
0x06 0x09 4 bytes free 
0x1E 0x1E 1 byte free 
0xCE 0xCF 2 bytes free 
0xD7 0xD7 1 byte free 
0xE3 0xE3 1 byte free 
0xEB 0xEF 5 bytes free 
0xFA 0xFE 5 bytes free 

 
Table I.4.3.  Available Page-Zero Locations Summary 

 



 

 9 
 


