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I.  Designing a New DOS 
This manual describes the process and products I created when I decided to design, write, and program 
a new Disk Operating System (DOS) for my Apple //e.  Wherever I am able I have included schematic 
diagrams, code samples, equations, figures, tables, and representative screen shots to help explain what 
I have created and the reasons why I did so.  Today, this has been an incredible journey for me in re-
imagining that time when I mostly lived, breathed, and worked on Apple ][ computers, hardware, and 
software development continuously for a good period of my life many, many years ago. 
 
 

1.  Introduction 
I have been an avid Apple ][ computer enthusiast, hobbyist, and professional programmer since 1983 
when I became the proud owner of an Apple ][+ computer.  My complete system initially included an 
Apple ][ Language Card, a Disk ][ with an Apple ][ Disk Controller slot card, an Amdek color monitor, 
and an Epson MX100 printer with a Grappler+ Printer Interface slot card.  During those early years I 
designed and built Apple ][ peripheral slot cards, made electrical and hardware modifications to my 
Apple ][+ motherboard and keyboard, and wrote a substantial number of software programs using 
Applesoft BASIC (Applesoft hereafter) and 6502 assembly language.  I soon acquired a Videx 
UltraTerm video display slot card and a Microsoft Z80 slot card, and I began writing Fortran programs 
that analyzed tomographic reconstructions of the human spinal column.  A year or so later I added the 
Southern California Research Group quikLoader and PROmGRAMER slot cards, a Johnathon 
Freeman Designs (JFD) Parallel Printer Buffer, and an Axlon RamDisk 320 and its interface slot card 
to my system. 
 
Now that I am retired from the aerospace industry where I used C language for the software 
development of ultra-high speed data collection systems for tactical radar and sensor development, I 
have always wanted to dig into, tear apart, and learn the intricacies of the last available Apple ][ DOS 
for the Apple ][+, that is, DOS 3.3, published on August 25, 1980.  Then I came across another version 
of DOS 3.3 published on January 1, 1983, which contains even more patches for the DOS APPEND 
command and an Apple //e initialization patch.  What I learned from the 1980 publication 
flabbergasted me:  the code is exciting in its originality and concept vis-à-vis it was released just after 
the publication of Integer BASIC, but I found it somewhat juvenile in structure and implementation.  
Apparently very little attention was paid to code design and review because it appeared to me Apple 
made a strong push to release “something or anything” to consumers and third-party vendors in order 
to market software products on diskettes. 
 
And history does reveal that Apple Computer did outsource DOS and contracted for it to be delivered 
within 35 days for $13,000 in April 1978.  Paul Laughton at Shepardson Microsystems wrote Apple’s 
initial disk operating system using Hollerith cards, a card reader, and a minicomputer.  Now I have the 
time and the continuing curiosity to delve into Apple ][ DOS, and I have the opportunity to create my 
own version of DOS that contains the power and the flexibility I always thought DOS ought to and 
could have.  I call my version of Apple ][ DOS, DOS 4.1.  And this is my 46th build of DOS 4.1.  
What a ride I have been on!  Why?  To see what I could do for this wonderful machine and its 
magnificent architecture! 
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I know there are a great many ProDOS users in the Apple ][ community, but I never became interested 
in ProDOS.  The work I did at Hughes Aircraft in the mid 1980’s consisted of using assembly 
language for programming an operating system executive and interface driver routines for Gould SEL 
2780, 6780, and 9780 mainframe computers.  These computers hosted a proprietary operating system 
that allowed our team to simulate a radar processor traveling above the earth’s surface in virtually real 
time.  In order to accomplish that goal and simulate real time navigation the computer’s file system 
was flat:  each user had their own directory, and these user directories contained no subdirectories.  So 
I was very comfortable with the idea of a flat file system, very much like that of Apple’s DOS 3.3.  I 
was simply not comfortable with a slew of subdirectories exemplified by Apple’s ProDOS.  My 
thought was always “How does one remember the path to follow to find anything?”  With the advent 
of the Macintosh computer and later when I became familiar with the UNIX file system, my 
subdirectory fears vanished and I cannot imagine a modern computer directory system without 
subdirectories.  However, I still remain passionate about Apple ][ DOS and I leave ProDOS to those 
who are comfortable with that operating system architecture.  Though what I have seen of ProDOS 
recently, I believe it could definitely use a facelift, seriously. 
 
I am sure many are curious and want to know what is new and different in Build 46, and what makes 
this build so special.  Looking back over my previous build manuals I realized that I should have 
included this vital build enhancement information with every build, if only for historical reasons.  Like, 
which build did I solve the Track 0x00 utilization quest?  Which build did I start labeling volumes?  
Which build did I solve the “Disk Full” logic error?  Taken all together, I have done an incredible 
amount of research, writing, and software development to reach Build 46.  And, to say the least, I have 
done an incredible amount of testing for every function under normal and abnormal (i.e. error) 
conditions.  However small the list of items unique to Build 46 may seem, I have spent countless hours 
developing and testing those items alone and in concert with the entire DOS package. 
 
Build 45 did introduce another File Manager opcode to be used only by the DOS TS command.  Build 
46 adds the TSSAV 16-bit variable to the operation of this File Manager opcode so that the TS handler 
does not interfere with the DIRTS 16-bit variable as in previous builds.  It must be emphasized that the 
File Manager FMTSCD opcode is not for external use.  It is simply a means to utilize the error 
handling capabilities of the File Manager on behalf of the DOS TS command.  In Build 46 both the 
Boot and Volume Init functions now utilize the BOOTCFG table.  This ensures total consistency 
between what the Init function creates and how the created volume actually boots.  Build 46 allows the 
creation of the volume Catalog with a minimum of one sector, or any number up to 15 sectors.  
Previously, the minimum number of volume Catalog sectors was seven.  Build 46 sets the default 
volume Catalog to five sectors, or enough room to support 35 files.  New to Build 46 are two new 
variables FIRSTCAT and LASTRACK found at the end of the CMDVALS data structure.  These 
variables hold the default number of volume Catalog sectors and the default number of 
Tracks/Volume, respectively.  Currently, these variables contain 0x05 for FIRSTCAT and 0x23 for 
LASTRACK.  These variables are provided so that DOS 4.1 does not need to be reassembled in order 
to change these default values.  Build 46 adds a new keyword, the B keyword, to the DOS SAVE, 
BSAVE, LSAVE, and TSAVE commands in order to implement the “File Delete/File Save” strategy.  
Many times when a highly edited file is saved, some of the T/S entries in the file’s TSL are not 
utilized, and disk space is wasted.  When a file is deleted, then saved, those unused data sectors are 
retrieved and made available for other files to use.  Using the B-keyword with these DOS commands 
will automatically delete the file, then save the file as intended.  Finally, the DOS CATALOG 
command output can be terminated by pressing the ESC key. 
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2.  General Software Design Strategy 
My career in designing software, building software systems, and constructing data conversion and data 
manipulation algorithms required me to understand the hardware capabilities of the computers chosen 
for those tasks, down to the last detail.  How else was I to construct a real time digital “time frame” on 
a computer having a given operating system and processor throughput, fixed addressable memory, and 
unique peripheral interfaces (e.g. the support of direct I/O) unless I understood the complete machine 
architecture.  I believe this design approach is fully applicable to the Apple ][ computer:  either code or 
data occupies fixed addressable memory where some defined memory locations are reserved for text, 
graphics, control, and peripheral slot cards, and code is further restricted by the rather limited 6502-
microprocessor Instruction Set.  My obvious goal strategy is to design software in such a way as to 
create the most functionality with the least amount of code and data space.  I believe this methodology 
will yield the highest degree of code effectiveness. 
 
So I began my DOS design first with a “wish list” of some of the DOS capabilities and enhancements I 
wanted most in my DOS.  In parallel with my software design of DOS 4.1 I wanted to create enough 
documentation for someone else to “come up to speed” and be able to create their “wish list” items for 
their version of an Apple DOS if that is their goal, too.  I have no doubt that what I think is a worthy 
enhancement may not be so worthy to someone else.  Someone else may rather use the code space for 
a different utility or functionality, and that would make their DOS XYZ just as powerful for their 
software environment and applications.  Another one of my DOS design goals centered on how best to 
display information from many of the command-line commands.  I realize there are only 24 lines on an 
Apple ][ display, but I found that spacing commands and their output information provides a far better 
visual presentation.  In all of the software programs I developed for users at Hughes Aircraft Company 
I put “Consistency in Design” at the top of my design goals list.  I wanted users to be instantly 
comfortable with all current and future versions of my programs once they had initially acclimated to 
any one of my program menus.  In the same fashion I want my design of Apple DOS to use 
“Consistency in Design” for each group of related commands in how the commands gather, store, 
retrieve, and display information. 
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3.  DOS Wish List 
I can easily recall at least five DOS 3.3 enhancements aimed to speed up data input and output to a 
Disk ][, even going so far as modifying the soft sector skewing table.  All the enhancements performed 
well, but they were usually at the expense of losing one or more DOS capabilities such as the INIT 
function, for example.  In DOS 3.3 there was no support for file date and time stamping even though 
many clock cards were already available in the early 1980’s.  DOS included placeholders for the future 
support of additional file types, but those features have never been implemented to my knowledge.  A 
diskette’s Volume Table of Contents, or VTOC, was actually designed to support media having up to 
32 sectors per track, and up to 50 tracks per volume, but those features have never been implemented 
with any supporting hardware I know of.  There was no easy way to manipulate text files or create a 
simple EXEC file from the Apple command line.  For example, one needed sophisticated tools to even 
display the contents of a volume sector. 
 
Another missing native DOS capability was an Applesoft program chaining function where all 
previous Applesoft variables would be available to the next chained Applesoft program, similar in 
concept to the DOS chaining capability for Integer BASIC programs.  An assembly language program 
was available to provide Applesoft program chaining capability, but the program had to reside on each 
and every application volume in order to support the chained applications across multiple volumes.  
Even that software had a major design flaw that could wreak havoc with program variables.  DOS did 
not support lowercase command entry even though Applesoft did support lowercase entry on an 
Enhanced Apple //e.  And, DOS could not “undelete” a file once it was deleted without using special 
software utilities along with a convoluted set of procedures. 
 
Those early pioneers who wanted to write massive Applesoft applications were mostly out of luck 
because DOS consumed at least 11 KB of the available 48 KB of memory below memory address 
0xC000; only Diversi-DOS was able to relocate DOS to the Language Card, and that actually became 
very useful to some software application publishers.  Of course, it would be far better to have a version 
of DOS that would boot directly into the Language Card and be totally resident and native in the 
Language Card as well. 
 
Apple DOS depends on a few ROM routines for initialization, keyboard input, and video output.  I do 
not believe a discussion about an Apple ][ DOS would be complete without considering the Monitor 
firmware.  The ROM, alone, would be a fascinating subject, but together, the DOS and the ROM 
complete the Apple ][ hardware and software architecture.  The ROM contains flawed code, functions 
that should be excluded, and functions that should be included.  So, I include exploring the ROM on 
my DOS wish list, too. 
 
Yes, the DOS wish list goes on and on, but it also needs to include solutions to all the flawed DOS 
routines, and the DOS routines that were simply coded incorrectly.  I believe DOS 4.1 not only meets 
the demands of this wish list, but also exceeds it in all expectations as well. 
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4.  DOS 4.1 Software Development 
In 1983 most everyone including me who wrote software for Ken Williams at Sierra On-Line used 
Randall Hyde’s Lazer’s Interactive Symbolic Assembler, that is, Lisa V2.6, for the software 
development of 6502 assembly language programs.  I have taken the time to source Lisa in order to 
add additional capabilities to its repertoire of commands and directives, and to modify and/or eliminate 
its direct DOS 3.3 dependencies.  Lisa now uses the variable table interfaces in DOS 4.1 in order to 
access some necessary DOS 4.1 internal variables and structures.  I do all my verification testing on an 
Enhanced Apple //e having a Super Serial slot card, a clock slot card of my own design and fabrication, 
a quikLoader slot card, a Rana Disk ][ Controller slot card, and an Axlon interface slot card connected 
to a RamDisk 320.  The Super Serial slot card is connected to my Apple G4 dual processor tower using 
a Keyspan serial to USB adapter.  I use Gerard Putter’s application Virtual ][, Version 7.5.4 (my Apple 
MacBook Pro uses Version 9.1.2) to create my software applications and perform the initial, though 
simulated testing.  Once I am satisfied with an application or program running under Virtual ][, I 
connect Virtual ][‘s A2V2 application to the Super Serial card via the Keyspan, and run the mating 
application ADT on the Apple //e.  After I have transferred the volume image to a physical diskette or 
to the RamDisk 320 connected to DOS 4.1, I am ready to test the application or program on real 
hardware.  If I make any software changes to modify or enhance the application under test, I can, of 
course, transfer that modified volume image back to Virtual ][ and archive the volume image on the G4 
or the MacBook Pro.  It was absolutely necessary that I use the Disk ][ and a physical diskette when I 
tested my version of the DOS RWTS read/write I/O routines, for example.  It is unfortunate that 
Virtual ][ only emulates the Thunderclock slot card.  I designed and built my own clock slot card for 
my Apple ][+, and now use it in my Apple //e.  I inherited my mother’s Applied Engineering’s 
TimeMaster II clock slot card from her Apple //e.  DOS 4.1 absolutely supports these three clock cards 
and quite possibly others. 
 
Because I entered the Apple ][+ market when the computer had a full 48 KB of memory on its 
motherboard and 16 KB of memory in the Language Card available then, I never made use of a Master 
boot disk image:  I only created and used Slave boot disk images, even when I was employed at Sierra.  
Therefore, to my way of thinking, DOS loads to memory address 0x9D00, end of story.  Also, DOS 
3.3 loads several buffers (catalog, VTOC, and the primary nibble buffer) unnecessarily, and it ignores 
two sectors on track 0x00 used by and reserved for the Master boot disk image.  To my surprise and 
delight I found that with some clever (okay, a little clever) organization I could fit all of DOS 4.1 onto 
tracks 0x00 and 0x01, and not even utilize any of the five sectors DOS 3.3 uses on its reserved track 
0x02.  I cannot tell you all the time I spent in early 1984 designing programs that would modify the 
VTOC on a diskette so that I could access those eleven unused sectors remaining on track 0x02.  Now, 
I have made all of track 0x02 available for data storage and, as a result, shortened the time for DOS to 
boot into memory.  In the early Apple ][ market there was initially Integer BASIC in ROM unless you 
owned a Language Card into which the Applesoft Interpreter could be loaded when that language 
became available.  My Apple ][+ contained the Applesoft autostart ROMs so my Language Card was 
simply used to load Integer BASIC if I desired, or the Pascal or Fortran languages.  Eventually, DOS 
was enhanced to support both Integer BASIC and Applesoft, and it was able to switch between those 
two languages.  I suppose I used Integer BASIC all of one time in order to watch AppleVision by Bob 
Bishop.  This may not surprise anyone, Sierra did not ever carry one single product in its inventory that 
required Integer BASIC.  And I do not recall any other software-publishing house marketing an Integer 
BASIC product in the early 1980’s.  I chose to remove all traces of Integer BASIC support from DOS 
4.1.  ProDOS does not support Integer BASIC as well. 
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Over the years a lot of fuss was made concerning the page-zero memory address location Apple chose 
for the RWTS Input/Output Context Block (IOCB) pointer at 0x48/49.  Unfortunately, the Apple 
Monitor, which I believe takes priority, also uses page-zero memory bytes 0x48/49 to save the 
processor and status registers after the processor receives an interrupt.  Instead of fixing this problem 
in DOS, Apple advised programmers to always store a 0x00 byte at memory address 0x48 after using 
the 0x3D9 vector to call RWTS.  Others suggested using the MOTORTIM (RWTS motor on time) 
memory bytes 0x46/47 for the RWTS IOCB pointer and moving the MOTORTIM pointer elsewhere.  
I chose to do a very careful and thorough study of the Monitor routines and their use of page-zero 
memory.  I modified the MSWAIT routine to use the page-zero memory bytes 0x3C/3D for the 
MOTORTIM bytes.  In view of no longer supporting Integer BASIC, DOS 4.1 uses the page-zero 
bytes 0x4A/4B for the RWTS IOCB pointer which were previously used by Integer BASIC.  
Therefore, the 0x45 to 0x49 page-zero bytes are now untouched by DOS 4.1 and exclusively for use by 
the Monitor.  In the little experience I gained in generating and handling interrupts with my clock card, 
I realized that the interrupt handling of the Apple Monitor was totally under-realized, under-
appreciated, and under-utilized.  The RTI instruction is certainly available, it works, and it could be 
used for some awesome hardware design firmware coupled with the right DOS. 
 
During my review of DOS 3.3 I found that it took less than a handful of instructions to give DOS 4.1 
full lowercase support for all commands, and even fewer instructions to allow DOS 4.1 access to all of 
track 0x00 for data storage.  FID also required a few easy modifications in order for it to access track 
0x00 for data retrieval and storage as well.  I also found that to add date and time stamping to disk 
volumes and files only required three slight modifications to the volume initialization routine, the 
closing of files routine, and the routine that updates the disk VTOC.  By the way, the VTOC also 
includes enough unused space to hold the DOS Version, Build number, a 24-character Volume Name, 
a Volume Type showing if it is a bootable or a data storage volume, a Volume Library number, and a 
flag indicating which location in RAM that DOS 4.1 was occupying when the volume was initialized:  
DOS 4.1L, “L” for Low RAM DOS, that is, DOS from 0x9D00 to 0xBFFF, or DOS 4.1H, “H” for 
High RAM DOS, or DOS fully located (not relocated) natively in the Language Card. 
 
Before beginning any discussion of a complicated subject like an operating system for the Apple ][, it 
is usually easier to understand each component part of such a system if they are shown as part of a Big 
Picture.  That Big Picture is shown in Table I.4.1.  Though certainly not to scale, Table I.4.1 simply 
shows the memory utilization for the Apple ][ and where the basic components are found in main 
memory.  I exclude any discussion of auxiliary memory as found in the Apple //e in this manual.  The 
basic components shown Table I.4.1 are the 6502 microprocessor requirements, the DOS vectors, text 
pages, graphic pages, DOS file buffers, DOS code, soft switches, peripheral-card memory, Applesoft, 
and the ROM Monitor.  The following pages will discuss the Apple ][ memory utilization in great 
detail so it may be helpful to refer to Table I.4.1 occasionally in order to fully understand how those 
details relate to the entire software and hardware management of the Apple ][ computer.  The Apple ][ 
computer is a wonderful machine and it has a magnificent architecture.  I hope you find my 
presentation of DOS 4.1 vis-à-vis the Apple ][ computer interesting, enlightening, and useful in view 
of your own hardware and software experiences with this machine. 
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Page Memory Memory 
0x00 Page-zero pointers, special addressing modes  
0x01 Stack for 6502 microprocessor  
0x02 Input buffer, Applesoft interpretation buffer  
0x03 User buffer, DOS vectors  

0x04-0x07 Text or LORES graphics page 1  
 

0x08-0x0B Applesoft program start, Text or LORES graphics 
page 2 

 
 

0x0C-0x1F Free  
 

0x20-0x3F HIRES graphics page 1 or free  
 

0x40-0x5F HIRES graphics page 2 or free  
 

0x60-0x95 Free  
 

0x96-0x9C DOS 4.1L HIMEM, DOS 4.1L file buffers start  
 

0x9D-0xBC DOS 4.1L file buffers end, DOS 4.1L start  
 

0xBE-0xBF DOS 4.1H HIMEM, DOS 4.1H Language Card 
interface, DOS 4.1L end 

 
 

0xC0 Soft switches  
0xC1-0xC7 Peripheral-card ROM memory for slots 1-7  

 
0xC8-0xCF Peripheral-card expansion ROM memory  

 
0xD0-0xDF Bank 2, Applesoft, DOS 4.1H start Bank 1, DOS 4.1H 

RWTS and HELP 
0xE0-0xEB Applesoft, DOS 4.1H end  

 
0xEC-0xEF Applesoft, DOS 4.1H file buffers start  

 
0xF0-0xF7 Applesoft, DOS 4.1H file buffers end  

 
0xF8-0xFF ROM Monitor  

 
 

Table I.4.1.  Apple ][ Memory Utilization 
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5.  Page-Zero Utilization 
The Instruction Set for the 6502-microprocessor (and the 65C02 processor as well) includes special 
processor instructions that utilize variables located in the first 256 bytes, or page, of addressable 
memory, that is, locations 0x0000 to 0x00FF.  I designate this area of memory “page-zero.”  When 
Steve Wozniak designed the Apple Monitor he allocated a number of page-zero locations for its 
variables and pointers.  Similarly Applesoft, DOS, and virtually all other user assembly language 
programs use page-zero locations in order to utilize those special instructions.  The 6502-
microprocessor contains an accumulator, the A-register, and two index registers, the X-register and the 
Y-register.  Page-zero instructions using these registers include load and store instructions, indexed 
load and store instructions, indexed indirect addressing instructions using the X-register, and indirect 
indexed addressing instructions using the Y-register.  Page-zero wraparound occurs with indexed 
indirect addressing instructions but not with indirect indexed addressing instructions. 
 
When developing a user assembly language program it is critical to select page-zero locations that do 
not conflict with the Apple Monitor, Applesoft, or DOS depending on whether those applications are 
important to the user program.  Knowing which page-zero locations are used by or critical to resident 
applications can greatly simplify the selection of unused or available page-zero locations.  Because 
DOS 3.3 supports Integer BASIC a few page-zero locations were used to process that file type.  DOS 
4.1 also uses those same page-zero locations for processing the Applesoft CHAIN command, for 
example, and other command enhancements.  There are definitely obvious page-zero locations that 
cannot be used except for how they were intended, like the horizontal and vertical cursor locations CH 
and CV, respectively.  Then, there are less obvious, rather dubious page-zero locations that are used by 
some Applesoft commands from 0x00 to 0x1F.  These page-zero locations are fair game for user 
programs that do not use the Applesoft interpreter or Steve Wozniak’s Sweet 16 interpreter.  Tables 
I.5.1 through I.5.4 list all page-zero locations and the applications that use those particular locations 
according to my references and the best of my ability to decipher the code that uses those locations.  
Figure I.5.1 summarizes the data in Tables I.5.1 through I.5.4 to show all used and unused page-zero 
locations.  The shaded locations in Figure I.5.1 are unused page-zero locations that probably are not 
used by the Apple //e Monitor or Applesoft, so they are more than likely the better locations to select.  
Indirect indexed addressing instructions using the Y-register do require a page-zero byte-pair, so it is 
even more critical that neither address byte is clobbered by software external to the user program. 
 
There are certainly common page-zero locations that all software routines can use as temporary 
variables and pointers.  The 6502-microprocessor is not time-shared and there is no context switching 
between routines, so if a routine uses some common page-zero locations, it should complete all 
processing using those locations and not expect to find its results sometime later.  Examples of 
common page-zero locations would be A1L/A1H, A2L/A2H, A3L/A3H, A4L/A4H, OPRND, and 
DSCTMP (3 bytes).  Using these page-zero locations to move or copy data would be safe and not 
interfere with Monitor, Applesoft, or DOS processing.  Actually some Monitor routines require that 
some of these locations just mentioned contain your data before using those routines.  The Monitor 
routine MOVE at 0xFE2C is one such example.  It is really up to the user to confirm and verify that the 
selected page-zero memory locations do not interfere with other routines external to and required by 
the user software. 
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Addr Monitor MiniAsm C1 ROM Applesoft RWTS DOS 4.1 Description 
0x00 LOC0 LOC0 LOC0 LOC0   AS JMP vector 
0x01 LOC1  LOC1 LOC1    
0x02   ZPG02 ZPG02    
0x03   ZPG03 ZPG03   AS JMP vector 
0x04   ZPG04 ZPG04    
0x05    ZPG05    
0x06       ** free ** 
0x07       ** free ** 
0x08       ** free ** 
0x09       ** free ** 
0x0A    ZPG0A   AS JMP vector 
0x0B    ZPG0B    
0x0C    ZPG0C    
0x0D    ZPG0D   AS STRLT2 string utility 
0x0E    ZPG0E   AS STRLT2 string utility 
0x0F    ZPG0F    
0x10    ZPG10    
0x11    ZPG11   AS flag for last FAC 
0x12    ZPG12    
0x13    ZPG13    
0x14    ZPG14   AS subscript flag 
0x15    ZPG15    
0x16    ZPG16   AS FP comparison type 
0x17    ZPG17    
0x18    ZPG18    
0x19    ZPG19    
0x1A    SHAPE    
0x1B    :    
0x1C    HCOLOR1    
0x1D  INDEX  COUNTH    
0x1E  ADRCNTR     ** free ** 
0x1F   ZPG1F     
0x20 WNDLFT  WNDLFT WNDLFT   Left column of scroll window 
0x21 WNDWDTH  WNDWDTH WNDWDTH   Width of scroll window 
0x22 WNDTOP  WNDTOP WNDTOP   Top line of scroll window 
0x23 WNDBTM  WNDBTM WNDBTM   Bottom line of scroll window 
0x24 CH  CH CH  CH Cursor horizontal, WNDLFT 
0x25 CV  CV CV   Cursor vertical, WNDTOP 
0x26 BASL   BASL TEMPZ BUFRADRZ LORES plot left end point 
0x27 BASH   BASH TEMP2Z : HIRES plot base address 
0x28 BASEZ  BASEZ BASEZ  BASEZ Memory address of text line 
0x29 :  : :  :  
0x2A BAS2L  BAS2L BAS2L CURTRKZ ASPTRSAV Memory address for scrolling 
0x2B BASEH  BASEH BASEH SLOT16Z :  
0x2C H2   H2 DATAFNDZ : Right end point for HLINE 
0x2D V2   V2 SECFNDZ : Bottom point for VLINE 
0x2E MASK MASK MASK MASK TRKFNDZ : LORES color mask 
0x2F SIGN SIGN SIGN SIGN VOLFNDZ :  
0x30 HMASK   COLOR   LORES color for PLOT 
0x31 MODE MODE     Monitor command processing 
0x32 INVFLG  INVFLG INVFLG   Video format control 
0x33 PROMPT PROMPT  PROMPT  PROMPT Prompt character 
0x34 YSAV YSAV YSAV    Monitor command processing 
0x35 YSAV1 YSAV1 YSAV1    Y-register save for COUT1 

(DOS 3.3 DRIVNO) 
0x36 CSWL  CSWL   CSWL Monitor/DOS output 
0x37 CSWH  CSWH   CSWH  
0x38 KSWL  KSWL   KSWL Monitor/DOS input 
0x39 KSWH  KSWH   KSWH  
0x3A PCL PCL PCL    Program counter 
0x3B PCH PCH PCH     
0x3C A1L A1L A1L A1L MOTORTIM  MiniAsm trace work area 
0x3D A1H A1H A1H A1H :   
0x3E A2L A2L A2L A2L ODDBITSZ BUFADR2Z  
0x3F A2H A2H A2H A2H SECTORZ :  

 
 Table I.5.1.  Page-Zero Memory Locations 0x00-0x3F 
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Addr Monitor MiniAsm C1 ROM Applesoft RWTS DOS 4.1 Description 
0x40 A3L    TRACKZ FILEBUFZ  
0x41 A3H    VOLUMEZ :  
0x42 A4L A4L A4L   BUFADRZ  
0x43 A4H A4H A4H   :  
0x44 OPRND OPRND OPRND   DIRINDX  
0x45 AREG      (DOS 3.3 SYNCNT) 
0x46 XREG      (DOS 3.3 MONTIME) 
0x47 YREG      (:) 
0x48 PREG      (DOS 3.3 IOBADR) 
0x49 SPNT      (:) 
0x4A     IOBADR IOBADR (DOS 3.3 INTLOMEM) 
0x4B     : : (:) 
0x4C      DOSPTR (DOS 3.3 INTHIMEM) 
0x4D      : (:) 
0x4E RNDL  RNDL     
0x4F RNDH  RNDH     
0x50   ACL ACL  LINNUM  
0x51   ACH ACH  :  
0x52    TEMPPT   AS temporary string pointer 
0x53    LASTPT   AS last temp string pointer 
0x54    EL   HIRES error for HLIN 
0x55    STRATCH   AS string scratch name/length 
0x56  AREG1  :    
0x57  XREG1  :    
0x58  YREG1  TEMPDSC   AS temp save for DSCTMP 
0x59  PREG1  :    
0x5A    :  DOSTEMP1  
0x5B      DOSTEMP2  
0x5C      DOSBUFR  
0x5D      :  
0x5E    INDEX   AS stack for moving strings 
0x5F    :    
0x60    P2    
0x61    :    
0x62    LASTMUL    
0x63    :    
0x64    :    
0x65    :    
0x66    :    
0x67    TEXTTAB  ASPGMST AS program start 
0x68    :  :  
0x69    VARTAB  ASVARS AS simple variables pointer 
0x6A    :  :  
0x6B    ARYTAB  ASARYS AS array pointer 
0x6C    :  :  
0x6D   STREND STREND  ARYEND AS top of array pointer 
0x6E   : :  :  
0x6F   FRETOP FRETOP  ASSTRS AS end of strings pointer 
0x70   : :  :  
0x71    FRESPC   AS temp string storage 
0x72    :    
0x73   MEMSIZE MEMSIZE  ASHIMEM AS HIMEM 
0x74   : :  :  
0x75    CURLIN   AS current line 
0x76    :  ASRUN  
0x77    OLDLIN   AS last line processed 
0x78    :    
0x79    TEXTPTR   AS old text pointer 
0x7A    :    
0x7B    DATLIN   AS line where data being read 
0x7C    :    
0x7D    DATPTR   AS absolute read data address 
0x7E    :    
0x7F    SRCPTR   AS current source of input 

 
 Table I.5.2.  Page-Zero Memory Locations 0x40-0x7F 
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Addr Monitor MiniAsm C1 ROM Applesoft RWTS DOS 4.1 Description 
0x80    :    
0x81    LASTVBL   AS last variable’s name 
0x82    :    
0x83    VARPNT   AS last variable’s value 
0x84    :    
0x85    FORPNT   AS general pointer 
0x86    :    
0x87    GENTEMP    
0x88    :    
0x89    :    
0x8A    TEMP3   AS FP register 
0x8B    :    
0x8C    GENTPTR    
0x8D    :    
0x8E    :    
0x8F    ZPG8F    
0x90    ZPG90   JMP vector 
0x91    ZPG91    
0x92    ZPG92    
0x93    TEMP1   AS FP register 
0x94   HIGHDS HIGHDS   Block transfer utility, dest 
0x95   : :    
0x96    HIGHTR   Block transfer utility, end 
0x97    :    
0x98    TEMP2   AS FP register 
0x99    :    
0x9A    :    
0x9B   LOWTR LOWTR   AS general purpose register 
0x9C   : :    
0x9D    DSCTMP   AS temp string descriptor 
0x9E    :    
0x9F    :    
0xA0    FACMO   AS middle order mantissa 
0xA1    FACLO   AS low order mantissa 
0xA2    FACSIGN   AS sign of FAC 
0xA3    ZPGA3    
0xA4    ZPGA4    
0xA5    ARGEXP   AS secondary FP accumulator 
0xA6    ARGMANT   AS 4 byte mantissa 
0xA7    :    
0xA8    :    
0xA9    :    
0xAA    ARGSGN   AS sign of ARG 
0xAB    STRNG1   AS MOVINS utility 
0xAC    :    
0xAD    STRNG2   AS STRLT2 utility 
0xAE    :    
0xAF    PRGEND  ASPEND AS end of program 
0xB0    :  :  
0xB1    CHRGET   AS  routine, TXTPTR++ 
0xB2    :    
0xB3    :    
0xB4    :    
0xB5    :    
0xB6    :    
0xB7    CHRGOT   AS routine, no TXTPTR++ 
0xB8    TXTPTR   AS next program character 
0xB9    :    
0xBA    :    
0xBB    :    
0xBC    :    
0xBD    :    
0xBE    :    
0xBF    :    

 
 Table I.5.3.  Page-Zero Memory Locations 0x80-0xBF 
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Addr Monitor MiniAsm C1 ROM Applesoft RWTS DOS 4.1 Description 
0xC0    :    
0xC1    :    
0xC2    :    
0xC3    :    
0xC4    :    
0xC5    :    
0xC6    :    
0xC7    :    
0xC8    PTREND    
0xC9    FPRAND   AS FP random number 
0xCA    :    
0xCB    :    
0xCC    :    
0xCD    :    
0xCE       ** free ** 
0xCF       ** free ** 
0xD0    ZPGD0    
0xD1    ZPGD1    
0xD2    ZPGD2    
0xD3    ZPGD3    
0xD4    ZPGD4    
0xD5    ZPGD5    
0xD6    MYSTERY  PROTECT All commands equal RUN 
0xD7       **  free ** 
0xD8    ERRFLG  ASONERR AS error flag 
0xD9      RKEYWORD (DOS 3.3 INTRUN) 
0xDA    ERRLIN   AS line where error occurred 
0xDB    :    
0xDC    ERRPOS   AS TEXTPTR HNDLERR 
0xDD    :    
0xDE    ERRNUM   AS error number or code 
0xDF    ERRSTK   AS stack pointer before error 
0xE0    HRXCOOR   HIRES X-coordinate 
0xE1    :    
0xE2    HRYCOOR   HIRES Y-coordinate 
0xE3       ** free ** 
0xE4    HRCOLOR   HIRES color byte 
0xE5    HRHZNDX   HIRES horizontal byte index 
0xE6    HPAG   HIRES page to plot on 
0xE7    SCALE   HIRES scale factor 
0xE8   HRSHPTBL HRSHPTBL   HIRES shape table address 
0xE9   : :    
0xEA    HRCOLCNT   HIRES collision counter 
0xEB       ** free ** 
0xEC       ** free ** 
0xED       ** free ** 
0xEE       ** free ** 
0xEF       ** free ** 
0xF0    FIRST   AS first dest of LORES 

PLOT 
0xF1    SPDBYT   Speed control, output/display 
0xF2    ZPG92    
0xF3 SIGN   ORMASK   Mask for output control 
0xF4 X2   X2   Exponent 
0xF5    M2   Mantissa, 3 bytes 
0xF6    :    
0xF7    :    
0xF8    REMSTK   AS stack pointer 
0xF9    M1   FP accumulator for M1 
0xFA       ** free ** 
0xFB       ** free ** 
0xFC       ** free ** 
0xFD       ** free ** 
0xFE       ** free ** 
0xFF   ZPGFF ZPGFF    

 
 Table I.5.4.  Page-Zero Memory Locations 0xC0-0xFF 
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Figure I.5.1.  Page-Zero Memory Usage 

 
 

Key 
1 – used by the Monitor 4 – used by Applesoft 
2 – used by the Mini Assembler 5 – used by RWTS 
3 – used by the C1-CF ROM 6 – used by DOS 4.1 
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6.  VTOC Structure 
How I agonized over how to implement date and time stamping for files and disk volumes.  Preferably 
I only wanted to update a date and time stamp when either a file or the VTOC of a disk volume has 
changed.  I also wanted to date and time stamp a disk volume (or disk image) when the volume was 
first created.  However, creating or updating a date and time stamp is only half the task:  the date and 
time stamp need to be displayed appropriately.  And, when the contents of a volume’s Catalog 
directory are listed the file’s date and time stamp need to be displayed along with its filename.  Since 
the VTOC is basically the heart of the disk volume, it is best to begin there and show its organization 
and content in DOS 4.1.  The VTOC is defined to be located on track 0x11, in sector 0x00.  The 
volume Catalog sectors may be on any other track and sector, but typically they are defined to be on 
track 0x11 for optimal access speed. 
 
Figure I.6.1 shows the VTOC for a data disk having five sectors available for the volume Catalog, a 
major change in Build 46.  A data disk is defined as volume type “D” for Data disk.  A bootable disk 
having a DOS 4.1L image or a DOS 4.1H image is defined as volume type “B” for Boot disk.  Table 
I.6.1 defines each entry in the VTOC, Table I.6.2 defines the free sector bitmap for each track, and 
Table I.6.3 defines the bytes of the six-byte date and time stamp and the order of those bytes.  There is 
more information in Section I.14 about the free sector bitmap definition as it is used by DOS 4.1. 
 
 
 
 

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F 
00 00 11 05 41 46 CC 12 C4  
10 Volume Name – 24 characters 
20 Date and Time Volume was created  7A Library # Date and Time VTOC last changed 
30 11 01   23 10 00 01 FF FF 00 00 FF FF 00 00 
40 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 
50 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 
60 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 
70 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF 00 00 00 
80 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 
90 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 
A0 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 
B0 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00 
C0 FF FF 00 00             
D0                 
E0                 
F0                 

 
Figure I.6.1.  DOS 4.1L Data Disk Volume VTOC 

 
 
 
 
In DOS 3.3 much code and valuable data space was dedicated to the manipulation of Volume number 
beginning with the Command Manager, through the File Manager, and on to RWTS, and then back to 
the File Manager.  Since all positional parameters such as Slot, Drive, and Volume are initialized to 
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0x00 by the Command Manager after a DOS 4.1 command has been parsed, the default VOLVAL for 
the Volume number keyword is always 0x00.  DOS 4.1 passes Volume number through the File 
Manager and to RWTS unchanged.  Therefore, the default Volume number that is displayed by DOS 
4.1 is “000” and not “254” (0xFE) as it is by DOS 3.3.  The Volume number at byte 0x06 in the VTOC 
is the official Volume number for the volume, not the one RWTS finds encoded in the Address Field 
header of a diskette sector.  Bytes 0x01 and 0x02 of the VTOC are the track and sector number, 
respectively, for the first Catalog sector.  As in DOS 3.3, DOS 4.1 uses byte 0x03 of the VTOC for 
DOS Version, and uses the unused byte at 0x04 for the DOS Build Number.  Byte 0x05 is used to 
designate which RAM DOS, “L” (0xCC) or “H” (0xC8), was in memory (i.e. DOS 4.1L or DOS 4.1H) 
when the volume was created, and byte 0x07 is used for the Disk Volume Type, “B” (0xC2) or “D” 
(0xC4).  Bytes 0x08 through 0x1F are used for the 24-character Disk Volume Name or title, bytes 
0x20 through 0x25 are used for the Disk Volume Date and Time stamp when the volume was created, 
and bytes 0x2A through 0x2F are used for the VTOC Date and Time stamp, and this time stamp is 
updated whenever DOS 4.1 changes the VTOC for any reason.  Bytes 0x28 and 0x29 are used for a 
16-bit (low/high byte order) Disk Library value.  All other VTOC variables are still at their original, 
DOS 3.3 location.  All these new variables are displayed by the DOS 4.1 CATALOG command. 
 
 
 
 

Byte Name Value Description 
0x00 VTOCSB 0x00 VTOC Structure Block 
0x01 FRSTTRK 0x11 Track number of first catalog sector 
0x02 FRSTSEC 0x05 Sector number of first catalog sector 
0x03 DOSVRSN 0x41 DOS Version number used to INIT this VTOC 
0x04 DOSBUILD 0x46 Build number used to INIT this VTOC 
0x05 DOSRAM 0xCC RAM DOS that initialized this volume (“L” or “H”) 
0x06 DISKVOL 0x12 Volume number (0x00-0xFF) 
0x07 DISKTYPE 0xC4 Volume type (“B” or “D”) 

0x08-0x1F DISKNAME ~ Volume name (24 characters) 
0x20-0x25 INITIME ~ Date and time when volume was initialized 

0x26  0x00 unused 
0x27 NUMTSENT 0x7A Maximum number of T/S pairs in one sector 

0x28-0x29 DISKSUBJ ~ Volume Library (subject) (0x0000-0xFFFF) (Lo/Hi) 
0x2A-0x2F VTOCTIME ~ Date and Time VTOC was last changed 

0x30 NXTTOALC 0x11 Last track where sectors were allocated 
0x31 ALLCDIR 0x01 Direction of track allocation (0x01 or 0xFF) 

0x32-0x33  0x00 unused 
0x34 NUMTRKS 0x23 Number of tracks in volume 
0x35 NUMSECS 0x10 Number of sectors per track 

0x36-0x37 BYTPRSEC 0x100 Number of bytes per sector (Lo/Hi) 
0x38-0x3B BITMAP ~ Bitmap of free sectors for track 0 
0x3C-0x3F  ~ Bitmap of free sectors for track 1 
0x40-0xC3  ~ Bitmap of free sectors for tracks 2-34 
0xC4-0xFF  0x00 reserved for expansion 

 
Table I.6.1.  DOS 4.1 VTOC Structure Block Definition 
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Byte Sector Bitmap Order 
0 0F-08 FEDCBA98 
1 07-00 76543210 
2 1F-18 FEDCBA98 
3 17-10 76543210 

 
Table I.6.2.  Free Sector Bitmap for Each Track 

 
 
 
 

Byte Value Range Date and Time Values 
0 0x00 – 0x59 second 
1 0x00 – 0x59 minute 
2 0x00 – 0x23 hour 
3 0x00 – 0x99 year 
4 0x01 – 0x31 day 
5 0x01 – 0x12 month 

 
Table I.6.3.  DOS 4.1 Date and Time Definition and Variable Order 
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Figure I.7.1.  DOS 4.1 First Volume Catalog Sector 
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7.  DOS 4.1 Catalog 
The first volume Catalog sector for DOS 4.1 is shown in Figure I.7.1.  Bytes 2 and 3 point to the next 
catalog sector as they do in the VTOC sector.  The last catalog sector, typically sector 0x01 on track 
0x11, contains 0x00 for these bytes.  Table I.7.1 shows a volume Catalog entry for a file.  In this table 
the track and sector values point to the file’s Track/Sector List (or TSL) that contains the track/sector 
pairs for each sector comprising the contents of that file.  The third byte of the catalog entry is the file 
type and it is followed by the 24-character file name.  The 3-byte time and 3-byte date stamp when the 
file was created or last modified follow the file name.  The last two bytes of a catalog entry is the size 
of the file in sectors including all TSL sectors in low/high byte order.  Table I.7.2 shows the volume 
Catalog data locations for each of the seven files contained in a Catalog sector.  Table I.7.3 lists each 
file type byte, its disk Catalog representation, and its description.  DOS 4.1 does not process file type 
0x01 (i.e. Integer BASIC) files, and file type 0x40 is used by DOS 4.1 to process Lisa files natively 
(DOS 3.3 referred to these as “B type” files).  DOS 4.1 will process “A type” (i.e. 0x20) files as 
Applesoft files.  DOS 4.1 does not process “S type” or “R type” files natively until a suitable definition 
for those files can be determined.  In DOS 4.1 a file is marked “deleted” when the most significant bit 
(i.e. MSB, or bit 7) of its TSL’s track is set, that is, in bytes 0x0B, 0x2E, 0x51, 0x74, 0x97, 0xBA, or 
0xDD from Table I.7.2.  Furthermore, DOS 4.1 stipulates there will always be less than 64 tracks (i.e. 
0x3F or less) on a disk volume, so bit 7, the MSB of the TSL’s track is available to signify a file’s 
delete status.  That definition also leaves bit 6 of the TSL’s track available to signify track 0x00 as 
0x40.  Using bit 6 of the TSL’s track to represent physical track 0x00 allows all of the File Manager 
logic testing for “last track/sector pair” in a TSL to remain unchanged.  I have updated my version of 
FID to include this representation of track 0x00 and how a deleted file is marked. 
 
 
 
 

Item Offset Length Format Description 
Track 0x00 0x01 %DZTT TTTT ‘D’elete bit, track ‘Z’ero bit, TSL ‘T’rack bits 
Sector 0x01 0x01 %000S SSSS TSL ‘S’ector bits 
Type 0x02 0x01 %LTTT TTTT ‘L’ock bit, ‘T’ype bits 
Name 0x03 0x18 upper ASCII 24-character file name 
Time 0x1B 0x03 0xSS MM HH ‘S’econds byte, ‘M’inute byte, ‘H’our byte 
Date 0x1E 0x03 0xYY DD MM ‘Y’ear byte, ‘D’ay byte, ‘M’onth byte 
Size 0x21 0x02 0xLL HH 2-byte file size in sectors, ‘L’ow/’H’igh order 

 
Table I.7.1.  DOS 4.1 Volume Catalog Entry 

 
 
 
 
If an attempt is made to load (i.e. LOAD or BLOAD) a nonexistent file into memory when the volume 
Catalog is full, DOS 3.3 erroneously prints the “DISK FULL” error message rather than the “FILE 
NOT FOUND” error message.  If an attempt is made to save (i.e. SAVE or BSAVE) a file when the 
volume Catalog is full, DOS 3.3 again erroneously prints the “DISK FULL” error message even when 
there are sufficient sectors available on the volume.  Even though this situation is unusual where the 
volume Catalog is full, having DOS issue the wrong error message could lead one to make wrong 
conclusions.  DOS 4.1 provides a default volume Catalog consisting of five sectors that can support up 
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to 35 files.  However, the volume Catalog may be made as small as one sector by using the B keyword 
with the DOS INIT command.  If the volume Catalog consists of one or two sectors, the volume 
Catalog will only support 7 or 14 files, respectively, and this DOS 3.3 erroneous error message can 
have significant consequences in this instance.  I have identified and repaired the flawed DOS 3.3 
routines, and DOS 4.1 prints the correct error message “File Not Found” when a file does not exist in a 
volume Catalog regardless whether the Catalog is full or not full.  Also, DOS 4.1 prints the new error 
message “Catalog Full” when attempting to save a file to a volume whose Catalog is full even if there 
are sufficient sectors available on the volume for the contents of the file. 
 
 
 
 

File Track* Sector Type** Name Time Date Size 
1 0x0B Ox0C 0x0D 0x0E-0x25 0x26-0x28 0x29-0x2B 0x2C-0x2D 
2 0x2E 0x2F 0x30 0x31-0x48 0x49-0x4B 0x4C-0x4E 0x4F-0x50 
3 0x51 0x52 0x53 0x54-0x6B 0x6C-0x6E 0x6F-0x71 0x72-0x73 
4 0x74 0x75 0x76 0x77-0x8E 0x8F-0x91 0x92-0x94 0x95-0x96 
5 0x97 0x98 0x99 0x9A-0xB1 0xB2-0xB4 0xB5-0xB7 0xB8-0xB9 
6 0xBA 0xBB 0xBC 0xBD-0xD4 0xD5-0xD7 0xD8-0xDA 0xDB-0xDC 
7 0xDD 0xDE 0xDF 0xE0-0xF7 0xF8-0xFA 0xFB-0xFD 0xFE-0xFF 

*  If MSB is set the file shown is deleted **  If the MSB is set the file shown is locked 
 

Table I.7.2.  DOS 4.1 Catalog Sector Data Offsets for File Entries 
 
 
 
 

File Type Catalog Description 
00 T Text file 
01 I Integer BASIC file (not supported) 
02 A Applesoft file 
04 B Binary file 
08 S S type file (not supported) 
10 R Relocatable object file (not supported) 
20 A A type file (processed as an Applesoft file) 
40 L L (Lisa) type file (formally B type) 
80 * File lock bit 

 
Table I.7.3.  DOS 4.1 File Type Byte Description 

 
 
 
 
At the heart of every file is its Track/Sector List.  This list of tracks and sectors is contained in the 
sector that every catalog entry points to.  If a file exceeds 0x7A (NUMTSENT from Table I.6.1) 
sectors of data the TSL sector has provisions to point to another sector that contains additional 
track/sector entries.  And for every increment of 0x7A data sectors DOS creates a new TSL sector for 
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the file.  Figure I.7.2 shows a typical TSL sector and Table I.7.4 defines each entry in the TSL.  “Next 
TSL” at bytes 0x01/0x02 point to the next TSL if it exist, otherwise these bytes are 0x00/0x00.  
“Offset” at bytes 0x05/0x06 is equal to 0x00/0x00 for the first TSL, and “Offset” increases by 0x007A 
for each succeeding TSL.  Regardless whether the TSL contains track/sector entries from previous file 
saves, DOS only loads into memory the number of byte specified by an Applesoft or binary file.  The 
DOS TLOAD command, for example, reads all data sectors for a TEXT file into memory regardless of 
its actual size.  The TSL officially concludes when the next track/sector entry is equal to 0x00/0x00. 
 
 
 
 

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F 
00 00 Next TSL   Offset      T/S 0x01 T/S 0x02 
10 T/S 0x03 T/S 0x04       
20         
30         
40         
50         
60         
70         
80         
90         
A0         
B0         
C0         
D0         
E0         
F0        T/S 0x7A 

 
Figure I.7.2.  DOS 4.1L TSL Sector 

 
 
 
 

Byte Name Value Description 
0x00 TSLSB 0x00 unused, start of TSL structure block 
0x01 TSTRKOFF 0x00 Track to next TSL; 0x00 if no more TSLs 
0x02 TSSECOFF 0x00 Sector to next TSL; 0x00 if no more TSLs 

0x03-0x04  0x00 unused 
0x05-0x06 TSRECOFF 0x00 TSL record offset from RELSLAST; 0x00 first TSL 
0x07-0x0B  0x00 unused 
0x0C-0x0D TSLTSOFF ~ T/S for data sector 0x01; at least one entry is required 
0x0E-0x0F  ~ T/S for data sector 0x02; 0x00/0x00 if at end 
0x10-0x11  ~ T/S for data sector 0x03; 0x00/0x00 if at end 
0x12-0xFD  ~ T/S for data sectors 0x04-0x79 
0xFE-0xFF  ~ T/S for data sector 0x7A 

 
Table I.7.4.  DOS 4.1 TSL Structure Block Definition 
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8.  Booting DOS 4.1 
DOS 4.1L occupies the first two tracks of a disk volume, whereas an additional 10 sectors on track 
0x02 are needed for DOS 4.1H, assuming the disk volume has 16 sectors per track. The remaining 6 
sectors on track 0x02 are available in the VTOC for data.  The disk drive firmware in its slot card 
ROM always loads the bootstrap code from sector 0x00 on track 0x00 into memory address 0x0800-
0x08FF.  This starts the Stage 1 boot process and the X-register is always equal to the slot number of 
the slot card times 16.  The first byte of this bootstrap must equal 0x01 for the boot process to continue 
and read the next sector into memory.  Therefore, the Stage 0 boot instructions actually begin at 
0x0801 to initialize the Stage 1 boot software.  Bytes 0x08FE and 0x08FF are known as BOOTADR 
and BOOTPGS as shown in Table I.8.1, and they direct the Stage 1 boot software to read in sectors 
0x06 to 0x00 on track 0x00 into memory address 0xB900 to 0xBF00 for DOS 4.1L, or sectors 0x0F to 
0x02 into memory address 0xD000 to 0xDD00 and sectors 0x01 and 0x00 into memory address 
0xBE00 to 0xBF00 for DOS 4.1H. 
 
The disk track/sector mapping to memory address is shown in Tables I.8.2 and I.8.3 for DOS 4.1L and 
DOS 4.1H, respectively.  A 16-byte sector interleave table is available to the Stage 1 boot software as 
well as to RWTS whose interface is now in memory in page 0xBF for both DOS 4.1L and DOS 4.1H.  
Transfer of control passes to the Stage 2 boot software, also in memory page 0xBF, that can now use 
RWTS to access any track and sector.  DOS 4.1L loads the remaining 25 sectors in descending order 
starting with sector 0x0F on track 0x01 and ending with sector 0x07 on track 0x00, in ascending order 
of memory pages.  Similarly, DOS 4.1H loads 26 sectors starting with sector 0x09 on track 0x02 and 
ending with sector 0x00 on track 0x01, in ascending order of memory pages.  The initial RWTS IOCB 
values are specified in a BOOTCFG structure in memory page 0xBF and used by the routine 
RWPAGES which is called by Stage 2 to complete the DOS load.  A typical DOS 4.1L BOOTCFG 
table is shown in Table I.8.2.  When all of DOS 4.1 is in memory, ROM initialization is done, main 
video and character set are selected and XMODE is initialized, a search is made for a clock card, and 
DOS is cold-started and is now ready to execute the DOS CMDVAL command, a topic that will be 
discussed further in Section I.9.  As an aside, the DOS INIT command also uses the RWPAGES 
routine to write DOS onto a newly initialized volume in the same order it was read into memory. 
 
 
 
 

Address Variable Instruction Value 
DOS 4.1L DOS 4.1H 

0xBFE2 DISKADRS 7 addresses in table ( 0xBCD2*7 ) ( 0xD275*7 ) 
0xBFF0 BOOTCFG 8 bytes in table ~ ~ 
0xBFF8 INITDOS adr( DOSBEGIN ) 0xBED9 0xBED9 
0xBFFA USERNDX byt( USEROFF ) 0x58 0x5A 
0xBFFB DISKTBL byt( DISKADRS-2 ) 0xE0 0xE0 
0xBFFC BCFGNDX byt( BOOTCFG ) 0xF0 0xF0 
0xBFFD NBUF1ADR hby( NBUF1 ) 0xB8 0xDE 
0xBFFE BOOTADR hby( RWTSTART ) 0xB9 0xD0 
0xBFFF BOOTPGS hby( BOOTEND-

RWTSTART ) 
0x06 0x0F 

 
Table I.8.1.  DOS 4.1 RWTS Slot Interface Structure Definition 
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Offset Variable Size Value Description 
0x00 DNUM 0x01 0x01 drive number 
0x01 VOLEXPT 0x01 0x00 volume number expected 
0x02 TNUM 0x01 0x01 track number 
0x03 SNUM 0x01 0x0F sector number 
0x04 DCTADR 0x02 0x0000 DCT address 
0x06 USRBUF 0x02 0x9D00 DOS start address 

 
Table I.8.2.  DOS 4.1L Boot Configuration Table 

 
 
 
 
DOS 4.1H includes a new DOS command, HELP, that utilizes the remaining memory of the Language 
Card.  It is for this DOS command the boot image of DOS 4.1H requires 8 of the 10 sectors on track 
0x02. 
 
Once DOS 4.1 is in memory and has initialized, other I/O disk or disk-emulating devices can easily 
attach their slot card handler address to DOS 4.1.  Table I.8.1 shows where the RWTS disk address 
table DISKADRS is located in DOS 4.1.  By design this interface structure conveniently resides at the 
same memory address in both DOS 4.1L and DOS 4.1H.  To attach a slot card handler, simply save the 
byte found at DISKTBL and 0xBF to a page-zero pointer.  This address is automatically offset to 
accommodate slot 0, a slot that is never used for external hardware.  Simply double the slot number of 
the device, transfer that number to the Y-register, and indirectly save the address of the slot card 
handler in low/high byte order to the DISKADRS disk address table.  RWTS will transfer control to 
the correct slot card handler for the requested I/O based on slot number.  Keep in mind that the byte 
value found at DISKTBL may change but the location of the DISKTBL variable will not change.  I 
have made it a habit to always include this DOS 4.1 connection algorithm in the firmware for the 
RamDisk 320, Rana, Sider, and Compact Flash For Apple (CFFA) at 0xCs10, where “s” is the slot 
number for the device.  And, I have always placed the disconnection vector to DOS 4.1 at 0xCs18.  
Figure I.8.1 shows an example assembly language routine that attaches the RamDisk handler to DOS 
4.1.  The handler’s address is “RDENTRY”, its CX page (i.e. 0xC7 for slot 7) is found in “RDPAGECX”, 
and its slot number is found in “RDSLOT”. 
 
The disk track/sector mapping to memory address for DOS 4.1 is shown in Tables I.8.3 and I.8.4.  The 
file images of DOS 4.1 and how they map to memory are shown in Tables 1.8.5 and 1.8.6.  These 
tables correlate file offset to memory address in pages, and gives the basic function of the code found 
there, such as DOS Command routine handlers (CMD), DOS File Manager routine handlers (MNGR), 
Data buffers (DATA), tables and variables (DATA), DOS Read/Write Track/Sector routine handlers 
(RWTS), and the Stage 0, Stage 1, and Stage 2 boot routines (BOOT).  The asterisks in Tables 1.8.4 
and 1.8.6 indicate that these DOS 4.1H routines or structures reside in RAM Bank 1 of the Language 
Card; the CMD and MNGR routines and DATA reside in RAM Bank 2 of the Language Card. 
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 :                :           : 
 00FA             5  PTR      epz $FA 
 0800             6           enz 
 BFFB             7  DISKTBL  equ $BFFB 
 C020             8  RDENTRY  equ $C020 
 C900             9  RDPAGECX equ $C900 
 C901            10  RDSLOT   equ $C901 
 :                :           : 
 0900 AC FB BF   18           ldy DISKTBL 
 0903 A9 BF      19           lda /DISKTBL 
 0905 84 FA      20           sty PTR 
 0907 85 FB      21           sta PTR+1 
 0909            22  ; 
 0909 AD 01 C9   23           lda RDSLOT 
 090C 0A         24           asl 
 090D A8         25           tay 
 090E A0 20      26           ldy #RDENTRY 
 0910 91 FA      27           sta (PTR),Y 
 0912 C8         28           iny 
 0913 AD 00 C9   29           lda RDPAGECX 
 0916 91 FA      30           sta (PTR),Y 
 :                :           : 

 
Figure I.8.1.  Attaching a Slot Card Handler to DOS 4.1 

 
 
 
 

Track Sector Address Code Track Sector Address Code 
0x00 0x00 0xBF00 BOOT 0x01 0x00 0xAC00 MNGR 
0x00 0x01 0xBE00 RWTS 0x01 0x01 0xAB00 MNGR 
0x00 0x02 0xBD00 RWTS 0x01 0x02 0xAA00 MNGR 
0x00 0x03 0xBC00 RWTS 0x01 0x03 0xA900 MNGR 
0x00 0x04 0xBB00 RWTS 0x01 0x04 0xA800 CMD 
0x00 0x05 0xBA00 RWTS 0x01 0x05 0xA700 CMD 
0x00 0x06 0xB900 RWTS 0x01 0x06 0xA600 CMD 
0x00 0x07 0xB500 DATA 0x01 0x07 0xA500 CMD 
0x00 0x08 0xB400 DATA 0x01 0x08 0xA400 CMD 
0x00 0x09 0xB300 DATA 0x01 0x09 0xA300 CMD 
0x00 0x0A 0xB200 DATA 0x01 0x0A 0xA200 CMD 
0x00 0x0B 0xB100 MNGR 0x01 0x0B 0xA100 CMD 
0x00 0x0C 0xB000 MNGR 0x01 0x0C 0xA000 CMD 
0x00 0x0D 0xAF00 MNGR 0x01 0x0D 0x9F00 CMD 
0x00 0x0E 0xAE00 MNGR 0x01 0x0E 0x9E00 CMD 
0x00 0x0F 0xAD00 MNGR 0x01 0x0F 0x9D00 CMD 

 
Table I.8.3.  DOS 4.1L Disk Track/Sector Mapping to Memory Address 
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Track Sector Address Code Track Sector Address Code 
0x00 0x00 0xBF00 BOOT 0x01 0x05 0xE400 MNGR 
0x00 0x01 0xBE00 I/F 0x01 0x06 0xE300 MNGR 
0x00 0x02 *0xDD00 HELP 0x01 0x07 0xE200 MNGR 
0x00 0x03 *0xDC00 HELP 0x01 0x08 0xE100 MNGR 
0x00 0x04 *0xDB00 HELP 0x01 0x09 0xE000 MNGR 
0x00 0x05 *0xDA00 HELP 0x01 0x0A 0xDF00 MNGR 
0x00 0x06 *0xD900 HELP 0x01 0x0B 0xDE00 MNGR 
0x00 0x07 *0xD800 HELP 0x01 0x0C 0xDD00 MNGR 
0x00 0x08 *0xD700 HELP 0x01 0x0D 0xDC00 CMD 
0x00 0x09 *0xD600 HELP 0x01 0x0E 0xDB00 CMD 
0x00 0x0A *0xD500 RWTS 0x01 0x0F 0xDA00 CMD 
0x00 0x0B *0xD400 RWTS 0x02 0x00 0xD900 CMD 
0x00 0x0C *0xD300 RWTS 0x02 0x01 0xD800 CMD 
0x00 0x0D *0xD200 RWTS 0x02 0x02 0xD700 CMD 
0x00 0x0E *0xD100 RWTS 0x02 0x03 0xD600 CMD 
0x00 0x0F *0xD000 RWTS 0x02 0x04 0xD500 CMD 
0x01 0x00 0xE900 DATA 0x02 0x05 0xD400 CMD 
0x01 0x01 0xE800 DATA 0x02 0x06 0xD300 CMD 
0x01 0x02 0xE700 DATA 0x02 0x07 0xD200 CMD 
0x01 0x03 0xE600 DATA 0x02 0x08 0xD100 CMD 
0x01 0x04 0xE500 MNGR 0x02 0x09 0xD000 CMD 

 
Table I.8.4.  DOS 4.1H Disk Track/Sector Mapping to Memory Address 

 
 
 

Offset Address Code Offset Address Code 
0x0000 0x9D00 CMD 0x1000 0xAD00 MNGR 
0x0100 0x9E00 CMD 0x1100 0xAE00 MNGR 
0x0200 0x9F00 CMD 0x1200 0xAF00 MNGR 
0x0300 0xA000 CMD 0x1300 0xB000 MNGR 
0x0400 0xA100 CMD 0x1400 0xB100 MNGR 
0x0500 0xA200 CMD 0x1500 0xB200 DATA 
0x0600 0xA300 CMD 0x1600 0xB300 DATA 
0x0700 0xA400 CMD 0x1700 0xB400 DATA 
0x0800 0xA500 CMD 0x1800 0xB500 DATA 
0x0900 0xA600 CMD 0x1900 0xB900 RWTS 
0x0A00 0xA700 CMD 0x1A00 0xBA00 RWTS 
0x0B00 0xA800 CMD 0x1B00 0xBB00 RWTS 
0x0C00 0xA900 MNGR 0x1C00 0xBC00 RWTS 
0x0D00 0xAA00 MNGR 0x1D00 0xBD00 RWTS 
0x0E00 0xAB00 MNGR 0x1E00 0xBE00 RWTS 
0x0F00 0xAC00 MNGR 0x1F00 0xBF00 BOOT 

 
Table I.8.5.  DOS 4.1L File Image Mapping to Memory Address 
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Offset Address Code Offset Address Code 
0x0000 0xD000 CMD 0x1500 0xE500 MNGR 
0x0100 0xD100 CMD 0x1600 0xE600 DATA 
0x0200 0xD200 CMD 0x1700 0xE700 DATA 
0x0300 0xD300 CMD 0x1800 0xE800 DATA 
0x0400 0xD400 CMD 0x1900 0xE900 DATA 
0x0500 0xD500 CMD 0x1A00 *0xD000 RWTS 
0x0600 0xD600 CMD 0x1B00 *0xD100 RWTS 
0x0700 0xD700 CMD 0x1C00 *0xD200 RWTS 
0x0800 0xD800 CMD 0x1D00 *0xD300 RWTS 
0x0900 0xD900 CMD 0x1E00 *0xD400 RWTS 
0x0A00 0xDA00 CMD 0x1F00 *0xD500 RWTS 
0x0B00 0xDB00 CMD 0x2000 *0xD600 HELP 
0x0C00 0xDC00 CMD 0x2100 *0xD700 HELP 
0x0D00 0xDD00 MNGR 0x2200 *0xD800 HELP 
0x0E00 0xDE00 MNGR 0x2300 *0xD900 HELP 
0x0F00 0xDF00 MNGR 0x2400 *0xDA00 HELP 
0x1000 0xE000 MNGR 0x2500 *0xDB00 HELP 
0x1100 0xE100 MNGR 0x2600 *0xDC00 HELP 
0x1200 0xE200 MNGR 0x2700 *0xDD00 HELP 
0x1300 0xE300 MNGR 0x2800 0xBE00 I/F 
0x1400 0xE400 MNGR 0x2900 0xBF00 BOOT 

 
Table I.8.6.  DOS 4.1H File Image Mapping to Memory Address 

 
 
 
 
Having DOS 4.1 as a file image can be very useful.  The image could be read into memory from a 
quikLoader, for example, and placed in memory according to Tables I.8.5 or I.8.6 depending on the 
DOS RAM.  Getting DOS 4.1 started is as easy as using an indirect “JMP” regardless which DOS 4.1 
image is loaded, such as “JMP ( INITDOS )”.   Refer to Table I.8.1 for the address of the variable 
INITDOS.  DOS 4.1 will initialize and then transfer control to BASIC.  If, on the other hand, you do 
not wish to lose control of DOS 4.1 initialization to BASIC, there is a DOS 4.1 command that is not 
part of the normal DOS command repertoire, and this command allows you to initialize DOS and have 
DOS transfer its control back to your program.  This is fully discussed in Section I.9. 
 
The address found at INITDOS shown in Table I.8.1 is also for the DOS 4.1 Initial Address Table 
shown in Table I.8.7.  One should reference the variables of the Initial Address Table indirectly and, 
therefore, more generally using the address found at INITDOS and the offsets shown in Table I.8.7. 
 
Table I.8.1 also contains the most significant byte of the address for NBUF1.  NBUF1 is 256 bytes of 
memory on a page boundary.  This buffer resides in RAM Bank 1 memory in DOS 4.1H.  This address 
byte was included in order to provide easy access to a temporary page of memory as long as RWTS is 
not invoked, which would overwrite the contents of this buffer.  The firmware I developed for the 
Rana disk drive makes excellent use of the NBUF1ADR address byte in verifying whether DOS 4.1H 
is resident in memory or not.  If DOS 4.1H is resident ( NBUF1ADR > 0xC000 ) the firmware makes 
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extensive use of the NBUF1 buffer in RAM Bank 1.  On the other hand, if DOS 4.1L is resident then 
the firmware makes extensive use of NBUF1 within that DOS. 
 
 
 
 

Offset Variable Size Description 
0x00 DOSBEGIN 0x03 Initialize DOS in memory “JMP” 
0x03 FLNAMADR 0x02 DOS first buffer filename address 
0x05 CMDVLADR 0x02 DOS command variables address 
0x07 KEYVLADR 0x02 DOS keyword variables address 
0x09 FMWAADR 0x02 DOS file manager workarea address 
0x0B VTOCADR 0x02 DOS VTOC structure memory address 
0x0D CATSBADR 0x02 DOS catalog structure memory address 
0x0F WARMADR 0x02 ROM soft entry handler address 
0x11 ERRORADR 0x02 ROM error handler address 
0x13 RESETADR 0x02 ROM set/reset handler address 
0x15 USERADR 0x02 USERCMD handler address 
0x17 CMDVAL 0x01 DOS cold-start command 
0x18 NMAXVAL 0x01 MAXFILES at initialization 
0x19 YEARVAL 0x01 year for Thunderclock card 
0x1A SECVAL 0x01 number of sectors in catalog 
0x1B ENDTRK 0x01 number of tracks in volume 
0x1C SUBJCT 0x02 volume library value (subject number) 
0x1E TRKVAL 0x01 catalog track 
0x1F VRSN 0x01 DOS version number 
0x20 BLD 0x01 DOS build number 
0x21 RAMTYP 0x01 DOS RAM type 
0x22 TSPARS 0x01 number of T/S pairs per sector 
0x23 ALCTRK 0x01 next sector to allocate 
0x24 ALCDIR 0x01 sector allocation direction 
0x25 ENDSEC 0x01 number of sectors per track 
0x26 SECSIZ 0x01 ( bytes per sector ) / 256 

 
Table I.8.7.  DOS 4.1 Initial Address Table Definition 
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9.  DOS 4.1 Initialization 
Software developers of my favorite utilities like ADT, Big Mac, FID, Lisa, PGE, PLE, and 
SOURCEROR, made use of the DOS 3.3 initial address table at 0x9D00 to 0x9D0F, 0x9D56 to 
0x9D83, and, unfortunately, direct entry points to many other internal DOS variables and routines.  I 
chose to retain this initial address table concept in order to update those tools to DOS 4.1 in a more 
expeditious fashion.  According to Table I.8.7 both DOS 4.1L and DOS 4.1H contain the initialization 
“JMP” instruction at 0xBED9, parameter and data structure addresses from 0xBEDC through 0xBEE7, 
and ROM handler routine addresses from 0xBEE8 through 0xBEED.  Furthermore, Table I.8.7 
contains the USERADR and DOS initialization values from 0xBEEE through 0xBEFF. 
 
One can simply modify the DOS initialization values to tailor a DOS 4.1 boot image specific to ones 
needs:  CMDVAL specifies the “HELLO” file type (i.e. 0x06 for RUN, 0x14 for EXEC, and 0x34 for 
BRUN), NMAXVAL specifies what the initial MAXFILES value will be, and YEARVAL specifies 
the current year to support the Thunderclock card which lacks a year register.  SECVAL defines how 
many sectors will be used for the file catalog, ENDTRK specifies how many tracks are on the volume, 
and ENDSEC specifies whether a track has 16 or 32 sectors.  In order to support hardware providing 
40 tracks per volume, simply change ENDTRK to 40 (0x28).  If hardware supports 32 sectors per 
track, change ENDSEC to 32 (0x20).  Modify some or all of these parameters in memory directly or 
use the INIT keywords and initialize another disk volume with the appropriate “HELLO” file.  A file 
catalog will be created on this new volume according to the values you specify. 
 
The address variable USERADR is tied to the command CMDUSER and the variable CMDVAL.  This 
special DOS command, CMDUSER has an index value found at USERNDX (Table I.8.1) for the 
Command Handler Entry Point Table in the DOS 4.1 source code.  Temporarily replace the value at 
CMDVAL with the value found at USERNDX and save your handler’s return entry address at 
USERADR, and make a direct or indirect call to DOSBEGIN to completely initialize DOS and transfer 
control back to your program through USERADR.  The original address at USERADR is MON, or 
0xFF65, and the value at CMDVAL is usually CMDRUN-CMDTBL, or 0x06.  When USERADR and 
CMDVAL are restored, DOS 4.1 for all intents and purposes will appear as if it had just been booted 
from disk.  Once your processing has completed, simply call DOSWARM as shown in Table I.9.1 and 
control will be transferred to BASIC.  Figure I.9.1 shows an example assembly language routine that 
sets up USERADR and CMDVAL to execute SPCLCODE after DOS has initialized.  DOS 
initialization is done by indirectly jumping to INITDOS.  DOS will then process CMDVAL and 
indirectly jump to SPCLCODE which returns the default values to USERADR and CMDVAL, do 
some processing, and jump to DOSWARM. 
 
The EPROM Operating System (EOS) I developed for the quikLoader loads either DOS 4.1L or DOS 
4.1H from EPROM into memory, and uses USERADR and CMDVAL as described above to initialize 
DOS and return control back to EOS for further processing.  It is simple and easy to manipulate DOS 
4.1 in this fashion.  Begin with INITDOS at 0xBFF8 (see Table I.8.1) and copy the address found there 
to a page-zero pointer.  Then replace the address pointed to using an indirect index of 0x15 in the Y-
register for USERADR with the address of your routine that will handle the CMDUSER processing 
after DOS has initialized.  Finally place the value of USEROFF (index of CMDUSER) found at 
USERNDX, address 0xBFFA, into CMDVAL (see Table I.8.7), using an indirect index of 0x17 in the 
Y-register.  This method depends only on the address found at INITDOS and the value found at 
USERNDX as shown in Table I.8.1.  Using this method eliminates having to know which type of DOS 
4.1 has currently been read into memory. 
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 :                :            : 
 00FA             5  PTR      epz $FA 
 0800             6           enz 
 0006             7  CMDRUN   equ $06 
 0015             8  USEROFF  equ $15 
 03D0             9  DOSWARM  equ $3D0 
 BFF8            10  INITDOS  equ $BFF8 
 BFFA            11  USERNDX  equ $BFFA 
 FF65            12  MON      equ $FF65 
 :                :           : 
 0900 AC F8 BF   20           ldy INITDOS 
 0903 A9 F9 BF   21           lda INITDOS+1 
 0906 84 FA      22           sty PTR 
 0908 85 FB      23           sta PTR+1 
 090A            24  ; 
 090A A0 15      25           ldy #USEROFF 
 090C A9 1E      26           lda #SPCLCODE 
 090E 91 FA      27           sta (PTR),Y 
 0910 C8         28           iny 
 0911 A9 09      29           lda /SPCLCODE 
 0913 91 FA      30           sta (PTR),Y 
 0915 C8         31           iny 
 0916 AD FA BF   32           lda USERNDX 
 0919 91 FA      33           sta (PTR),Y 
 091B 6C F8 BF   34           jmp (INITDOS) 
 :                :           : 
 091E A0 15      43  SPCLCODE ldy #USEROFF 
 0920 A9 65      44           lda #MON 
 0922 91 FA      45           sta (PTR),Y 
 0924 C8         46           iny 
 0925 A9 FF      47           lda /MON 
 0927 91 FA      48           sta (PTR),Y 
 0929 C8         49           iny 
 092A A9 06      50           lda #CMDRUN 
 092C 91 FA      51           sta (PTR),Y 
 :                :           : 
 092E 4C D0 03   59           jmp DOSWARM 
 :                :           : 

 
Figure I.9.1.  Using USERADR and CMDVAL in DOS 4.1 

 
 
 
 
When DOS 4.1 performs a cold-start it sets MAXFILES equal to NMAXVAL, it initializes the file 
buffers, it makes EXEC inactive, and it copies the contents of Table I.9.1 into memory at 0x3D0.  It is 
this interface where the important entry addresses of DOS routines are found, such as RWTS and the 
File Manager.  Essentially, this interface is the same as that found in DOS 3.3 in order to maintain 
compatibility with virtually all previous software, but with some important additions:  read DOS 
version or read clock routine (RDCLKVSN) at 0x3E1, the error printing routine (PRTERROR) at 
0x3E8, and the Apple //e DOXFER routine (XFERADR) at 0x3ED.  All three routines can be accessed 
using an indirect “JMP” instruction such as “JMP (RDCLKVSN)”.  The two routines GETFMCB and 
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GETIOCB are changed in DOS 4.1, but return the same information:  the address of the RWTS I/O 
Context Block in the Y-register (low byte) and the A-register (high byte), and the address of the File 
Manager Context Block in the Y-register and the A-register.  These two context blocks are shown in 
Tables I.9.2 and I.9.5, respectively.  The routine RDCLKVSN reads the current DOS version, a 19-
byte upper ASCII string (i.e. “DOS4.1.46L 01/18/19” or “DOS4.1.46H 01/18/19”), into a buffer whose 
address is in the Y- and A-registers with the carry flag set.  The routine RDCLKVSN reads the current 
date and time into a 6-byte buffer as shown in Table I.6.3 whose address is in the Y- and A-registers 
with the carry flag clear.  The routine PRTERROR prints the error message as shown in Table I.9.8 
whose index error number is in the X-register.  Example code segments to read the current DOS 
version into a 20-byte buffer and the current date and time into a 6-byte buffer are shown in Figures 
I.9.2 and I.9.3.  Figure I.9.4 shows how Big Mac prints all of its File Manager error codes. 
 
 
 
 

Variable Routine Address Description 
DOSWARM WARMSTRT 0x3D0 DOS warm-start “JMP” 
DOSCOLD DOSBEGIN 0x3D3 DOS cold-start “JMP” 
CALLFM FMHNDLR 0x3D6 File Manager “JMP” 

CALLRWTS RWTSHNDL 0x3D9 RWTS handler “JMP” 
GETFMCB Y-reg = #FMVALS 0x3DC puts File Manager Context Block 

 A-reg = /FMVALS 0x3DE      Address in #Y/A 
RDCLKVSN adr( DOCLKVSN ) 0x3E1 buffer addr in #Y/A, clock clc, version sec 

GETIOCB Y-reg = #TBLTYPE 0x3E3 puts RWTS I/O Context Block 
 A-reg = /TBLTYPE 0x3E5    Address in #Y/A 

PRTERADR adr( PRTERROR ) 0x3E8 prints error message of index error # in X 
HOOKDOS INITPTRS 0x3EA DOS reconnect “JMP” 
XFERADR adr( *-* ) 0x3ED used for the Apple //e DOXFER routine 
AUTOBRK OLDBRK 0x3EF ROM break handler “JMP” 
AUTORSET adr( WARMSTRT ) 0x3F2 ROM “auto” reset routine address 
PWRSTATE 0xA5^(0x3F3) 0x3F4 power up byte 
USRAHAND RPEATCMD 0x3F5 & handler “JMP” 
USRYHAND AUXMOVE 0x3F8 ctrl-Y handler “JMP” to 0xC311 
NMASKIRQ MON 0x3FB non-maskable IRQ “JMP” to 0xFF65 
MASKIRQ adr( MON ) 0x3FE maskable IRQ routine address at 0xFF65 

 
Table I.9.1.  DOS 4.1 Page 0x03 Interface Routines 

 
 
 
 
It is worthwhile to note that DOS 4.1 RWTS only supports the Disk ][ type hardware since there was 
no other device manufactured that was substantially different.  The Device Characteristics Table 
(DCT) was originally designed so that RWTS could support devices having different stepper motor 
phases per track in order to support half-tracking for example, or even different motor on-time 
requirements.  I saw no need for DOS 4.1 to support something that simply does not, nor will ever 
exist.  I am aware that the RanaSystems EliteThree is a dual-headed disk drive with the ability to 
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access 80 half-tracks on both sides of a double-sided, double-density diskette.  Of course the DCT for 
the Rana is different, but the Rana uses its own interface handler with its own PHASEON/PHASEOFF 
tables for its track stepper motor, and its own number of motor phases to accomplish its half-tracking 
capabilities.  I even developed my own firmware for the Rana that formats a disk with 40 tracks on 
both sides of a diskette with the first 16 sectors on side 1 and the next 16 sectors on side 2, effectively 
creating a volume where each track has 32 sectors.  I was absolutely successful and, by design, the 
firmware attached to the DOS 4.1 RWTS Slot Card Interface.  I was able to obtain double-sided, 
double-density 5.25-inch floppy diskettes from www.floppydisk.com.  As a word of caution, double-
sided, double-density 5.25-inch floppy diskettes are manufactured with an inner reinforcement ring.  
Significantly better performance will be achieved from those diskettes whether half-tracking is 
employed or not.  In summary, DOS 4.1 does not utilize the DCT, and it ignores any DCT address 
found in any RWTS IOCB for a Disk ][. 
 
 
 
 

  :         :           : 
 03E1             5  RDCLKVSN equ $3E1 
 :                :           : 
 0900 A0 0C      13           ldy #VSNBUFR 
 0902 A9 09      14           lda /VSNBUFR 
 0904 20 08 09   15           jsr READVSN 
 :                :           : 
 0907 60         17           rts 
 :                :           : 
 0908 38         19  READVSN  sec 
 0909 6C E1 03   20           jmp (RDCLKVSN) 
 090C            21  VSNBUFR  dfs 20,0 
 :                :           : 

 
Figure I.9.2.  Reading the DOS Version in DOS 4.1 

 
 
 
 

  :         :           : 
 03E1             5  RDCLKVSN equ $3E1 
 :                :           : 
 0900 A0 0C      13           ldy #CLKBUFR 
 0902 A9 09      14           lda /CLKBUFR 
 0904 20 08 09   15           jsr READCLK 
 :                :           : 
 0907 60         17           rts 
 :                :           : 
 0908 38         19  READCLK  clr 
 0909 6C E1 03   20           jmp (RDCLKVSN) 
 090C            21  CLKBUFR  dfs 6,0 
 :                :           : 

 
Figure I.9.3.  Reading the Date and Time in DOS 4.1 
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  :         :           : 
 0044           118  A5L      epz $44 
 0045           119  A5H      epz $45 
 :                :           : 
 0800           215           enz 
 :                :           : 
 03D6           323  CALLFM   equ $3D6 
 03DC           324  GETFMCB  equ $3DC 
 03E8           327  PRTERADR equ $3E8 
 :                :           : 
 D0B0 6C E8 03   14  PRTERROR jmp (PRTERADR) 
 :                :           : 
 D12D 20 DC 03  131           jsr GETFMCB 
 D130 84 44     133           sty A5L 
 D132 85 45     134           sta A5H 
 :                :           : 
 E58A A2 01     316           ldx #1 
 E58C 20 D6 03  318           jsr CALLFM 
 E58F           319           bcc HE599 
 E591 A0 0A     321           ldy #10 
 E593 B1 44     323           lda (A5L),Y 
 E595 AA        324           tax 
 :                :           : 
 E5BC 8A        361           txa 
 E595 48        324           pha 
 :                :           : 
 E5C1 E8        366           inx 
 E5C2 20 B0 D0  368           jsr PRTERROR 
 E5C5 68        370           pla 
 E5C6 AA        371           tax 
 E5C7 20 B0 D0  373           jsr PRTERROR 
 E5CA 20 8E FD  374           jsr CROUT 
 :                :           : 
 E599 A2 0E     328  HE599    ldx #$0E 
 :                :           : 
 FD8E A9 8D     253  CROUT    lda #$8D 
 :                :           : 

 
Figure I.9.4.  Big Mac Printing a File Manager Error in DOS 4.1 

 
 
 
 
The DOS 4.1 RWTS interface is very straightforward and simple to use.  When you call GETIOCB as 
shown in Table I.9.1, the Y and A-registers point to the IOCB within RWTS.  You are certainly 
welcome to use any other address space for an RWTS IOCB as well.  Once you have initialized the 
IOCB with your variables as shown in Table I.9.2, call CALLRWTS with the address of your IOCB, 
or the address of the IOCB within DOS, in the Y and A-registers.  The RWTS handler pushes the 
current processor status onto the stack and disables interrupts, and then saves the Y and A-registers to 
the IOB address at 0x4A/4B.  Next, the handler extracts the supplied buffer address from within the 
IOCB and saves the address to BUFADR2Z at 0x3E/3F.  The handler also extracts the slot*16 number, 
copies it to the X-register, saves it to SLOTFND, and calculates the low-order address byte for 
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DISKJMP based on the slot*16 number value divided by eight.  The RWTS handler then indirectly 
jumps to that address in DISKJMP, which is to the routine whose address is located in the disk address 
table for the specified slot number.  The routine now handling the volume’s I/O must mask all track 
values it encounters with TRKMASK, or 0x3F in order to remove the value of TRKZERO, or 0x40.  
When the routine has completed its processing, it is required to save its results in the supplied IOCB:  
ERRCODE, VOLFND, and DRVFND.  The RWTS handler will restore the original processor status 
and either clear or set the carry flag based on the return status from the slot handler routine.  If 
interrupts were initially enabled before the call to the RWTS handler, interrupts will be re-enabled 
when the RWTS handler completes its processing.  Table I.9.3 shows the four command codes 
available to RWTS and Table I.9.4 shows the seven possible error codes generated by RWTS. 
 
 
 
 

Offset Name Size Description 
0x00 TBLTYPE 0x01 IOCB structure 
0x01 SNUM16 0x01 slot * 16 
0x02 DNUM 0x01 drive number 
0x03 VOLEXPT 0x01 expected volume number 
0x04 TNUM 0x01 track number 
0x05 SNUM 0x01 sector number 
0x06 DCTADR 0x02 address of Device Characteristics Table 
0x08 USRBUF 0x02 data buffer address 
0x0A RWTSPARE 0x01 not used 
0x0B BYTCNT 0x01 bytes to read/write; 0 means 256 bytes 
0x0C CMDCODE 0x01 command 
0x0D ERRCODE 0x01 return error code 
0x0E VOLFND 0x01 return volume found 
0x0F SLOTFND 0x01 return slot found 
0x10 DRVFND 0x01 return drive found 

 
Table I.9.2.  RWTS I/O Context Block Definition 

 
 
 
 

Command Value Description 
RWTSSEEK 0x00 seek to track/sector command code 
RWTSREAD 0x01 read track/sector command code 
RWTSWRIT 0x02 write track/sector command code 
RWTSFRMT 0x04 format volume command code 

 
Table I.9.3.  RWTS Command Codes 
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Error Value Description 
RWNOERR 0x00 RWTS no error 
RWINITER 0x08 RWTS initialization error 

RWPROTER 0x10 RWTS write protect error 
RWVOLERR 0x20 RWTS volume number error 
RWSYNERR 0x30 RWTS syntax error (added) 
RWDRVERR 0x40 RWTS drive error 
RWREADER 0x80 RWTS read error (obsolete) 

 
Table I.9.4.  RWTS Error Codes 

 
 
 
 

Offset Name Size Description 
0x00 FMOPCOD 0x01 File Manager opcode 
0x01 SUBCODE 0x01 File Manager subcode 
0x02 

 
RECNUM 

or FN2ADR 
0x02 
0x02 

record number 
secondary filename address 

0x04 
 

BYTOFFSET 
or VOLUME 

0x02 
0x01 

byte offset 
volume number 

0x05 DRIVE 0x01 drive number 
0x06 

 
BYTRANGE 

or SLOT 
0x02 
0x01 

byte range 
slot number 

0x07 FILETYPE 0x01 file type or VTOC/Data Flag 
0x08 

 
DATADR 
or FNADR 

or DATABYTE 

0x02 
0x02 
0x01 

data byte address 
primary filename address 
data byte 

0x0A RTNCODE 0x01 return code 
0x0B FMSPARE 0x01 not used 
0x0C WBADR 0x02 workarea buffer address 
0x0E TSLTSADR 0x02 track/sector buffer address 
0x10 DATASADR 0x02 data buffer address 

 
Table I.9.5.  File Manager Context Block Definition 

 
 
 
 
The DOS 4.1 File Manager is not as straightforward as RWTS, and it is somewhat more difficult to 
use.  One look at Table I.9.5 shows how convoluted the File Manager Context Block is.  Essentially 
the Context Block is completely command dependent and is intended to be used with that in mind.  So 
many of the Context Block entries are overloaded and the entry definition and its usage totally depends 
on the command in question.  Table I.9.6 shows the fourteen command codes available to the File 
Manager including a new command code in DOS 4.1, FMURMCD.  This command code can be used 
to undelete a file that has been previously deleted from the volume Catalog by the FMDELECD 
command code.  The File Manager Context Block entries are used in the same way for the 
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FMURMCD command as they are used for the FMDELECD command where bytes 8 and 9 contain 
the address of the filename to be undeleted.  The sectors in the file’s TSL are marked as used in the 
VTOC free sector bitmap as well as the TSL sector.  It is prudent to always undelete a deleted file 
before subsequent files use those sectors made available when the file was deleted.  A volume can be 
rendered unusable if a data sector should ever be interpreted as a TSL sector.  There is no harm in 
undeleting a file that already exists in the file Catalog. 
 
 
 
 

Command Value Description 
FMNOERR 0x00 File Manager No Operation code 

FMOPENCD 0x01 File Manager OPEN code 
FMCLOSCD 0x02 File Manager CLOSE code 
FMREADCD 0x03 File Manager READ code 
FMWRITCD 0x04 File Manager WRITE code 
FMDELECD 0x05 File Manager DELETE code 
FMCATACD 0x06 File Manager CATALOG code (modified) 
FMLOCKCD 0x07 File Manager LOCK code 
FMUNLKCD 0x08 File Manger UNLOCK code 
FMRENMCD 0x09 File Manager RENAME code 
FMPOSICD 0x0A File Manager POSITION code 
FMINITCD 0x0B File Manager INIT code (modified) 
FMVERICD 0x0C File Manager VERIFY code 
FMURMCD 0x0D File Manager URM code (added) 

 
Table I.9.6.  File Manager Command Codes 

 
 
 
 

Command Value Description 
FMNOOPSC 0x00 File Manager No Operation subcode 
FMRW01SC 0x01 File Manager read/write 1-byte subcode 
FMRWNBSC 0x02 File Manager read/write range subcode 
FMPOS1SC 0x03 File Manager Position and read/write 1-byte subcode 

 
Table I.9.7.  File Manager Read and Write Command Subcodes 

 
 
 
 
Some File Manager commands require a subcode to specify how the command will be used.  Table 
I.9.7 lists the four subcodes used by the read and write commands FMREADCD and FMWRITCD.  A 
subcode was added to the CATALOG command in order to optionally display what the R keyword 
provides to the Command Manager.  Simply save a non-zero value to the SUBCODE parameter of the 
File Manager Context Block if that additional CATALOG information is desired.  Table I.9.8 shows 
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all the possible error codes reported by DOS and the source or sources of those error codes:  Command 
Manager, File Manager, or RWTS.  In DOS 4.1 the File Manager uses a table lookup algorithm to 
translate an RWTS error code into a File Manager error code reported by DOS.  The actual value of the 
RWTS error code is shown in parenthesis.  An RWTS Initialization Error message “Init Error” was 
added to the Error and Display Message Text table as well as a “Catalog Full” error message. 
 
There does exist a fifteenth File Manager command code used to implement the DOS 4.1 TS command 
(read Track/Sector) in order to utilize the error processing capabilities of the File Manager if an error in 
reading a volume sector should ever occur.  This opcode does not utilize the File Manager Context 
Block sufficiently for external use; rather, a user should always use RWTS to read a volume sector. 
 
 
 
 

Error # CMD FM RWTS Error Message 
0 √ √ √ Ring bell and print two <rtn> 
1 √   Clock Not Found 
2 √ √  Range Error 
3   √  (0x08) Init Error 
4 √  √  (0x10) Write Protected 
5 √ √  End of Data 
6  √  File Not Found 
7 √  √  (0x20) Volume Number Error 
8   √  (0x40) I/O Error 
9  √  Disk Full 

10  √  File Locked 
11 √  √  (0x30) Syntax Error 
12 √   No Buffers Error 
13 √   File Type Error 
14 √   Program Too Large 
15 √   Not Direct Command 
16  √  Catalog Full 

 
Table I.9.8.  DOS 4.1 Error Messages and Sources 

 
 
 
 
The INIT handler in DOS 4.1 specified by the File Manager FMINITCD command has been 
substantially modified from its DOS 3.3 version.  Before the DOS INIT command is even processed, 
the Command Manager initializes the File Manager Context Block to 0x00 except for the FMOPCOD 
and SUBCODE values.  Then it initializes bytes 0x02/0x03 with the address of the Volume Title 
(SFNAME).  The DOS Flag found in byte 0x01 of the Context Block, or SUBCODE as shown in 
Table I.9.5, actually has a very useful function in DOS 4.1.  To better understand how to use this 
SUBCODE Table I.9.9 shows the values that could be assigned to DOS Flag.  In order to create a fully 
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bootable DOS “B” type volume, DOS Flag must have a non-zero value, the signal to the INIT handler 
to write DOS to the volume. 
 
If DOS Flag is 0x00 the volume will be labeled a “D” type data volume where all of track 0x00 can be 
used for data, too.  The Volume Title address found in bytes 0x02/0x03, or FN2ADR, is the address 
where the INIT handler copies a 24-character upper ASCII Volume Title to the VTOC.  In the ideal 
situation the File Manager knows nothing about the Command Manager and the values it parses from 
the command line keywords.  All the information the File Manager requires for processing its 
commands must come from its Context Block and its workarea buffer.  And this is particularly true for 
INIT handler processing.  In normal Command Manager INIT handler processing the address in bytes 
0x08/0x09 of the Context Block will be 0x00 since the Command Manager has already initialized the 
filename (FNAME).  But if the MSB of byte 0x07 of the Context Block is set (i.e. the VTOC/Data 
Flag or FILETYPE as shown in Table I.9.5), the INIT handler will use the address found at bytes 
0x08/0x09 to copy a 24-character upper ASCII filename to FNAME, the name of the file that will be 
used to RUN, EXEC, or BRUN when the disk is a “B” type bootable volume.  When the Command 
Manager calls the File Manager it copies its buffer addresses to bytes 0x0C through 0x11 of the 
Context Block. 
 
 
 
 

DOS Flag DOS Installed Description 
0x00 No Data Disk ‘D’, all of track 0x00 is used for data 
0x06 Yes Boot Disk ‘B’, RUN command code 0x06 put into 

CMDVAL 
0x14 Yes Boot Disk ‘B’, EXEC command code 0x14 put into 

CMDVAL 
0x34 Yes Boot Disk ‘B’, BRUN command code 0x34 put into 

CMDVAL 
0xN, 

0x00≤N≤0x58 
Yes Boot Disk ‘B’, any even value valid within the DOS 

command table is put into CMDVAL 
 

Table I.9.9.  File Manager INIT DOS Flags (SUBCODE) 
 
 
 
 

Offset Name Size Range Description 
0x00 SECVAL 0x01 0x01 – 0x0F number of sectors in catalog 
0x01 ENDTRK 0x01 0x12 – 0x32 number of tracks in volume 
0x02 SUBJCT 0x02 0x0000 – 0xFFFF volume library (subject) value 

 
Table I.9.10.  File Manager Initialization Data, VTOCVALS 
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 :                 :           : 
 1300            394  FMVALS: 
 1300            395  ; 
 1300 0B         396  OPCODE   byt INITCMD 
 1301 06         397  SUBCODE  byt DOSFLAGS 
 1302            398  ; 
 1302 2A 13      399  FN2ADR   adr VTITLE 
 1304            400  ; 
 1304 00         401  VOLUME   hex 00 
 1305 01         402  DRIVE    hex 01 
 1306            403  ; 
 1306 06         404  SLOT     hex 06 
 1307 80         405  FILETYPE hex 80 
 1308            406  ; 
 1308 12 13      407  FNADR    adr FNAME 
 130A            408  ; 
 130A 00         409  RTNCODE  hex 00 
 130B            410  ; 
 130B 00         411  FMSPARE  hex 00 
 130C            412  ; 
 130C 0E 13      413  WBADR    adr SECVAL 
 130E 07         414  SECVAL   hex 07 
 130F 23         415  ENDTRK   hex 23 
 1310 34 12      416  SUBJCT   hex 3412 
 1312            417  ; 
 0012            418  FMPLEN   equ *-FMVALS 
 1312            419  ; 
 1312 E8 E5 EC   420  FNAME    asc “hello” 
 1315 EC EF 
 1317            421           dfs FNLEN-5,SPACE 
 132A            422  ; 
 132A D4 E5 F3   423  VTITLE   asc “Test Disk” 
      F4 A0 C4 
      E9 F3 EB 
 1333            424           dfs FNLEN-9,SPACE 
 :                 :           : 

 
Figure I.9.5.  Using the File Manager Context Block in DOS 4.1 

 
 
 
 
In normal Command Manager INIT handler processing the addresses found in bytes 0x0C through 
0x11 in the Context Block are not used.  However, for users of the File Manager external to DOS, if 
the MSB of the VTOC/Data Flag (or FILETYPE) is set, then WBADR must contain an address of a 4-
byte data block containing the values for SECVAL, ENDTRK, and SUBJCT as shown in Table I.9.10.  
Recall that SECVAL defines how many sectors will be used for the file catalog, ENDTRK specifies 
the number of tracks in the volume, and SUBJCT is the two-byte Volume Library value.  If bit-6 of the 
VTOC/Data Flag is set, the volume will be initialized with 32 sectors per track rather than 16 sectors.  
This logic was different in Build 45 where the MSB of SECVAL signaled the initialization of 32 sector 
tracks.  The 4-byte VTOCVALS data block and the address to FNAME along with DOS Flag and the 
VTOC/Data Flag provide the same information the Command Manager obtains when it parses the A, 
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B, L, and R keywords for the DOS INIT command.  Figure I.9.5 shows an Assembly Language listing 
of a File Manager Context Block where the VTOC/Data Flag (or FILETYPE) is set to 0x80 and bytes 
0x0C/0x0D contain the address of VTOCVALS, located in the following bytes 0x0E through 0x11 of 
the Context Block beginning with SECVAL, and including ENDTRK and the two-byte variable 
SUBJCT.  Yes, surprise!  It’s a thoroughly good use of where the Context Block variables TSLTSADR 
and DATASADR normally reside but are otherwise unused in the INIT command. 
 
The complete list of File Manager commands and the parameters and buffers that are needed by these 
commands is shown in Figure I.9.6.  Understand that the File Manager uses only its own Context 
Block that resides within DOS memory.  GETFMCB can be called to obtain the address of that 
Context Block so that its individual parameters can be modified, similar to how FID uses its File 
Manager Context Block.  FID maintains its own copy of the 18-byte Context Block, modifies it as 
needed, and then copies it in its entirety back into DOS address space before calling CALLFM.  Upon 
return from the File Manager, FID again copies the entire Context Block back into its own address 
space before looking at the return code RTNCODE value.  The File Manager Context Block in DOS 
4.1H resides in the interface area of DOS address space that is not within the Language Card memory, 
so bank switching is unnecessary to read and write the DOS 4.1H File Manager Context Block. 
 
It is always the responsibility of the user to utilize the RWTS I/O Context Block and the File Manager 
Context Block rationally and with great care.  If any context block value is not within its normal value 
range unpredictable results should be expected.  By design the Command Manager always supplies 
values for these context blocks that are within their normal operational range.  But the user carries the 
full burden of selecting context block values that will provide the intended results.  For example, if 
SECVAL is initialized to 0x00 or any value greater than 0x7F, and the File Manager Context Block 
OPCODE is set to FMINITCD, the target volume’s VTOC will never initialize and DOS will hang.  
Table I.9.10 shows that setting SECVAL to a value greater than 0x0F is not within its normal range 
and there may very well be unexpected results.  It is always a good policy to test and experiment on 
disk volumes that are clearly identified as “Test Disk #nnn” when testing new programs whether the 
program is written in Applesoft, assembly language, Fortran, or Pascal.  Even EXEC files should first 
be tested on volumes that are exclusively used for experimentation.  No one is immune to mistakes, but 
carelessly using these context blocks will surely cause very unwanted results. 
 
It is the job of the Command Manager to supply rational values for either the RWTS I/O Context 
Block or for the File Manager Context Block.  DOS 4.1, like DOS 3.3, does not bother verifying the 
values it finds in either context block, and uses the context blocks as they are.  Whether the values are 
within range or out of range for the normal operation of each opcode is simply not confirmed.  
Hopefully an error will be reported if the opcode fails somewhere in its processing, but that may not 
always be the case.  As mentioned above using a value of 0x00 for SECVAL will cause the volume 
initialization opcode to hang, thus preventing the File Manager the ability to even report the error.  The 
RWTS and File Manager Context Blocks provide the assembly code user the greatest power and 
flexibility in order to control and mange DOS’s volume structure and file Catalog.  DOS will do 
nothing to stop a user from completing trashing the volume structure and file Catalog of any disk 
volume.  Therefore, I say again, it is always the responsibility of the user to utilize these context blocks 
rationally and with very great care. 
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Figure I.9.6.  File Manager Command Parameter List 
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Offset Name Size Description 
Data and Track/Sector Buffers 

0x000 DATABUFR 0x100 I/O data buffer 
0x100 TSBUFFER 0x100 T/S buffer 

WORKAREA – File Manager Workarea Variables 
0x200 TSFRSTTS 0x02 T/S of first T/S list 
0x202 TSCURRTS 0x02 T/S of current T/S list 
0x204 TSCURDAT 0x02 T/S of current data sector 

0x206 
 

 
WAFLAGS 0x01 

 

0x02 = VTOC has changed 
0x40 = data buffer has changed 
0x80 = T/S buffer has changed 

0x207 SECATOFF 0x01 sector offset into catalog 
0x208 BYCATOFF 0x01 byte offset into catalog 
0x209 MAXTSECR 0x02 maximum entries in T/S list 
0x20B SECFRSTS 0x02 offset of first T/S entry 
0x20D SECLASTS 0x02 offset of last T/S entry 
0x20F SECLSTRD 0x02 relative sector last read 
0x211 SECRSIZE 0x02 sector size in bytes 
0x213 SECRPOST 0x02 current position in sector 
0x215 BYSECOFF 0x01 current sector byte offset 
0x216 RECDLNGH 0x02 fixed record length 
0x218 RECURNUM 0x02 current record number 
0x21A BYRECOFF 0x02 byte offset into record 
0x21C SECFILEN 0x02 length of file in sectors 
0x21E SECALOTR 0x01 next sector to get on this track 
0x21F CURALOTR 0x01 current track to allocate 
0x220 SECFRETR 0x04 bitmap of free sectors on this track 
0x224 WAFILTYP 0x01 file type (^0x80 = locked) 
0x225 WASLTNUM 0x01 slot number times 16 
0x226 WADRVNUM 0x01 drive number 
0x227 WAVOLNUM 0x01 volume number 
0x228 WATRKNUM 0x01 track number 

Filename Buffer 
0x229 FILNAMBF 0x18 upper ASCII filename 

Addresses of Buffer Locations 
0x241 WABUFADR 0x02 address of WORKAREA 
0x243 TSBUFADR 0x02 address of TSBUFFER 
0x245 DABUFADR 0x02 address of DATABUFR 
0x247 NXTFNADR 0x02 address of next FILNAMBF 

 
Table I.10.1.  File Manager File Buffer Definition 
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10.  DOS 4.1 Data Structures 
The Data Structures, or areas where data is found in DOS 3.3 are spread out between the various 
managers.  Those variables used by the Command Manager are found after the Command Manager.  
Those variables used by the File Manager are found after the File Manager.  The RWTS IOCB is 
found in the middle of all the RWTS routines.  I thought DOS 4.1 should have better organization of 
the various collections of variables and data structures, and therefore reduce the number of addresses 
required to access any single variable or data structure if that is what is desired. 
 
The Data Structures in DOS 4.1 reside after the File Manager routines and are followed by the two 
pages of memory needed for the working VTOC and Catalog buffers, and the page of memory needed 
for the primary nibble buffer NBUF1.  In DOS 4.1L the RWTS routines follow the NBUF1 and 
NBUF2 buffers and the WRTNIBL and RDNIBL disk nibble translate tables.  The five DOS file 
buffers follow the VTOC and Catalog buffers in DOS 4.1H.  Quite a few software tools such as Big 
Mac, Lisa, and PGE make use of several internal variables from the data structures found after the File 
Manager routines.  Big Mac needs the internal values of LOADLEN and DRVAL, and it needs the 
addresses of what DOS considers to be the true CSWL and KSWL handlers.  Lisa also needs the 
internal values of LOADLEN and DRVAL.  PGE needs the internal value of ADRVAL.  There is no 
telling what other software utilities and programs that exist that need values from these internal data 
areas and data structures of DOS in order to complete their processing functions.  Both DOS 4.1L and 
DOS 4.1H provide addresses for the internal DOS data structures as shown in Table I.8.7.  Caution 
must be exercised in using the addresses for these data structures in DOS 4.1H because they are 
addresses in the Language Card memory area, specifically RAM Bank 2.  Bank switching code is 
necessary to access the actual data.  There are no data structures in RAM Bank 1 except for the 
RDNIBL and WRTNIBL data translate tables and the two nibble buffers NBUF1 and NBUF2, 
conveniently located there for access to all the RWTS routines.  Except for RWTS, DOS 4.1 makes no 
queries into these particular data tables and buffers. 
 
The address found at FLNAMADR (offset 0x03) in Table I.8.7 is for the filename FILNAMBF in the 
first DOS file buffer.  DOS must have at least one file buffer allocated, which is all that Lisa actually 
needs and uses, surprisingly.  Even the CATALOG command requires an unused file buffer.  Of 
course, more file buffers can be allocated using the DOS MAXFILES command if they are needed.  
Table I.10.1 shows the contents of a file buffer which is 585 (0x249) bytes in size:  one memory page 
(256 bytes) for the data buffer DATABUFR, one memory page for the track/sector buffer TSBUFFER, 
41 bytes for the working variables buffer WORKAREA, 24 bytes for the filename buffer FILNAMBF, 
and 8 bytes for the addresses of WORKAREA, TSBUFFER, DATABUFR, and NXTFNADR, the 
address of FILNAMBF for the next (not necessarily following) file buffer, much like a single-direction 
linked-list address.  If the address in NXTFNADR is 0x0000, there are no more next-linked file 
buffers.  Incidentally, the size of a file buffer in DOS 3.3 is 0x250 bytes, or 7 bytes larger due to the 
larger filename buffer and the resize of the BYSECOFF variable to 1 byte as it should have been. 
 
I have changed the order of some of the variables in the workarea shown in Table I.10.1 from the order 
found in DOS 3.3.  As long as the workarea definition in Table I.10.1 is consistent with the File 
Manager workarea definition shown in Table I.10.4 there will be no processing problems.  I made 
these changes in order to reduce the number of routines necessary to copy variables to and from a file 
buffer workarea and the File Manager copy of those workarea variables in its workarea buffer.  I also 
provided FID with the same changes to its copy of the WORKAREA structure as well. 
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The address found at CMDVLADR (offset 0x05) in Table I.8.7 points to the data structure called 
CMDVALS because it contains the variables used by the Command Manager in processing DOS 
commands as shown in Table I.10.2.  Simply transfer the address found at CMDVLADR to a page-
zero pointer and index into the structure for the desired variable in order to obtain its value or change 
its value.  Table I.10.2 provides the offset, or index to use for each variable. 
 
 
 
 

Offset Name Size Description 
0x00 BUFRADR 0x02 current file buffer address 

0x02 
 
 

 
CURSTATE 0x01 

 
 

0x00 = warm-start status 
0x01 = READ state status 
0x40 = Applesoft RAM (unused) 
0x80 = cold-start status 

0x03 CSWSTATE 0x01 CSWL intercept state number 
0x04 CMDLNIDX 0x01 offset into Apple command line 
0x05 CMDINDX 0x01 index of last command * 2 
0x06 ASAVE 0x01 A-register save 
0x07 XSAVE 0x01 X-register save 
0x08 YSAVE 0x01 Y-register save 
0x09 SSAVE 0x01 S-register save 
0x0A CSWLSAV 0x02 true CSWL handler address 
0x0C KSWLSAV 0x02 true KSWL handler address 
0x0E EXECFLAG 0x01 EXEC active flag 
0x0F EXECBUFR 0x02 EXEC file buffer address 
0x11 TEMP 0x01 scratch variable 
0x12 MAXFILES 0x01 MAXFILES value 

0x13 
 

 
MONFLAGS 0x01 

 

0x10 = Output 
0x20 = Input 
0x40 = Command 

0x14 DIRTS 0x02 catalog track and sector values 
0x16 FILELAST 0x02 file end address 
0x18 FILESTRT 0x02 file start address 
0x1A FILELEN 0x02 file length 
0x1C CLKSLOT 0x01 clock slot 
0x1D CLKINDEX 0x01 index into clock data 
0x1E FIRSTCAT 0x01 number of sectors in catalog 
0x1F LASTRACK 0x01 number of tracks in volume 

 
Table I.10.2.  CMDVALS Data Structure Definition 

 
 
 
 
In Build 46 I found it absolutely necessary to add two additional variables to the end of the 
CMDVALS Data Structure shown in Table I.10.2.  These two variables are FIRSTCAT and 
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LASTRACK.  At first glance these two variables look exactly like SECVAL and ENDTRK in 
VTOCVALS shown in Table I.9.10.  In the DOS 4.1 source code FIRSTCAT and SECVAL are set to 
the same value as are LASTRACK and ENDTRK.  SECVAL and ENDTRK are working variables in 
that their values can be changed by the Command Manager or by a user using the File Manager 
Context Block.  FIRSTCAT and LASTRACK are reference variables in that their values are 
transferred to SECVAL and ENDTRK, respectively, when the Command Manager determines that the 
values it finds in the B keyword or in the A keyword is 0x00.  Now, the user can set FIRSTCAT and 
LASTRACK to any default value without having to reassemble DOS 4.1. 
 
Like the address found at CMDVLADR, the address found at KEYVLADR (offset 0x07) in Table 
I.8.7 points to the data structure called KEYVALS because it contains the keyword variables the 
Command Manager extracts during DOS command parsing, and those variables are shown in Table 
I.10.3.  Simply transfer the address found at KEYVLADR to a page-zero pointer and index into the 
structure for the desired variable in order to obtain its value or change its value.  Table I.10.3 provides 
the offset, or index to use for each variable.  Before DOS 4.1 begins to parse the keyword variables it 
sets the keyword variables from ADRVAL through RUNFLAG to 0x00.  This is convenient because 
now these keywords and the processing flags KYWRDFND, CHNFLAG, and RUNFLAG all begin at 
a known state.  Only when certain DOS commands are selected do CHNFLAG and RUNFLG have 
any effect on command processing. 
 
 
 
 

Offset Name Size Description 
0x00 SLOTVAL 0x02 S keyword, slot value 
0x02 DRVAL 0x02 D keyword, drive value 
0x04 VOLVAL 0x02 V keyword, volume value 
0x06 ADRVAL 0x02 A keyword, address value 
0x08 LENVAL 0x02 L keyword, length value 
0x0A RECVAL 0x02 R keyword, record value 
0x0C BYTVAL 0x02 B keyword, byte value 
0x0E LOADLEN 0x02 LOAD and BLOAD length 
0x10 MONVAL 0x01 MON/NOMON value 
0x11 KYWRDFND 0x01 command-line keyword found 
0x12 CHNFLAG 0x01 CHAIN flag 
0x13 RUNFLAG 0x01 RUN/LOAD flag 
0x14 FNAME 0x18 primary filename buffer 
0x2C SFNAME 0x18 secondary filename buffer 

 
Table I.10.3.  KEYVALS Data Structure Definition 

 
 
 
 
Figure I.10.1 shows a sample assembly language program used in Lisa to obtain the value of 
LOADLEN.  LOADLEN is the memory load address used by the DOS LOAD or BLOAD command.  
The routine extracts LOADLEN from the KEYVALS Data Structure simply by starting with the 
address found at INITDOS and using the offsets found in Tables I.8.6 and I.10.3.  KEYVLADR has an 
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offset of 0x07 and is the index value given to the parameter KEYVLNDX.  LOADLEN has an offset 
of 0x0E and is the index value given to the parameter LDLENNDX.  First, the address at INITDOS is 
copied to a page-zero pointer FMT and the offset KEYVLNDX is used to extract the address 
KEYVLADR.  Next, the address at KEYVLADR is copied to the same page-zero pointer FMT and the 
offset LDLENNDX is used to extract the value of LOADLEN.  Finally, LOADLEN is used to adjust 
the address found in BUFR. 
 
 
 
 

  :         :           : 
 0002             5  BUFR     epz $02 
 0044             6  FMT      epz $44 
 0800             7           enz 
 0007             8  KEYVLNDX equ $07 
 000E             9  LDLENNDX equ $0E 
 :                :           : 
 0900 AD F8 BF   18           lda INITDOS 
 0903 85 44      19           sta FMT 
 0905 AD F9 BF   20           lda INITDOS+1 
 0908 85 45      21           sta FMT+1 
 090A            22  ; 
 090A A0 07      23           ldy #KEYVLNDX 
 090C B1 44      24           lda (FMT),Y 
 090E 48         25           pha 
 090F C8         26           iny 
 0910 B1 44      27           lda (FMT),Y 
 0912 85 45      28           sta FMT+1 
 0914 68         29           pla 
 0915 85 44      30           sta FMT 
 0917            31  ; 
 0917 A0 0E      32           ldy #LDLENNDX 
 0919 18         33           clc 
 091A A5 02      34           lda BUFR 
 091C 71 44      35           adc (FMT),Y 
 091E 85 02      36           sta BUFR 
 0920 C8         37           iny 
 0921 A5 03      38           lda BUFR+1 
 0923 71 44      39           adc (FMT),Y 
 0925 85 03      40           sta BUFR+1 
 :                :           : 

 
Figure I.10.1.  Lisa Using LOADLEN from KEYVALS in DOS 4.1 

 
 
 
 
The address found at FMWAADR (offset 0x09) in Table I.8.7 points to the Data Structure called 
FMWORK because it contains the workarea variables used by the File Manager in processing DOS 
input/output commands.  The FMWORK variables are shown in Table I.10.4.  Simply transfer the 
address found at FMWAADR to a page-zero pointer and index into the structure for the desired 
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variable in order to obtain its value or change its value.  Table I.10.4 provides the offset, or index to 
use for each variable.  Except for the VTOC and CAT structure blocks, Table I.10.4 maps directly to 
the WORKAREA shown in Table I.10.1 so that the two buffers can be copied to each other in total as 
needed.  In DOS 4.1H the data areas and structures shown in Tables I.10.2, I.10.3, and I.10.4 all reside 
in RAM Bank 2. 
 
 
 
 

Offset Name Size Description 
0x00 FRTSTRK 0x01 first T/S track 
0x01 FRTSSEC 0x01 first T/S sector 
0x02 CURTSTRK 0x01 current T/S track 
0x03 CURTSSEC 0x01 current T/S sector 
0x04 CURDATRK 0x01 current data track 
0x05 CURDASEC 0x01 current data sector 

0x06 
 

 
FLAGS 0x01 

 

0x02 = VTOC has changed 
0x40 = data buffer has changed 
0x80 = T/S buffer has changed 

0x07 DIRSECIX 0x01 directory sector index 
0x08 DIRBYTIX 0x01 directory byte index 
0x09 SECPERTS 0x02 T/S entries in a sector 
0x0B RELSFRST 0x02 relative sector to first sector 
0x0D RELSLAST 0x02 relative sector to last sector 
0x0F RELSLRD 0x02 relative sector to just read sector 
0x11 SECTLEN 0x02 sector size in bytes 
0x13 FILEPOSN 0x02 current file position 
0x15 FILEBYTE 0x01 current file byte 
0x16 OPNRCLEN 0x02 file open record length 
0x18 RECNUMBR 0x02 current record number 
0x1A BYTEOFFS 0x02 current byte offset 
0x1C SECCNT 0x02 sector count 
0x1E NEXTSECR 0x01 next sector 
0x1F CURTRACK 0x01 current track 
0x20 SECBTMAP 0x04 sector bitmap 
0x24 FYPTE 0x01 File type (^0x80 = locked) 
0x25 SLOT16 0x01 slot * 16 
0x26 DRVNUMBR 0x01 drive number 
0x27 VOLNUMBR 0x01 volume number 
0x28 TRKNUMBR 0x01 track number 
0x29 VTOCSB 0x100 VTOC structure block 
0x129 CATSB 0x100 Catalog structure block 

 
Table I.10.4.  File Manager Workarea Structure Definition 
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The address found at VTOCADR (offset 0x0B) in Table I.8.7 points to the VTOC structure block and 
the address found at CATSBADR (offset 0x0D) points to the Catalog structure block.  Now, both the 
VTOC and the Catalog structure blocks can be easily accessed as needed.  Refer back to Table I.6.1 for 
the definition of the VTOC structure block or to Table I.7.2 for the definition of the Catalog structure 
block.  In DOS 4.1H these two structure blocks both reside in RAM Bank 2.  It is quite easy to 
calculate the free space on any volume that has been immediately accessed simply by obtaining the 
address of the VTOC structure block and processing its free sector bitmap. 
 
Many DOS commands utilize the File Manager to open a file, which is handled by the Common Open 
routine “CMNOPN”.  This routine initializes the File Manager workarea, sets the sector size, checks the 
RECNUM value as shown in Table I.9.5 for 0x0000, and allocates a file if the requested filename is 
not found in the Catalog.  If DOS 3.3 finds RECNUM is equal to 0x0000, it changes the value of 
OPNRCLEN to 0x0001 as shown in Table I.10.4.  If DOS 4.1 finds RECNUM is equal to 0x0000, it 
changes the value of OPNRCELN to BYTPRSEC as shown in Table I.6.1.  For sectors that are 256 
bytes in size, BYTPRSEC would equal 0x0100.  The DOS 4.1 design uses a far better and more logical 
value to set OPNRCLEN if “CMNOPN” finds RECNUM is equal to 0x0000. 
 
  



 47 

11.  DOS 4.1 Clock Access 
As soon as DOS 4.1 is read into memory it attempts to locate a clock card in one of the seven 
peripheral slot card slots.  Fortunately, the clock cards I am acquainted with conform to a convention 
that can be used to identify a peripheral slot card slot as having a clock slot card.  The FINDCLK 
routine begins checking slot 7, working its way down to slot 1, and it looks for the PHP and SEI 
signature bytes, the first two bytes of the clock slot card firmware, and the CLKID byte, the last byte of 
the clock slot card firmware, set to either 0x03 or 0x07.  When those conditions have been met, the slot 
number is saved, a “colon read” command is issued to the clock slot card firmware, and an attempt is 
made to parse the generated data from the clock slot card.  The “colon read” command expects the 
clock data to be written to the INPUT buffer, or page 0x02 of memory (address 0x200) in the generic 
format of “mo/dd hh:mi:ss” or “mo/dd/yy hh:mi:ss”, where “mo” is month, “dd” is day, 
“yy” is year, “hh” is hour, “mi” is minute, and “ss” is second.  Some clock firmware includes the 
number of the week’s day (“w”) before the date and time, or some firmware might include a period and 
a three-digit millisecond suffix to the seconds’ data.  Both my clock card and the TimeMaster clock 
card model the “colon read” command after the Thunderclock card, except those clock cards produce a 
year value whereas the Thunderclock card does not. 
 
(Why the Thunderclock slot card became the de facto standard is beyond my comprehension.  Maybe 
it was the first clock card marketed for the Apple?  So what!  Maybe it was well integrated in ProDOS.  
Again, so what!  Not being able to produce a year value was just wrong, and definitely shortsighted.) 
 
In order to evaluate the clock data an index to the month data must be determined:  there must be either 
no data before the month value or there must be at least one space before the month value.  It does not 
matter what precedes that space, or what the separators are for the date and time values (/, :, ;, or 
space).  Table I.11.1 lists the DOS 4.1 supported clock cards, the raw data string generated when a 
“colon read” command is issued (where “x” can be any data), and the index determined for that data.  
The READCLK routine uses that data index to begin extracting the date and time values, and 
substituting in YEARVAL (see Table I.8.7) if it is parsing Thunderclock slot card data.  If it is not 
parsing Thunderclock slot card data, READCLK assumes the date data will contain a year value. 
 
 
 
 

Clock Card Data Index Raw Data String 
Thunderclock card 0 mo/dd hh;mi;ss 

unknown clock card 1  mo/dd/yy hh:mi:ss 
unknown clock card 2 x mo/dd/yy hh:mi:ss 
Philip’s Clock card 3 “w mo/dd/yy hh:mi:ss 

TimeMaster Clock card 3 “w mo/dd/yy hh:mi:ss 
unknown clock card 4 xxx mo/dd/yy hh:mi:ss 
unknown clock card 5 xxxx mo/dd/yy hh:mi:ss 

 
Table I.11.1.  Supported Clock Cards in DOS 4.1 
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The slot number CLKSLOT of the clock slot card and the index into the clock data CLKINDEX are 
shown in Table I.10.2, and are available as indexed parameters of CMDVALS.  If CLKSLOT is 0x00 
there is no clock slot card and CLKINDEX is not valid.  If an indirect “JMP” is made to the address 
found in RDCLKVSN as shown in Table I.9.1 with the Y-register containing the low byte and the A-
register containing the high byte of the address of a 6-byte data buffer, and the carry flag is cleared, 
READCLK will read the clock, parse the clock data, and put the date and time values obtained in the 
order shown in Table I.6.3 into the supplied 6-byte data buffer as shown in Figure I.9.3.  The date and 
time values represent decimal data in a hexadecimal format, so the data must be printed as 
hexadecimal values or converted to an equivalent decimal value, if desired. 
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12.  DOS 4.1 Error Processing 
Whether an Applesoft or Binary program is running, if BASIC is not running, or if BASIC is running 
and the ASONERR (0xD8) flag has its MSB clear, the first step in DOS 4.1 error processing is to beep 
the speaker and print the error message text as shown in Table I.9.8.  BASIC is running when ASRUN 
(0x76) is not equal to 0xFF and PROMPT (0x33) is not equal to the “]” character.  Conversely, 
BASIC is not running when ASRUN equals 0xFF or PROMPT equals “]”.  If BASIC is running and 
the MSB of ASONERR is set, the error message is not printed and DOS exits indirectly to 0xD865 by 
means of ERRORADR (offset 0x11 in Table I.8.7).  After the error message is printed, the next step in 
error processing is started beginning with DOS restoring its keyboard and video intercepts, and exiting 
indirectly to 0xD43C by means of WARMADR (offset 0x0F). 
 
Applesoft programs can handle DOS error processing by using the “ONERR GOTO <line 
number>” command in order to prevent program termination.  Assembly language programs need to 
do a little more work:  store 0xFF to ASONERR, 0x00 to ASRUN and PROMPT, and change the 
address stored at ERRORADR to your own error handler.  DOS 4.1 will load the X-register with the 
appropriate DOS error number as shown in Table I.9.8 before exiting indirectly to ERRORADR (or 
WARMADR for that matter if BASIC is not running).  Calling PRTERADR as shown in Table I.9.1 
using an indirect “JMP” instruction and with the appropriate DOS error number stored in the X-
register, will print the corresponding DOS error message text without beeping the speaker and without 
printing a carriage return after the error message.  Big Mac, for example, utilizes PRTERADR in 
printing all DOS errors it encounters as shown in the assembly language snippet of Figure I.9.4.  In 
that example code the first call to PRTERROR with the X-register set to 0x00 will beep the speaker.  
Then Big Mac calls PRTERROR with the actual error number in the X-register followed by a carriage 
return.  There is absolutely no need to locate the PRTERROR routine in the source code because it is 
so conveniently located in the Page 0x03 vectors at 0x3E8. 
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13.  DOS 4.1 Chain Command 
DOS 4.1 does include an actual CHAIN command designed specifically for floating point Applesoft 
BASIC.  Having a native CHAIN command is far more convenient than having to include an assembly 
language utility on each and every application volume for those programs requiring this capability.  
However, careful considerations must be made when designing Applesoft programs that CHAIN to 
each other.  The purpose of the DOS CHAIN command is to move two areas of memory where they 
reside for the “Start” program to where they need to reside for the “Chained” program.  These two 
areas of memory include the Simple Variables and the Array Variables, or SAVs for short.  Figure 
I.13.1 shows a typical Start Applesoft Program in memory.  In that figure Free Space exists when the 
Start Program and its SAVs and its Character String Pool memory area do not exceed the value stored 
in HIMEM minus 0x0801, the address where the Start Program begins.  Also, the Start Program must 
never CHAIN to a Chained Program whose size will exceed the available Free Space. 
 
Applesoft uses a large number of page-zero memory locations for its use.  Many of these locations are 
to store addresses in low/high byte order that can easily be used as pointers for memory management 
routines.  An Applesoft program loads into memory starting at address 0x0801, which is the value 
found in PRGTAB at 0x67/0x68.  The DOS LOAD command knows the program’s size in bytes even 
before it actually loads the file by reading its first data sector and examining the first two bytes, and it 
calculates where in memory its end address will be, and stores that information in PRGEND at 
0xAF/0xB0.  Initially, VARTAB, ARYTAB, and STREND will be initialized to the same value in 
PRGEND, and FRETOP will be initialized to the same value in HIMEM.  Of course, the MAXFILES 
command can be used to change HIMEM, and thus FRETOP, and this should be done early in the Start 
program before any string variables are pushed into the Character String Pool memory area. 
 
As the Applesoft program begins to execute its instructions it will start to create simple variables that 
include integers, real numbers, and string pointers.  These variables and pointers reside in the Simple 
Variables area of memory as descriptors beginning in VARTAB at 0x69/0x6A, and ending in 
ARYTAB at 0x6B/0x6C.  The definition of the descriptors for these variables and pointers that 
comprise the content of the Simple Variables is shown in Table I.13.1.  As more and more Simple 
Variable descriptors are added, the Array Variables area is pushed higher and higher up in memory.  
Simple variables are always seven bytes in size, and depending on the variable type, some of the bytes 
may not be used.  Table I.13.1 shows that real variables require all seven bytes for the variable name, 
the exponent, and its 4-byte mantissa.  Integers require only four bytes for the variable name and its 
value in high/low byte order, leaving the remaining three bytes set to 0x00.  Finally, simple strings 
require only five bytes for the variable name, the length of the string, and the address where the string 
resides in low/high byte order, leaving the remaining two bytes set to 0x00. 
 
The definition of the descriptors for Applesoft Array Variables is shown in Table I.13.2.  As seen in 
Figure I.13.1 the Array Variables area of memory begins in ARYTAB and ends in STREND at 
0x6D/0x6E.  This area of memory contains single and multi-dimensioned arrays of integers, real 
numbers, and string pointer descriptors.  Table I.13.2 shows arrays having two dimensions.  Successive 
array element dimension sizes precede each other with the first dimension size (high/low byte order) 
always coming last.  The array variable descriptor grows as the number of dimensions increase in 
number.  The nominal size of an array variable descriptor is seven bytes for a single dimension array.  
The descriptor increases in size by two bytes for each dimension added.  Therefore, the dimension 
number becomes a critical piece of information that is used to calculate where the array elements begin 
relative to the address of the array variable descriptor. 
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Pointer 
Addresses 

Start 
Program 

Smaller 
Program 

Problem 
Program 

Bigger 
Program 

 0x0000 0x0000 0x0000 0x0000 

PRGTAB – 0x67/68 0x0801 
 

Start 
Applesoft 
Program 

0x0801 
Small 

Chained 
Applesoft 
Program 

0x0801 
 

 
 

Problem 
Chained 

0x0801 
 
 
 
 

Big 
 

PRGEND – 0xAF/B0 
  Applesoft 

Program 
Chained 

Applesoft 
VARTAB – 0x69/6A Simple 

Variables 
  Program 

ARYTAB – 0x6B/6C Array 
Variables 

   

STREND – 0x6D/6E  
 
 
 
 

Free 
Space 

 
 
 

   

 
 
 

FRETOP – 0x6F/70       

  
 

 
 

 
 

 
 
 

HIMEM – 0x73/74       

 
Character 

String Pool 
 

   

  
DOS 

 
DOS 

 
DOS 

 
DOS 

 
Figure I.13.1.  Example Applesoft Program Layout in Memory 

 
 
 
 
Using Table I.13.1 as guide and extracting the two variable name bytes shows that Real elements of a 
Real array variable are each five bytes, one byte for the exponent and four bytes for the mantissa.  
Integer elements of an Integer array variable are each two bytes, and the values are in high/low byte 
order.  Finally, string elements of a String array variable are each three bytes, one byte for the length of 
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the string and two bytes for the address where the string resides in memory in low/high byte order.  As 
in the case for simple variables, the actual string data referenced by these string elements is pushed into 
the Character String Pool memory area that begins at HIMEM at 0x73/74 and ends at FRETOP at 
0x6F/0x70.  The Free Space area of memory is what is left over as the SAVs memory area grows up in 
memory and the Character String Pool memory area grows down in memory. 
 
 
 
 

Variable 
Type 

Byte Definitions 
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 

Real 
Numbers 

name1 
+ASCII 

65 

name2 
+ASCII 

66 
Exponent Mantissa 

1 
Mantissa 

2 
Mantissa 

3 
Mantissa 

4 

Integer 
Numbers 

name1 
-ASCII 

195 

name2 
-ASCII 

196 

High 
Value 

Low 
Value 0 0 0 

Simple 
Strings 

name1 
+ASCII 

69 

name2 
-ASCII 

198 

String 
Length 

Low 
Address 

High 
Address 0 0 

 
Table I.13.1.  Applesoft Simple Variable Descriptor Definition 

 
 
 
 

Variable 
Type 

Byte Definitions 
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9 

Real 
Array 

name1 
+ASCII 

65 

name2 
+ASCII 

66 

Low 
Byte 

Offset 

High 
Byte 

Offset 

Number of 
Dimensions 

K 

Size of 
Kth Dim 

High Byte 

Size of 
Kth Dim 
Low Byte 

Size of 
K-1 Dim 

High Byte 

Size of 
K-1 Dim 
Low Byte 

Integer 
Array 

name1 
-ASCII 

195 

name2 
-ASCII 

196 

Low 
Byte 

Offset 

High 
Byte 

Offset 

Number of 
Dimensions 

K 

Size of 
Kth Dim 

High Byte 

Size of 
Kth Dim 
Low Byte 

Size of 
K-1 Dim 

High Byte 

Size of 
K-1 Dim 
Low Byte 

String 
Array 

name1 
+ASCII 

69 

name2 
-ASCII 

198 

Low 
Byte 

Offset 

High 
Byte 

Offset 

Number of 
Dimensions 

K 

Size of 
Kth Dim 

High Byte 

Size of 
Kth Dim 
Low Byte 

Size of 
K-1 Dim 

High Byte 

Size of 
K-1 Dim 
Low Byte 

 
Table I.13.2.  Applesoft Array Variable Descriptor Definition 

 
 
 
 
Many times an Applesoft program will contain the text of some string variable.  As long as there is no 
text operation on that string variable such as “A$ = A$ + B$”, for example, the text pointer address 
found in the Simple Variable or in the Array Variable descriptor will point to the actual string text 
within the contents of the Applesoft program, and therefore the string can never be available to a 
Chained Program.  In order for a simple string variable or a string element to be available to a Chained 
Program, the actual string text of the string variable must be located in the Character String Pool 
memory area.  A simple way to force this is to perform some text operation on that string variable, 
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such as “A$ = A$ + “””.  This particular operation does nothing to string “A$” except to cause the 
actual text of “A$” to be copied from within the contents of the Applesoft program and into the 
Character String Pool memory area. 
 
The purpose of the CHAIN command is to move the SAVs of the Start Program to the end of the 
Chained Program, and to update PRGEND, VARTAB, and ARYTAB with their new addresses so that 
the Chained Program may access the variables and strings of the Start Program.  Because of some 
required Applesoft calls, even FRETOP needs to be reinitialized.  When the Chained Program is 
smaller than the Start Program or when the Chained Program is larger than the Start Program plus the 
size of the SAVs area, there is no problem copying the SAVs directly to their new location.  However, 
if the end of the Chained Program occurs somewhere within the SAVs area of the Start Program, there 
will be disaster if the SAVs are copied directly.  Due to the nature of the memory move routine, if the 
SAVs area of memory is copied in this particular situation, the move routine will begin to overwrite 
the same area of memory it is attempting to copy.  And this will certainly lead to disaster for the 
Chained Program because some of the variable descriptors of the Start Program will be overwritten 
and, therefore, destroyed.  Disaster will also occur if the SAVs area is copied in reverse order (high 
memory to low memory) to the end of a Chained Program that is smaller than the Start Program.  The 
CHAIN routine can either refuse to perform the chain operation and signal an error message in these 
situations, or select another alternative algorithm. 
 
One option of another alternative algorithm is to copy the SAVs to the address in STREND and set 
PRGEND and VARTAB to that address if there is enough memory in Free Space.  PRGEND does not 
necessarily have to be exactly the address where the Chained Program ends in memory, technically at 
its triple-nulls.  In fact, an Applesoft program may include assembly language subroutines attached to 
its triple-null ending giving the program a different physical end address.  The DOS SAVE command 
uses PRGTAB and PRGEND to calculate the number of bytes to save, not necessarily the address 
where the triple-nulls occur in memory minus 0x0801.  However, this option does potentially waste a 
good deal of memory if the SAVs area is sizeable. 
 
The better option would be to always copy the SAVs up in memory to FRETOP and then copy them 
again down in memory to the new PRGEND.  Unfortunately, the first copy would require a negatively-
indexed memory move algorithm (the pointers are decremented, not incremented), which is not for the 
faint of heart due to its difficulty and complexity, and it requires more CPU instructions than a simple 
positively-indexed memory move algorithm.  The second copy would require a straight-forward 
positively-indexed memory move algorithm.  Fortunately there was enough code space to implement 
this far superior option.  The user can utilize the DOS 4.1 CHAIN command to their heart’s content 
and rest assured that CHAIN will always place the SAVs fully intact precisely where the Chained 
Program ends with the single caveat already mentioned:  the Start Program must never CHAIN to a 
Chained Program whose size will exceed the available Free Space. 
 
If the R keyword is not used with the CHAIN command, CHAIN will call the Applesoft ROM routine 
GARBAG at 0xE484 before it moves the Simple Variable and Array Variable descriptors to their new 
location at the end of the Chained Program.  The GARBAG routine utilizes an algorithm similar in 
concept to a basic bubble sort algorithm to remove all unreferenced string data from the Character 
String Pool memory area, thus compacting the Character String Pool before CHAIN relocates the 
SAVs in memory.  The processing time for this garbage algorithm to collect all the little bits and 
pieces of old strings is proportional to the square of the number of strings in use.  That is, if there are 
100 active strings it will take four times longer to process those strings than if there had been only 50 
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active strings.  Many Garbage Collection algorithms have been previously published that accomplish 
the same results as GARBAG in far less time, but there can be a number of caveats when using some 
of these algorithms.  For instance, normal Applesoft programs save all string data in lower ASCII, i.e. 
with the MSB of each byte cleared to zero.  Furthermore, normal Applesoft programs never allow 
more than one string descriptor to point to the same exact copy of that string in memory.  Some 
Garbage Collection algorithms depend on these constraints.  If either constraint is not true, a 
catastrophe will happen during the course of subsequent Applesoft processing!  Of course, if the 
Applesoft program’s string data is normal, there will be no subsequent problems.  Only if assembly 
language appendages to the Applesoft program or other code segments perform exotic manipulations 
to string descriptors or to Character String Pool memory might these constraints be violated, for 
example.  The Applesoft Garbage Collector is discussed in more detail in section II.5. 
 
If an efficient Garbage Collection routine is available, the user should invoke that routine before using 
the DOS CHAIN command and utilize the R keyword to bypass calling GARBAG from within 
CHAIN processing.  There is always the dilemma in finding that balance between making the 
Applesoft and chained programs smaller in order to accommodate an external and complex assembly 
language Garbage Collection routine or enlarging the Applesoft and chained programs and 
strategically placing multiple Applesoft “FRE( aexpr )” commands throughout the program.  The 
“FRE( aexpr )” command calls GARBAG and will process the Character String Pool more 
efficiently if there are fewer inactive strings and little unreferenced string data.  Again, there is always 
the dilemma in finding that balance for the best strategy in ensuring that memory is used as efficiently 
as possible. 
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14.  The VTOC Bitmap Definition 
The free sector bitmap of a volume is located in the VTOC of a volume starting at byte 0x38 as shown 
in Figure I.6.1.  Four bytes are reserved for each track on a volume whose bits determine whether a 
sector on that track is utilized or not utilized for a CATALOG sector, a TSL sector, or a data sector.  
There are two routines where DOS 3.3 uses NUMSECS, the VTOC variable equal to the number of 
sectors comprising a track:  ALLOCSEC and RORBITMP.  ALLOCSEC is a routine that will find and 
allocate a disk track that has an available sector.  It uses the VTOC bitmap to locate this track.  
RORBITMP is a routine used by FREESECT that will set or clear a sector’s assigned bit within the 4-
byte bitmap of a track.  The ramifications of limiting these routines to the value in NUMSECS causes 
the definition of the bit assigned to sector 0x00 to be different in 16-sector and 32-sector tracks.  In 
DOS 3.3 sector 0x00 is assigned to the first bit in the second byte of the 4-byte bitmap of its track 
when NUMSECS is equal to 16 as shown in Table I.6.2.  When NUMSECS is equal to 32, sector 0x00 
is assigned to the first bit in the fourth byte of the 4-byte bitmap of its track as shown in Table I.14.1.  
Furthermore, FID always assumes NUMSECS is equal to 16 and always rotates the bitmap of a track 
accordingly.  FID, as published by Apple, cannot copy files onto a volume that contains 32-sector 
tracks because it does not rotate the bitmap properly for 32-sector tracks. 
 
Here is a confounded situation where the VTOC, designed by Apple, is not fully supported even by 
Apple designed utilities.  I wonder if Apple thought as early as 1979 when Apple published FID that 
there would never be a device that would support 32-sector tracks?  Perhaps Apple had given up on 
DOS 3.3 in preference to ProDOS earlier than anyone suspected.  I was never convinced that the Apple 
][ series of computers was necessarily the right platform for the hierarchal directory structures created 
in ProDOS.  I’m even less convinced now. 
 
ALLOCSEC and RORBITMP manipulate the free sector bitmap for each track as shown in Table I.6.2 
consistently in DOS 4.1 without regard to the value found in NUMSECS:  32 sectors per track is 
always assumed even when a volume contains 16-sector tracks.  DOS 4.1 only interacts with the 
VTOC bitmap by means of the variable NEXTSECR exclusively OR’d with the value 0x10 in the 
routines FREESECT and ALLOCSEC.  In other words, the bitmap is manipulated as if it looks like 
what is shown in Table I.14.1, but the bitmap appears in the VTOC as if it looks like what is shown in 
Table I.6.2.  Whether a volume contains 16-sector or 32-sector tracks does not matter to the DOS 4.1 
routines that utilize the bitmap.  When the bitmap is manipulated in this fashion, sector 0x00 will 
always be assigned to the first bit in the second byte of the four-byte bitmap of its track as shown in 
Table I.6.2. 
 
 
 
 

Byte Sector Bitmap 
0 1F-18 FEDCBA98 
1 17-10 76543210 
2 0F-08 FEDCBA98 
3 07-00 76543210 

 
Table I.14.1.  Free Sector Bitmap for 32 Sector Tracks in DOS 3.3 
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For volumes having 16-sector tracks, the 4-byte bitmap of such a track having all 16 of its sectors 
available would be “FF FF 00 00”.  For volumes having 32-sector tracks the 4-byte bitmap of such a 
track having all 32 of its sectors available would be “FF FF FF FF”.  When the 4-byte bitmap of a track 
is not used consistently for 16-sector and 32-sector volumes, it puts an unnecessary burden on the DOS 
INIT command routine to determine exactly which bit is assigned to sector 0x00 and which bit is 
assigned to sector 0x10.  Utilizing and manipulating the 4-byte bitmap of a track consistently puts 
virtually no further throughput burden onto DOS.  I have also incorporated the necessary changes into 
FID that model how DOS 4.1 defines the 4-byte bitmap of a track and how the bitmap must be 
manipulated correctly.  As to be expected, DOS 4.1 and DOS 4.1 FID can fully read, copy, and write a 
16-sector DOS 3.3 volume, or any other volume for that matter, without exception, onto a DOS 4.1 
volume whether that volume contains 16-sector or 32-sector tracks. 
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15.  ProDOS Disk I/O Algorithm 
I have no idea whether Apple or Axlon, the manufacture of the RamDisk 320, developed the fast disk 
read algorithm.  As described in section IV.17, the RamDisk software can transfer the contents of an 
entire 35-track diskette to one of the RamDisk drives in 7 seconds, the time to make 35 revolutions, 
one revolution for each track on a Disk ][.  The Axlon software locates track 0x00 on the Disk ][, 
clears a 16 byte “sector read” table, and finds the first sector data header it encounters.  The software 
notes the sector number and proceeds to read the sector data putting the first 86 bytes into a buffer like 
NBUF2 as shown in Table I.15.1.  These 86 bytes contain the lower two bits for the next three groups 
of data bytes about to be read.  The first group of data bytes is comprised of 86 bytes, each byte OR’d 
with its lower two bits obtained from the BITNIBL table indexed by the respective byte from NBUF2, 
and stored directly into the designated RamDisk sector.  The second group of data bytes is comprised 
of another 86 bytes, similarly processed, and stored in the designated RamDisk sector.  The last 84 data 
bytes are similarly processed and stored in the designated RamDisk sector.  The final byte read is the 
checksum byte.  If the checksum is 0x00 then no read error is flagged and the “sector read” table is 
updated with the sector marked as read.  Once the “sector read” table is complete the Axlon software 
moves to the next Disk ][ track, clears the “sector read” table, and looks for the first sector data header. 
 
 
 
 

Routine, 
Table, or Buffer 

DOS 4.1 ProDOS 
Bytes Cycles Bytes Cycles 

PRENIBL 36 10557 172 6331 
POSTNIBL 23 9524 n/a  
READSCTR 84 11207 206 11248 
WRITSCTR 128 11419 222 11420 

RDNIBL 106  106  
WRTNIBL 64  n/a  
BITNIBL n/a  256  
NBUF1 256  n/a  
NBUF2 86  86  

Total 783 42707 1048 28999 
 

Table I.15.1.  DOS 4.1 and ProDOS RWTS Routines, Tables, and Buffers 
 
 
 
 
The ProDOS version of the fast disk read algorithm is essentially the same as the Axlon version except 
that ProDOS incorporates the contents of the WRTNIBL table into the unused portion of its BITNIBL 
table.  Since only three of every four bytes are needed for NBUF2 processing, it made sense to utilize 
the remaining fourth byte for its WRTNIBL table.  Axlon did not provide a fast disk write algorithm so 
there was no need to incorporate the WRTNIBLE table in its BITNIBL table.  Closer inspection of the 
two algorithms indicates to me that the Axlon version is a little cleaner programmatically speaking.  
Perhaps Axlon obtained the ProDOS version and tweaked it some?  If I had seen the ProDOS version 
initially I would have made the same modifications Axlon did.  I cannot imagine the reverse taking 
place where Apple obtained the Axlon version and purposefully sabotaged it.  Whatever the case the 
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algorithm is clever and it works well, and there is no need for a POSTNIBL routine.  However, the 
READSCTR routine that implements the ProDOS fast disk read algorithm is nearly twice in size as 
that of the combined DOS 4.1 READSCTR and POSTNIBL routines:  206 bytes versus 107 bytes, 
respectively.  The ProDOS READSCTR routine also takes a few more startup processing cycles than 
the DOS 4.1 READSCTR routine.  ProDOS requires the BITNIBL table and DOS 4.1 requires the 
NBUF1 buffer for their data processing.  Both are the same size, but the BITNIBL table also includes 
the WRTNIBL table, a table that is a standalone table in DOS 4.1.  To read and process a DOS 4.1 
sector takes 20731 cycles, or 20.73 milliseconds.  ProDOS takes 11.25 milliseconds to read and 
process a sector.  In order for ProDOS to read a block of data it must read two sectors. 
 
The processing duration of the ProDOS version of the fast disk write algorithm is essentially the same 
as the DOS 4.1 algorithm, and this is to be expected.  Both algorithms must write five 40-microsecond 
sync bytes, three 32-microsecond prologue bytes, 343 32-microsecond data bytes and checksum, three 
32-microsecond epilogue bytes, and a final 32-microsecond sync byte.  However, their algorithm sizes 
are substantially different and that is because NBUF1 lies on a page boundary for DOS 4.1 and the 
user data buffer may or may not lie on a page boundary for ProDOS.  ProDOS must prenibblize user 
buffer data in the same way that DOS 4.1 prenibblizes user buffer data, and “on the fly” ProDOS must 
modify its WRITSCTR code:  it must determine whether the user data buffer lies on a page boundary, 
and if not, then which pages contain what portion of the buffer.  There is one exception the ProDOS 
algorithm must also handle, and that is when the user data buffer falls off a page boundary by just 1 
byte.  The ProDOS fast disk write algorithm requires 394 bytes for its PRENIBL and WRITSCTR 
routines, and gets its WRITNIBL table for free.  On the other hand, DOS 4.1 requires a mere 164 bytes 
for its PRENIBL and WRITSCTR routines, but it requires a WRITNIBL table, for a total of 228 bytes 
which is still 57% the size of the ProDOS memory requirements.  To process and write a DOS 4.1 
sector takes 21976 cycles, or 21.98 milliseconds.  ProDOS takes 17751 cycles to process and write a 
sector, or 17.75 milliseconds.  In order for ProDOS to write a block of data it must write two sectors. 
 
I have been referring to the data in Table I.15.1 for the information in the above sizing and timing 
discussion.  Overall the amount of software, table data, and buffer space required for DOS 4.1 to read 
and write data to and from a diskette is 783 bytes.  ProDOS requires 1048 bytes, a difference of 265 
bytes, or an additional page of memory plus nine bytes.  This difference in bytes amounts to a 25% 
increase in memory requirements for ProDOS.  The time to read and write a sector of data takes 42.71 
milliseconds for DOS 4.1 and 29.00 milliseconds for ProDOS.  The ProDOS algorithms are 32% faster 
than the DOS 4.1 algorithms overall.  With these results it is obvious that extensive use of table data 
and self-modifying code alone cannot account for the visible differences the two operating systems 
demonstrate when reading and writing files.  ProDOS achieves its significant speed difference by 
employing a sector interleaving (or skewing) such that only two revolutions are required to read all 
eight blocks on a track, similar to the same technique Apple Pascal and Apple Fortran use for reading 
their diskettes.  The sectors are arranged such that there is one sector between each of the sectors 
comprising a block, and there is one sector between each successive block.  Blocks are read and 
written in ascending block number (“2 ascending” skew) in ProDOS and sectors are read and written in 
descending sector number (“2 descending” skew) in DOS 4.1.  DOS 4.1 employs a sector interleaving 
such that it could read all 16 sectors on a track ideally in two revolutions, but three or four revolutions 
are more typical.  For a more complete discussion on sector interleaving refer to Worth’s and 
Lechner’s “Beneath Apple DOS”, “Beneath Apple ProDOS”, and “Bag of Tricks.” 
  
One may ask whether DOS 4.1 could benefit from the disk I/O routines of ProDOS.  To test this very 
question I removed most of the code that supports the HELP command in DOS 4.1H and inserted the 
ProDOS disk I/O routines in place of the DOS 4.1 disk I/O routines.  ProDOS also uses the Language 
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Card memory for its disk I/O routines so I thought this was a fair match.  I was astonished, though I 
should not have been, to learn there was absolutely no benefit.  Without these I/O routines coupled 
with a “2 ascending” skew sector interleave table the overall disk I/O throughput did not benefit.  DOS 
4.1 still uses the “2 descending” skew sector interleave table from DOS 3.3 to maintain compatibility 
to that operating system.  The DOS 4.1 I/O routines are still perfectly matched for the best I/O 
performance possible with its particular sector interleave table. 
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16.  Building and Installing DOS 4.1 Images 
The source code for both DOS 4.1L and DOS 4.1H and their object code “SEGnn” files each 
completely fit on DOS 4.1 data volumes.  A separate data Image volume called “DOS4.1.Image” 
contains the linked images of both versions of DOS 4.1.  The Lisa “ctrl-P” command is used to 
create a linked image from several object code files on the source code volume so the complete object 
code image can be saved to the Image volume.  The Image volume also contains several utilities that 
can install the DOS 4.1 images onto the boot tracks of a volume and to copy the DOS 4.1 images to 
other volumes.  For example, “INSTALL46L” reads the linked DOS 4.1L image “DOS4.1.46L” 
from the Image volume in disk drive 2 and installs it directly onto the boot tracks of the volume in disk 
drive 1 as if the DOS image had been written onto those tracks by the DOS INIT command.  The 
utility “DOS2TO1” copies the linked DOS images “DOS4.1.46L” and “DOS4.1.46H” from the 
Image volume in disk drive 2 to a volume in disk drive 1.  It is assumed that both disk drives are 
connected to the disk controller slot card in slot 6.  The utility “DOS2TO1.2” does essentially the 
same thing except the saved file names are shortened to “DOS4.1L” and “DOS4.1H”. 
 
It is quite a simple matter to assemble the DOS 4.1L source code found on the DOS 4.1L Source 
volume “DOS4.1.SourceL” and for the DOS 4.1H source code found on the DOS 4.1H Source 
volume “DOS4.1.SourceH”.  I imagine it would take some effort to adapt this source code and its 
directives to another assembler other than Lisa.  Lisa provides all the enhancements and directives 
necessary as well as the addition of new directives to provide a straightforward assembly:  the source 
code may be sectioned into many input files that are linked using a directive, and the generated object 
code may be saved into many output files as well.  In other words, the entire source code does not have 
to reside in memory and the generated object code files may be linked together later with the Lisa 
“ctrl-P” command.  The “ctrl-P” command is not a Linker as found in a compiler; it merely 
combines into memory a series of object code files sequentially.  As discussed in Section IV.14 Lisa 
uses lower memory above 0x0800 for object code, source code, and the complete symbol table. 
 
To assemble the DOS 4.1L source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the DOS 4.1L Source volume “DOS4.1.SourceL” in disk drive 2, load the 
“DOS4.1L.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  Four object code 
files will be created on the DOS4.1L Source volume:  “SEG01” to “SEG04”.  The four object code 
files can be combined in memory sequentially starting at 0x1000 using the “ctrl-P” command.  The 
complete binary image can be saved to the DOS 4.1 Image volume “DOS4.1.Image”, or any other 
volume, as “DOS4.1.46L”. 
 
The DOS 4.1H source code is assembled using the same procedure.  Place the DOS 4.1H Source 
volume “DOS4.1.SourceH” in disk drive 2 and load the “DOS4.1H.L” file into memory.  
Assemble as above and save the complete binary image to the DOS 4.1 Image volume, or any other 
volume, as “DOS4.1.46H”. 
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17.  Using DOS 4.1 Commands 
I have enhanced many of the original commands from DOS 3.3 primarily using the R keyword as a 
command switch since this keyword has very limited usage other than in the commands EXEC, 
POSITION, and the Random-Access Data file commands READ and WRITE.  All DOS commands 
may be entered in lowercase and/or uppercase in DOS 4.1.  Filenames may also be entered in a mixture 
of lowercase and uppercase, and the filenames are treated as case sensitive.  For example, the 
filenames “HELLO” and “Hello” are treated as two different files.  In order to make full use of 
lowercase and uppercase in DOS 4.1, an Apple //e is preferred.  DOS 4.1 does function quite nicely on 
an Apple ][ or an Apple ][+ if its character generator (for example, Dan Paymar’s Lowercase Adaptor 
Interface PROM) can display the complete lowercase and uppercase Latin character set.  DOS 4.1 does 
print error messages in mixed case.  The Apple //e ROM also supports lowercase and/or uppercase 
entry for Applesoft commands.  However, in my opinion this ROM continues to have at least two 
substantial deficiencies:  no native DELETE key utilization and the HLIN drawing algorithm is 
flawed.  Both deficiencies are correctable within the available ROM code space without sacrificing 
other routines and algorithms.  And that’s quite an achievement! 
 
There is no consistency in DOS 3.3 in whether no, one, or two carriage returns are printed after 
completing DOS command processing when the DOS command is issued from the Apple command 
line.  Certainly it would be a mistake to print any additional carriage returns after completing DOS 
command processing during the execution of an Applesoft program or during the processing of an 
EXEC file.  DOS 4.1 does print one carriage return after completing DOS command processing when 
the DOS command is issued from the Apple command line.  This policy is to ensure that there will be 
at least one blank line between all DOS commands issued from the Apple command line in order to 
keep the DOS commands and their output data as legible as possible on the screen.  Of course DOS 4.1 
does not print any additional carriage returns after completing DOS command processing during the 
execution of an Applesoft program or during the processing of an EXEC file.  However, DOS 
commands that are issued from assembly language programs using COUT will appear with the 
additional carriage return.  One way to prevent DOS 4.1 from printing the additional carriage return is 
to store a zero at the variables ASRUN (0x76) and PROMPT (0x33).  When DOS 4.1 checks these 
variables after completing DOS command processing, it will appear to DOS 4.1 that Applesoft is 
running and, therefore, DOS will not print an additional carriage return. 
 
Both DOS 3.3 and DOS 4.1 save files to a disk volume using the TSL resources of the file if the file 
already exists.  For example, if the file “TEMP” already exists and its TSL contains eight entries, those 
same track/sector entries will be used to save “TEMP” again whether “TEMP” is larger or smaller than 
its initial size.  If “TEMP” is larger, the File Manager will simply request additional sectors and add 
them to the file’s TSL.  If “TEMP” is smaller, say the program only uses three pages of memory, the 
first three track/sector entries will be used to save the file and the remaining entries will be unused.  In 
other words, the last five entries in the file’s TSL in this example will remain allocated to the file and 
those data sectors will be unavailable for use by any other file.  This inherent resource wastefulness for 
both DOS 3.3 and DOS 4.1 is perpetuated by programs like FID.  FID uses the File Manager to copy 
files in total, and it assumes that all track/sector entries in a file’s TSL belong to that file.  DOS 4.1, 
Build 46 introduces the new strategy “File Delete/File Save”.  The DOS 4.1 commands BSAVE, 
LSAVE, SAVE, and TSAVE can now utilize the B keyword to implement “File Delete/File Save”. 
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II.  Apple ROM Modifications 
In my version of the Apple //e firmware source code I use the variables KEYMOD and HLINMOD in 
conditional assembly directives that are used to optionally assemble the original (flawed) code (i.e. 
“KEYMOD EQU 0”) or the modified (corrected) code (i.e. “KEYMOD EQU 1”).  The object code is 
located in either a single 128 Kb ROM (or 27128 EPROM) as found in the Enhanced Apple //e or in 
two 64 Kb ROMs.  On the other hand, the Apple //e character generator pixels that define each ASCII 
character is located in a 32 Kb ROM (or 2732 EPROM).  An EPROM burner is needed in order to 
burn a new EPROM having the necessary modifications to replace the Apple //e firmware ROM or 
ROMs depending on the motherboard version. 
 

1.  Apple ROM Modification for Correct HLIN Drawing Algorithm 
I have always disliked the unsymmetrical look of a HIRES diagonal line in either the horizontal or the 
vertical direction ever since acquiring my Apple ][+.  And this same HLIN code resides in the Apple 
//e ROM unchanged, which is shameful.  When I was assigned to provide all the icons for HomeWord 
Speller at Sierra On-Line I analyzed the HLIN algorithm and found the algorithm does not calculate 
the delta difference of a line’s horizontal and/or vertical end points correctly.  It is a simple matter to 
demonstrate this error before and after installing the code modifications.  There are two locations that 
require a small code adjustment.  The first code adjustment is located at 0xF57A. 
 
 
 0xF57A: 

  .if HLINMOD 
  bcs HF580   ; 0xF580, branch to CLC 
  asl    ; times 2 
  jsr HF465   ; 0xF465 
HF580 clc    ; prepare for delta, not diff 
  lda ZPGD4   ; 0xD4 
  .el 
  bcs HF581   ; 0xF581, branch to SEC 
  asl    ; times 2 
  jsr HF465   ; call 0xF465 
  sec    ; prepare for diff, not delta 
HF581 lda ZPGD4   ; 0xD4 
  .fi 

 
 
where ZPGD4 is the page-zero location 0xD4 and HF465 is a label for a routine at memory address 
0xF465.  The second code adjustment is located at 0xF5A5. 
 
 
 0xF5A5: 

  .if HLINMOD   
  sec    ; prepare for diff, not delta 
  .el 
  clc    ; prepare for delta, not diff 
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  .fi 
 
 
You will be simply amazed at how “lovely” and symmetrical diagonal lines are drawn either left to 
right, right to left, top to bottom, or bottom to top.  And I am appalled that the old code passed any sort 
of testing and/or code review vis-à-vis how trivial this modification is and how elegant the results are. 
 
Figure II.1.1 shows an Applesoft program that can be used to demonstrate the difference between the 
original HLIN drawing algorithm and the modified drawing algorithm.  Figure II.1.2 shows what this 
Applesoft program produces when it runs on an Apple //e without the HLIN modification to its ROM 
firmware.  The two boxes on the left are square boxes that draw perfectly no matter which direction the 
lines are drawn.  The two middle boxes are nearly square boxes where the horizontal and vertical line 
end points differ by 1 pixel, and they show different anomalies depending upon which direction the 
lines are drawn:  the upper box is drawn clockwise and the lower box is drawn counterclockwise.  The 
shape on the right is drawn clockwise and it shows many corner anomalies as the direction and angle 
of the lines change.  Figure II.1.3 shows what this same Applesoft program produces when the 
program runs on the same Apple //e having the HLIN modification included in its ROM firmware.  All 
corner anomalies disappear and when the lines are drawn diagonally they are segmented equally.  It is 
obvious from Figure II.1.3 that having the HLIN modifications allows one to draw shapes in any 
direction and in any order without having to worry about corner anomalies and inconsistent line 
segmentation. 
 
 
 

10 HOME 
20 HGR 
30 HCOLOR= 3 
40 HPLOT 10,10 
50 HPLOT TO 50,10 
60 HPLOT TO 50,50 
70 HPLOT TO 10,50 
80 HPLOT TO 10,10 
90 GOSUB 1000 
100 HPLOT 100,10 
110 HPLOT TO 140,11 
120 HPLOT TO 139,50 
130 HPLOT TO 101,51 
140 HPLOT TO 100,10 
150 GOSUB 1000 
200 HPLOT 10,110 
210 HPLOT TO 10,150 
220 HPLOT TO 50,150 
230 HPLOT TO 50,110 
240 HPLOT TO 10,110 
250 GOSUB 1000 
300 HPLOT 100,110 

310 HPLOT TO 101,151 
320 HPLOT TO 139,150 
330 HPLOT TO 140,111 
340 HPLOT TO 100,110 
350 GOSUB 1000 
400 HPLOT 200,15 
410 HPLOT TO 260,10 
420 HPLOT TO 265,30 
430 HPLOT TO 250,35 
440 HPLOT TO 270,55 
450 HPLOT TO 255,75 
460 HPLOT TO 275,100 
470 HPLOT TO 245,115 
480 HPLOT TO 215,117 
490 HPLOT TO 200,15 
500 GOSUB 1000 
900 TEXT 
910 END 
1000 POKE - 16368,0 
1010 WAIT - 16384,128 
1020 RETURN 

 
Figure II.1.1.  Applesoft HLIN Demonstration Program 
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Figure II.1.2.  Original ROM HLIN Routine Display 
 
 
 
 

 
 

Figure II.1.3.  Modified ROM HLIN Routine Display 
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2.  Apple ROM Modification for Delete Key Utilization 
In order to have native DELETE key utilization the Apple //e firmware locations 0xC29A and 0xC846 
require the following code. 
 
 0xC29A: 

.if KEYMOD 
  jsr MODKEY  ; 0xFB0A, check for DELETE 
  .el 
  sta CLRKEY  ; 0xC010, clear keyboard strobe 
  .fi 

 
 
 0xC846: 

.if KEYMOD 
  jsr MODKEY  ; 0xFB0A, check for DELETE 
  .el 
  sta CLRKEY  ; 0xC010, clear keyboard strobe 
  .fi 

 
 
and MODKEY is the following code at 0xFB0A. 
 
 0xFB0A: 

  .if KEYMOD 
MODKEY sta CLRKEY  ; 0xC010, clear keyboard strobe 
  cmp #NEGONE  ; 0xFF, is it DELETE 
  bne MODKEY2  ; branch if not 
  lda #LARROW  ; 0x88, get backspace character 
; 
MODKEY2 rts    ; return to caller 
; 
  .el 
  asc “Apple ][“  ; unused data 
; 
  dfs 2,0   ; add 2 bytes of space 
; 
  .fi 

 
 
The .el/.fi code in MODKEY is 10 bytes of unused data and not accessed by any firmware routine or 
algorithm.  The next section will explain why MODKEY is situated in this particular location. 
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3.  Apple //e 80 Column Text Card and ROM Monitor 
My parents purchased their Apple //e while I was working at Sierra On-Line with the understanding 
that I would set up their system, teach them how to use its capabilities, fix and/or repair any software 
or hardware problems, and perform any regular maintenance as required.  I didn’t fully realize what I 
was getting myself into particularly when I attempted to teach my father how to use VisiCalc:  his 
hands were quite large so his fingers were not keyboard-nimble, he had poor close-up vision, and he 
could not remember key-entry sequences very well.  I developed his VisiCalc daily expense report 
(requiring wide paper in their EPSON MX-100 printer) and an Applesoft program to strip his monthly 
totals from his VisiCalc data files in order to create his annual summary VisiCalc data file.  I provided 
him detailed instructions on how to begin a VisiCalc session and how to enter his data into each row 
and column.  When he made mistakes or skipped instructions he became agitated and blamed the 
computer for making his errors.  My mother would then enter the data for him to keep everyone calm. 
 
My parents purchased their Apple //e early in its availability before the enhanced version was 
developed.  I have no recall if we were even aware of an Enhanced Apple //e while I was at Sierra 
around 1983 and 1984.  Because I was assisting in porting ScreenWriter to the Apple //e I became very 
familiar with the 80-column text card and the routines AUXMOVE and XFER.  Also, Ken Williams 
asked me to extract the database from the Dic-tio-nary, the companion spell checker to ScreenWriter, 
for his new product HomeWord Speller, the companion spell checker to HomeWord he had already 
released.  HomeWord and HomeWord Speller were both developed in-house.  I utilized calls to XFER 
within a printer driver I wrote for the Dic-tio-nary, its only vulnerable access location at 0x300, and 
the driver sent specific sections of the product’s database to AUX memory instead of to a printer.  
Once I took control of the computer after the data transfer, I was able to copy that database section 
from AUX memory to main memory, and then into a file on a disk volume.  It is important to note that 
the XFER starting address is found at 0x3ED and 0x3EE in the Page 0x03 Interface Routines. 
 
I believe the enhanced version of the Apple //e provides MouseText characters in place of the alternate 
uppercase inverse characters and it also introduced double-high-resolution graphics.  This Apple also 
provides lowercase input for Applesoft and its new Monitor provides lower ASCII data input to 
memory, a search command, and the return of the phenomenal Mini-Assembler.  The new Monitor 
also supports a very sophisticated interrupt handler that works in any Apple //e memory configuration.  
This is done by saving the current memory configuration state at the time of the interrupt onto the 
stack, placing the Apple in a standard memory configuration before calling the requested interrupt 
handler, and then restoring the original memory configuration state when the requested interrupt 
handler is finished.  However, in my estimation Apple fell way short in not providing the ability to 
fully utilize the Mini-Assembler to enter and to display the complete 65C02 Instruction Set particularly 
in view of the fact that the computer was designed to use and was shipped with a 65C02 processor.  
What was Apple thinking?  Any fool knows that the Mini-Assembler is dynamite when coupled with 
the Monitor Step and Trace commands. 
 
What was Apple thinking when it continues to promote and to support the use of a cassette tape 
recorder to store and retrieve programs, multi-dimensioned integer and real arrays, and shape tables?  I 
know of no software engineer in my professional career or among my personal friends who ever used a 
cassette tape recorder with any Apple computer for any reason.  I did develop a communication 
protocol with a programmable keyboard by means of a wire, which was similar to the tape output data 
to a cassette tape recorder.  Other than programming a keyboard using an annunciator, I have never 
used a cassette tape recorder with any of my Apple computers.  I have never used the Applesoft 
LOAD, RECALL, SAVE, STORE, or SHLOAD commands in any of my Applesoft programs nor 
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have I seen these commands used in any professional or commercial Applesoft programs.  And, I have 
never used the Monitor Read or Write commands at any time.  Why would I use such a ridiculous and 
incredibly slow data archiving method when I have the Disk ][, the Rana, the RamDisk 320, the Sider, 
or the CFFA card to save programs and data in the form of files, visible within its media, and time and 
date stamped?  Honestly, I derive no personal satisfaction in knowing that one can read data into an 
Apple computer using a cassette tape recorder port.  I do have a few suggestions for what could replace 
the useless Monitor Read and Write commands with something rather quite useful. 
 
 
 
Address Access Name Description Notes 
0xC000 W STR80OFF Disable 80 column store 1 
0xC001 W STR80ON Enable 80 column store 1 
0xC002 W RAMRDOFF Read enable Main RAM, 0x0200-0xBFFF 2 
0xC003 W RAMRDON Read enable AUX RAM, 0x0200-0xBFFF 2 
0xC004 W RAMWROFF Write enable Main RAM, 0x0200-0xBFFF 2 
0xC005 W RAMWRON Write enable AUX RAM, 0x0200-0xBFFF 2 
0xC006 W CXROMOFF Enable slot ROMs, slots 1-7, or 0xC100-0xC7FF 3 
0xC007 W CXROMON Enable internal CX00 ROM, or 0xC100-0xCFFF 3 
0xC008 W AUXZPOFF Enable Main ZP, stack, lang card, Av1 BSR RAM 4 
0xC009 W AUXZPON Enable AUX ZP, stack, lang card, AV1 BSR RAM 4 
0xC00A W C3ROMOFF Enable internal CX3 ROM, 0xC300-0xC3FF  
0xC00B W C3ROMON Enable Slot ROM, 0xC300-0xC3FF  
0xC00C W VID80OFF Disable 80 column video  
0xC00D W VID80ON Enable 80 column video  
0xC00E W ALTCHOFF Enable normal Apple character set  
0xC00F W ALTCHON Enable alternate character set (no flash)  
 

Table II.3.1.  New Memory Management and Video Soft Switches 
 
 
 

Address Access Name Description Clear Set Notes 
0xC000 R/R7 KEY Read keyboard input No key Yes key  
0xC010 R/R7 CLRKEY Clear keyboard strobe No key Yes key  
0xC011 R7 RDBANK2 Which LC BANK in use BANK1 BANK2  
0xC012 R7 RDLCRAM LC RAM or ROM read-enabled ROM LC RAM  
0xC013 R7 RDRAMRD Main, AUX RAM read-enabled AUX Main  
0xC014 R7 RDRAMWR Main, AUX RAM write-enabled AUX Main  
0xC015 R7 RDCXROM Slot or internal ROM enabled Slot Internal  
0xC016 R7 RDAUXZP Which ZP & LC enabled Main AUX  
0xC017 R7 RDC3ROM Slot or CX ROM enabled Slot ROM CX3 ROM  
0xC018 R7 RDSTR80 State of STR80 switch Disabled Enabled  
0xC019 R7 RDVRTBLK State of vertical blanking Yes No  
0xC01A R7 RDTEXT State of TEXT switch Graphics Text  
0xC01B R7 RDMIXED Read MIXED switch Off On  
0xC01C R7 RDPAGE2 State of PAGE2 switch PAGE1/Main PAGE2/AUX  
0xC01D R7 RDHIRES State of Graphics resolution LOWRES HIRES  
0xC01E R7 RDALTCH State of Alternate Char. Set Off On  
0xC01F R7 RDVID80 State of VID80 video Disabled Enabled  
0xC07E R7 RDIOUDIS Read IOUDIS switch DHIRES On DHIRES Off 5 
0xC07F R7 RDDHIRES Read DHIRES switch Off On 5 
 

Table II.3.2.  New Soft Switch Status Flags 
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The Apple //e Main and Auxiliary memory together total 128 KB and each can be controlled by means 
of an MMU and an IOU device using soft switches.  By design the memory addresses of a 65C02 
processor within the Apple //e hardware architecture can be naturally divided into four strategic areas:  
page-zero and the stack, 0x200 to 0xBFFF, 0xC000 to 0xCFFF, and 0xD000 to 0xFFFF that includes 
the bank-switched 0xD000 to 0xDFFF space.  These memory areas can be individually activated from 
main or auxiliary memory resources using the appropriate soft switches.  What is also unique to the 
Apple //e is that the Monitor firmware has been expanded to include additional ROM firmware that is 
mapped to the 0xC100 to 0xCFFF address space.  This address space is enabled or disabled using the 
appropriate soft switches.  If there is a display slot card residing in Slot 3 that card’s firmware can be 
activated rather than using the internal 80-column text card firmware.  Table II.3.1 summarizes the 
new memory management and video soft switches used to control main and auxiliary memory.  Some 
data must be written to all these soft switches in order to invoke their action.  It does not matter what 
that data is.  Table II.3.2 summarizes the new soft switch status flags.  It is by means of these status 
flags that one may determine the complete memory and video configuration of the Apple //e. 
 
 
 

Address Access Name Description Notes 
0xC020 R TAPEOUT Cassette output Toggle  
0xC030 R SPKRTOGL Speaker output Toggle  
0xC040 R UTILTOGL Utility Strobe; 1 ms pulse Game I/O pin 5  
0xC050 R/W TEXTOFF Display Graphics  
0xC051 R/W TEXTON Display Text  
0xC052 R/W MIXEDOFF Full Screen graphics 6 
0xC053 R/W MIXEDON Text with graphics 6 
0xC054 R/W PAGE1ON Display Page 1 or Main video memory 7 
0xC055 R/W PAGE2ON Display Page 2 or Aux video memory 7 
0xC056 R/W HIRESOFF Select low resolution Graphics 6 
0xC057 R/W HIRESON Select high resolution Graphics 6 
0xC058 R/W ANN1OFF Annunciator 1 off (active if IOUDIS on)  
0xC059 R/W ANN1ON Annunciator 1 on (active if IOUDIS on)  
0xC05A R/W ANN2OFF Annunciator 2 off (active if IOUDIS on)  
0xC05B R/W ANN2ON Annunciator 2 on (active if IOUDIS on)  
0xC05C R/W ANN3OFF Annunciator 3 off (active if IOUDIS on)  
0xC05D R/W ANN3ON Annunciator 3 on (active if IOUDIS on)  
0xC05E R/W ANN4OFF Annunciator 4 off (active if IOUDIS on)  
0xC05E R/W DHRESON Double HIRES on (active if IOUDIS off)  
0xC05F R/W ANN4ON Annunciator 4 on (active if IOUDIS on)  
0xC05F R/W DHRESOFF Double HIRES off (active if IOUDIS off)  
0xC060 R TAPEIN Cassette input 8 
0xC061 R PB1IN Push Button 1 input 8 
0xC062 R PB2IN Push Button 2 input 8 
0xC063 R PB3IN Push Button 3 input 8 
0xC064 R GC1IN Game Controller 1 input 9 
0xC065 R GC2IN Game Controller 2 input 9 
0xC066 R GC3IN Game Controller 3 input 9 
0xC067 R GC4IN Game Controller 4 input 9 
0xC070 R GCTOGL Game Controller Strobe; resets GC1-GC4  
0xC073 W BANKSEL RamWorks Bank Select; 64 KB bank select  
0xC07E W IODISON Disable annunciators, enable double HIRES  
0xC07F W IODISOFF Enable annunciators, disable double HIRES  

 
Table II.3.3.  Original Input/Output Control Soft Switches 
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For completeness I have included Tables II.3.3, II.3.4, and II.3.5 showing the original Input/Output, 
memory management, and Disk ][ control soft switches.  In all cases the names of each soft switch are 
those that I use within the Lisa assembler because Lisa has an eight-character limitation for labels.  
Figure II.3.1 contains all notes referenced by Tables II.3.1 to II.3.5. 
 
 
 
 
Address Access Name Description Notes 
0xC080 R RAM2WP Select Bank 2; write protect RAM  
0xC081 R | RR ROM2WE Deselect Bank 2; enable ROM | write enable RAM  
0xC082 R ROM2WP Deselect Bank 2; enable ROM; write protect RAM  
0xC083 R | RR RAM2WE Select Bank 2 | write enable RAM  
0xC084   See 0xC080  
0xC085   See 0xC081  
0xC086   See 0xC082  
0xC087   See 0xC083  
0xC088 R RAM1WP Select Bank 1; write protect RAM  
0xC089 R | RR ROM1WE Deselect Bank 1; enable ROM | write enable RAM  
0xC08A R ROM1WP Deselect Bank 1; enable ROM; write protect RAM  
0xC08B R | RR RAM1WE Select Bank 1 | write enable RAM  
0xC08C   See 0xC088  
0xC08D   See 0xC089  
0xC08E   See 0xC08A  
0xC08F   See 0xC08B  

 
Table II.3.4.  Original Memory Management Soft Switches 

 
 
 
 

Address Access Name Description Notes 
0xC080 R PHAS0OFF Turns stepper motor phase 1 off  
0xC081 R PHAS0ON Turns stepper motor phase 1 on  
0xC082 R PHAS1OFF Turns stepper motor phase 2 off  
0xC083 R PHAS1ON Turns stepper motor phase 2 on  
0xC084 R PHAS2OFF Turns stepper motor phase 3 off  
0xC085 R PHAS2ON Turns stepper motor phase 3 on  
0xC086 R PHAS3OFF Turns stepper motor phase 4 off  
0xC087 R PHAS3ON Turns stepper motor phase 4 on  
0xC088 R MOTOROFF Turns motor off  
0xC089 R MOTORON Turns motor on  
0xC08A R DRV0EN Selects Drive 1  
0xC08B R DRV1EN Selects Drive 2  
0xC08C R STROBE Strobe data latch for I/O  
0xC08D R/W LATCH Load data latch  
0xC08E R DATAIN Prepare latch for input 10 
0xC08F W DATAOUT Prepare latch for output 11 

 
Table II.3.5.  Original Disk ][ Control Soft Switches 
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(1) If STR80OFF access PAGE1/PAGE2 and use RAMRD and RAMWR; if STR80ON access 
Main or AUX display page (0x400) using PAGE2. 

(2) If 80STORE is ON these switches do not affect video memory. 
(3) If INTCXROM in ON then switch SLOTC3ROM is available, otherwise MAIN ROM is 

accessed. 
(4) Use Bank enable and write protect switches to control 0xD000-0xFFFF. 
(5) Triggers paddle timer and resets VBLINT. 
(6) This mode is only effective when TEXT switch is OFF. 
(7) This switch changes function when 80STORE is ON. 
(8) Data on MSB only. 
(9) Read 0xC070 first, then count until MSB is zero. 
(10) DATAIN with STROBE for Read and DATAIN with LATCH for Sense Write Protect. 
(11) DATAOUT with STROBE for Write and DATAOUT with LATCH for Load Write Latch. 

 
Figure II.3.1.  Notes for Tables II.3.1 to II.3.5 

 
 
 
 
Address Access Name Description 
0xC05A W ZIPCTRL 4 writes of 0x5A unlocks ZIP CHIP; 0xA5 locks ZIP CHIP 
0xC05B W ZIPSTATS Any byte written enables ZIP CHIP 
0xC05B R ZIPSTATS Bits 0 and 1 is RAM size: 0 – 8K, 1 – 16K, 2 – 32K, 3 – 

64K; bit 3 for memory delay: 0 – fast mode (no delay), 
1 – sync mode (delay); bit 4 is ZIP enable: 0 – 
enabled, 1 – disabled; bit 5 is paddle speed: 0 - fast, 
1 – normal; bit 6 is cache update: 0 – no, 1 - yes; bit 
7 is clock pulse every 1.0035 milliseconds 

0xC05C R/W ZIPSLOTS read/write speaker/slot 0 – fast, 1 – normal.  Bit 0 - 
speaker, bits 1 to 7 for slots 1 to 7 

0xC05D W ZIPSPEED Write speed: bit 2 – clk2/3, bit 3 – clk3/4, bit 4 - 
clk4/5, bit 5 – clk5/6, bit 6 – clk/2, bit 7 – clk/4 

0xC05E W ZIPDELAY Bit 7: 0 – enable delay, 1 – disable and reset delay 
0xC05E R ZIPDELAY 0 – off, 1 – on:  bit 0 – ROMRD, bit 1 – RAMBNK, bit 2 

– RAGE2, bit 3 – HIRES, bit 4 – 80STORE, bit 5 – MWR, 
bit 6 – MRD, bit 7 - ALTZP 

0xC05F W ZIPCACHE Bit 6 paddle delay: 0 – disable, 1 – enable; bit 7 
language card cache: 0 – enable, 1 - disable 

 
Table II.3.6.  Zip Chip Control Soft Switches 

 
 
 
 
Table II.3.6 shows the soft switches that are used to control the Zip Chip if it is used in place of the 
65C02 processor.  The Zip Chip includes a 65C02 processor along with cache memory and a cache 
memory controller in order to execute processor instructions and manage memory data faster.  Table 
II.3.7 shows the soft switches that are used to control the CFFA and Table II.3.8 shows the soft 
switches that are used to control the quikLoader.  Table II.3.9 shows the soft switches that are used to 
control the Sider, RamDisk 320, RamCard, and Rana drives.  Typically, the X-register contains the slot 
number in which the device resides times sixteen and the register is used in combination with the 
addresses shown in Tables II.3.7, II.3.8, and II.3.9.  Or, if speed is critical and the address space where 
the device driver is writable, the slot number of the device times sixteen is added to the base addresses 
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shown in these tables.  In addition to what is shown in Table II.3.9, the Rana controller card also uses 
the original Disk ][ control soft switches shown in Table II.3.5.  The Rana controller card uses a 
complicated algorithm using some of the PHASEON and PHASEOFF control soft switches to select 
its upper or lower recording head and the 0xC800/0xC801 addresses to select drives 1 to 4. 
 
 
 

Address Access Name Description 
0xC080 R/W ATADATAH Read or write high data byte register 
0xC081 R SETCSMSK Disable pre-fetch register 
0xC082 R CLRCSMSK Enable pre-fetch register 
0xC086 W ATADEVCT Write device control register 
0xC086 R ATASTAT2 Read alternate status register 
0xC088 R/W ATADATAL Read or write low data byte register 
0xC089 R ATAERROR Read error register 
0xC08A W ATASECCT Write sector count register 
0xC08B W ATASECTR Write LBA3 (07:00) address register 
0xC08C W ATACYLNL Write LBA2 (15:08) address register 
0xC08D W ATACYLNH Write LBA1 (23:16) address register 
0xC08E W ATAHEAD Write drive/head configuration register 
0xC08F W ATACMD Write command register 
0xC08F R ATASTAT Read primary status register 

 
Table II.3.7.  CFFA Control Soft Switches 

 
 
 

Address Access Name Description 
0xC080 W QLSELC0 Select banks 0 or 1, on/off, USR, EPROM number 
0xC081 W QLSELC1 Select banks 2 or 3, on/off, USR, EPROM number 
0xC082 W QLSELC2 Select banks 4 or 5, on/off, USR, EPROM number 
0xC083 W QLSELC3 Select banks 6 or 7, on/off, USR, EPROM number 

 
Table II.3.8.  quikLoader Control Soft Switches 

 
 
 

Address Access Name Description 
0xC080 R SDINPUT Sider read status 
0xC080 W SDINPUT Write drive number, DCB data, input data 
0xC081 R SDOUTPUT Sider read output data 
0xC081 W SDOUTPUT Write start, flush, and stop commands 

    
0xC080 W RDSECTR RamDisk sector number 
0xC081 W RDTRACK RamDisk track number 

    
0xC084 W RAMCARD RamCard on/off, track*2, sector/8 

    
0xC800 W ROMCODE1 Select Rana drive pairs 1 and 2 
0xC801 W ROMCODE2 Select Rana drive pairs 3 and 4 

 
Table II.3.9.  Sider, RamDisk, RamCard, and Rana Control Soft Switches 
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The Apple ][+ Monitor disabled the Step and Trace commands.  Now that the Apple //e has additional 
ROM memory in the CX (0xC100 to 0xCFFF) address space the disabled Step and Trace table entry 
points are now used for the Mini-Assembler command (the “!” command) entry and for the Search 
command (the “S” command) entry.  In my opinion the Search command is pretty lame for it can find 
at most two consecutive bytes in low/high byte order.  And I am still annoyed that the cassette tape 
recorder Read and Write commands were retained in the Apple //e.  What disturbs me the most is that 
the Monitor cannot display the additional opcodes in the 65C02 Instruction Set that pertains to the 
specific 65C02 processor used in the Apple //e.  As an aside the 65C02 Instruction Set was expanded 
even further in the Rockwell and WDC versions of the 65C02 processor to include the BBR, BBS, 
RMB, and SMB mnemonics adding 32 additional opcodes.  These opcodes are not available in the 
Apple //e 65C02 processor.  Therefore, it makes no sense to me to provide a user with a computer that 
utilizes a particular processor and firmware that can display a subset of its processor’s mnemonics.  
What I would have done is to recommend to Apple to retire the Monitor Read and Write commands 
and reintroduce the Monitor Step and Trace commands, and to provide a more useful Monitor 
command in addition to the Search command if there was sufficient room.  And, of course, the Monitor 
must be able to display all of the useable 65C02 mnemonics.  Will retiring the Monitor Read and Write 
commands provide enough room for all my suggestions?  Can the Monitor’s new lower ASCII data 
input routine be further enhanced?  Let’s find out.  The Monitor software begins at 0xF800. 
 
I have no doubt that the engineering team that designed the Apple //e ROM firmware, and 
subsequently the Enhanced Apple //e ROM firmware were given a momentous task.  That task was to 
preserve sixteen “classic” entry points and introduce a few new Monitor entry points in order to 
support 40-column and 80-column screen displays, and to support most all previously written software 
for the Apple ][ and Apple ][+.  These “classic” and new entry points include GETFMT, RESET, 
BASCALC, NEWVW, RDKEY1, KEYIN, RDESC, PICKFIX, IOPRT1, MINIASM, and the screen 
handling routines HOME, SETWND, VTABZ, CLEOLZ, CLREOP, and SCROLL.  Obviously, one 
can no longer expect to use any Monitor entry point “within” these routines or any other Monitor 
routine and expect reliable results.  For example, the IRQ interrupt vector at 0xFFFE and 0xFFFF no 
longer uses the old BREAK vector at 0xFA40.  The snippet of code left at 0xFA40 only saves the A-
register to 0x45 (AREG) before jumping to the new IRQ interrupt handler at 0xC3FA instead of to the 
address found at 0x3FE and 0x3FF (usually the address of the Monitor, 0xFF65).  This new IRQ 
handler now pushes all the registers onto the stack and saves the current memory configuration state of 
the machine as previously explained.  It appears that it may be no longer necessary to clear the page-
zero 0x48 location after making a call to RWTS if DOS 4.1 is not being utilized.  Furthermore, the 
RESET routine has undergone a substantial overhaul as well.  If the ClosedApple key is held down 
along with the CONTROL key while pressing and releasing the RESET key the built-in self-test 
diagnostics will begin to execute.  These diagnostics test page-zero RAM separately from all other 
writable RAM in main memory, it repeats these tests for auxiliary memory, and then it tests the IOU 
and MMU devices.  If an error should occur the output message simply states an error has occurred in 
ZP RAM, RAM, IOU, or MMU, and nothing more.  The diagnostics simply freeze on the occurrence 
of the first error it encounters, and does not continue to determine if there are additional memory or 
device errors.  Essentially the user is left bewildered and confused, and the only course of action is to 
seek authorized Apple service.  If the diagnostics find no errors it prints “System OK” and the 
computer freezes.  Only then, if the ClosedApple and OpenApple keys are pressed together will the 
built-in self-test diagnostics execute again and leave the computer frozen as before.  Generally, the 
computer needs to be powered off, then powered on in order for it to be placed in a normal, useable 
configuration.  These diagnostics consume two pages of address space in the CX ROM from 0xC600 
to 0xC7FF, a rather substantial, if not bombastic amount of ROM space.  Unfortunately, these tests 
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require them to reside and execute in the ROM address space as they will not execute correctly in total 
in any other address space. 
 
It is fair to say that ROM address space is very, very precious.  I believe the Apple engineering team 
did a remarkable job in building a quality 80-column text card software product that performs simply 
and elegantly.  It is so easy to place the cursor or characters anywhere on the screen, for example, 
compared to the difficulty I had with the Videx UltraTerm video display card for the very same task.  
In order to support the Monitor Read and Write commands and the Applesoft commands that depend 
on those Monitor commands, the Apple team used an entire page of CX ROM from 0xC500 to 
0xC5FF.  I disabled those Applesoft commands dependent on the Monitor Read and Write commands 
by replacing the nine subroutine calls at 0xD8C0, 0xD8C6, 0xD8CC, 0xD8E3, 0xF3B3, 0xF3B9, 
0xF3BF, 0xF3D5, and 0xF77B with a subroutine call to IORTS at 0xFF58, a simple RTS instruction.  
Now, if any of these Applesoft commands are used on the command line or within a program the 
Applesoft command performs no action and it returns immediately. 
 
It must be understood and accepted that the location of some data tables in the Monitor is not 
sacrosanct and these tables may be moved to other locations.  For example, there are three unused 
bytes between the Translate table XLTBL and the Display Register table RTBL.  By moving the 
XLTBL up three bytes in memory will provide sufficient room for MODKEY.  The BASCALC 
routine at 0xFBC1 is repeated in the CX ROM at 0xCABA, and there is even an entry point at 0xC1B6 
that is simply not utilized, though incorrectly coded in my opinion.  The following code segments 
show how to code the 0xC1B6 entry point correctly so that both X-register and Y-register will be 
preserved. 
 
 
 0xFBC1: 

BASCALC sty BASL   ; 0x28, preserve Y-reg 
  ldy #2   ; index for XBASCLC routine 
  bne GOTOROM  ; 0xFBB4, go to the CX ROM 
FMT2  byt %00000000  ; first byte of table at 0xFBC7 
 
 
0xC1B6: 
XBASCLC ldy BASL   ; 0x28, recover Y-reg 
  jsr XBASCALC  ; 0xCABA, do the calculation 
  bcc CXEXIT  ; 0xC208, always taken 

 
 
Using the CX ROM BASCALC routine will provide enough room for the new 65C02 16-byte FMT2 
table to reside in the Monitor beginning at 0xFBC7.  Once the FMT2 table has been relocated there is 
enough address space starting at 0xF962 for the larger 65C02 FMT1, MNEML, and MNEMR tables 
leaving 4 unused bytes at 0xFA3C.  The INSDS1 routine at 0xF882 needs a little modification in view 
of the new FMT1 and FMT2 tables, and there is just enough room to detect the relative (zpage) opcode 
format (“LDA ($A5)”, for example).  Various FMT2 tables I have seen usually contain the value 
0x4B for the relative (zpage) opcode format.  The correct value is 0x49.  In addition, this value is still 
unique among the other FMT2 table entries and using this value highly simplifies the code at 0xF8A5 
to adjust the opcode index into the MNEML/MNEMR tables, the calculation of LENGTH, and the 
search for the correct opcode by the Mini-Assembler.  The GETFMT routine is continued in the CX 
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ROM at 0xC1D5 using a Y-register index of 16.  The following code segment shows the necessary 
changes. 
 
 
 0xF8A5: 
   tax    ; FMT2 index 
   lda FMT2,X  ; 0xFBC7, get opcode format 
   cmp #$49   ; is it relative (zpage) format 
   bne GETFMT1  ; 0xF8AE, if not this format 
   dey    ; correct the opcode index 
 ; 
 GETFMT1 tax    ; preserve opcode format 
   sty BAS2L   ; 0x2A, preserve opcode index 
   ldy #16   ; index for XGETFMT routine 
   jmp GOTOROM  ; 0xFBB4, enter CX ROM 
 
 
 0xC1D5: 

XGETFMT txa    ; recover opcode format 
  sta FORMAT  ; 0x2E, save format 
  and #3   ; mask to extract length 
  sta LENGTH  ; 0x2F, save length 
  lda BAS2L   ; 0x2A, recover opcode index 
  jmp XGETFMT2  ; 0xC5D5, continue processing 
 
 

Some of the new 65C02 opcodes do not follow the general classification rules of the 6502 Instruction 
Set so they must be processed using a lookup table.  This is what the XGETFMT2 code does at 
0xC5D5 in combination with tables TBLC and TBLL I placed at 0xCA71 instead of segmenting the 
XGETFMT2 code.  Table TBLC at 0xCA71 contains the problem opcode index and table TBLL at 
0xCA7D contains the new opcode index that indexes into the MNEML and MNEMR tables that 
contain the actual compressed ASCII of the opcode mnemonics.  The Monitor Step and Trace 
commands as well as the GETNSP routine must now fit into the remaining space in the 0xC5 page 
from 0xC500 through 0xC5D4.  Before the TRACE and STEPZ entry points can be restored to their 
“classic” entry location in the Monitor, the CXOFF1 and CXRTN entry points need to be moved.  
These four bytes fit nicely at 0xFA3C, just after the MNEMR data table mentioned earlier.  The 
following code segments show the reintroduction of the TRACE and STEPZ entry points and their exit 
entry point STEPRTN that handles a BRK opcode, a CONTROL-C key entry, and when STEP 
processing has completed.  If the space bar is pressed TRACE will pause until any key is pressed.  If 
the ESC key is pressed during a TRACE pause, TRACE will exit cleanly.  Either STEP or TRACE 
may be resumed after exiting TRACE.  STEP and TRACE utilize the complete 65C02 Instruction Set. 
 
 
 0xFEC2: 

TRACE dec YSAV   ; 0x34, automatically repeat STEP 
STEPZ sta CXROMON  ; 0xC007, turn the CX ROM on 
  jmp CXSTEP  ; 0xC508, enter CXSTEP 
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 0xFCCA: 
STEPRTN sta CXROMOFF  ; 0xC006, turn the CX ROM off 
  bcs STEPRTN2  ; 0xFC5D, if a BRK occurred 
  jmp NXTITM  ; 0xFF73, enter NXTIT 
 

 0xFC5D: 
STEPRTN2 jmp OLDBRK  ; 0xFA59, enter OLDBRK 

 
 
I know I have used the following Monitor instructions hundreds (or thousands?) of times to either clear 
memory or to set memory to a particular value. 
 
 

*1000:0     ; set 0x1000 to zero 
*1001<1000.1FFEM   ; copy current data to next byte 

 
*1000:FF     ; set 0x1000 to negative one 
*1001<1000.1FFEM   ; copy current data to next byte 

 
 
I do recall only one or two instances when I needed to search memory for certain bytes in order to 
defeat someone’s copy protection algorithm.  Now having the Mini-Assembler in ROM allows me to 
enter a few lines of code, say at 0x300, to find any number of consecutive bytes in a range of memory 
either in main or auxiliary memory.  Unfortunately, the Monitor Search command does not search 
auxiliary memory.  Now that the Step and Trace commands have been fully integrated into the Monitor 
once again, the “S” command is taken by the Step command and the Search command must be either 
renamed or replaced.  I chose to rename the Search command to the “X” command for “eXamine” 
memory.  Since there is no longer a need for a Write command at 0xFECD I believe a memory Zap 
command would be the perfect replacement for that command.  The Zap command has the following 
syntax. 
 
 

*00<1000.1FFFZ    ; change memory to zero 
*FF<1000.1FFFZ    ; change memory to negative one 

 
 
The following code can be placed at 0xFECD. 
 
 
 0xFECD: 

ZAPMEM lda A4L   ; 0x42, get value to set memory
   sta (A1L),Y  ; 0x3C, change memory 

  jsr NXTA1   ; 0xFCBA, increment address 
  bcc ZAPMEM  ; 0xFECD, continue if not done 
  rts    ; return to 0xFF85 

 
 
After removing the Read command at 0xFEFD and its return code CXOFF2 at 0xFF03, moving the 
GETNSP routine to 0xC500 where it belongs, and moving TITLE up from 0xFF0A to 0xFF05, the 
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enhanced ASCII data input capability allows one to enter lower and upper ASCII data easily into 
memory.  The following example lines of Monitor instructions show how this is done. 
 
 

*300:’A ’B ’C    ; enter 0x41, 0x42, 0x43 to 0x300 
*303:”A ”B ”C    ; enter 0xC1, 0xC2, 0xC3 to 0x303 
 
 

Instead of increasing the size of the CHRTBL table at 0xFFCC and the SUBTBL table at 0xFFE3 the 
Apple engineers added an additional routine LOOKASC at 0xFF1B prior to entering DIG at 0xFF8A.  
This routine essentially accomplishes the ability to add an additional command to the Monitor’s 
repertoire.  Because there is now additional code space from 0xFF0F to 0xFF1B why not enhance the 
utility and power of lower ASCII data input and modify the Apostrophe command used to enter lower 
ASCII data by including a Quote command to enter upper ASCII data?  Also, can the LOOKASC 
routine be leveraged such that it can be used to enter the Search command routine so that the 
ZAPMEM routine can be accessed by means of the CHRTBL/SUBTBL method like all other Monitor 
commands?  Actually, the ZAPMEM routine must be accessed by means of the CHRTBL/SUBTBL 
method because it depends on having the Y-register initialized to 0x00 since there is not enough code 
space for the routine to do this.  On the other hand, the Search routine initializes the Y-register to the 
values it requires.  Unfortunately, there is simply not enough code space to accomplish all of these 
wonderful ideas unless some serious changes are made in a few other Monitor routines. 
 
Both the CX ROM and the 0xF0 ROM share a common routine to change lowercase characters to 
uppercase characters.  There is absolutely no reason why the CX ROM routines cannot use part of the 
UPMON routine found at 0xFCFD and eliminate the UPRCASE routine found at 0xCE14.  That space 
could be used by the XRDKEY originally found at 0xC2F2 since it only requires ten bytes of code 
space.  Moving the routine XRDKEY to the 0xCE ROM page provides sufficient code space to the 
0xC2 ROM page in order to allow an expansion of the XRESET routine originally found at 0xC2B0. 
 
 
 0xFCFD: 
 UPMON lda INPUT,Y  ; 0x200, get next input character 
   iny    ; increment index 
 ; 
 UPRCASE cmp #”a”   ; is it a lowercase value 
   bcc UPMON2  ; 0xFD0B, branch if less than 
   cmp #”z”+1  ; is it within range 
   bcs UPMON2  ; 0xFD0B, branch if out of range 
   and #LWRMASK  ; 0xDF, make it uppercase 
 ; 
 UPMON2 rts    ; return to caller 
 
 
 0xCE14: 
 XRDKEY ldy CH   ; 0x24, get cursor location 
   lda (BASL),Y  ; 0x28, get screen character 
   bit RDVID80  ; 0xC01F, is 80 column enabled 
   bpl INVERT  ; 0xCE26, branch if not 
   rts    ; return to caller 
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 ; 
   dfs 1,ZERO  ; add 1 byte of space 
 
 
Both the RESET routine at 0xFA62 and the OLDRST routine at 0xFF59 share twelve bytes of 
common code.  The OLDRST routine happens to be midway between the LOOKASC routine and the 
“jmp” instruction to LOOKASC at 0xFFBB.  If the common code at OLDRST could be partially 
eliminated there would be sufficient code space to enhance the ASCII data input routine and provide a 
means to enter the Search command routine.  The following code shows how this can be done. 
 
 
 0xC2AE: 

XRESET lda ANN1OFF  ; 0xC058, turn annunciator 1 off 
  lda ANN2OFF  ; 0xC05A, turn annunciator 2 off 
  lda ANN3ON  ; 0xC05D, turn annunciator 3 on 
  lda ANN4ON  ; 0xC05F, turn annunciator 4 on 
  lda #NEGONE  ; 0xFF, get negative one 
  sta XMODE   ; 0x4FB, initialize MODE 
  ... 

 
 
 0xFA62: 
 RESET cld    ; clear decimal 
   jsr RSETINIT  ; $FA6A, do the initialization 
   ldy #9   ; index for XRESET routine 
   bne RESET1  ; $FA78, skip over RSETINIT 
 ; 
 RSETINIT jsr SETNORM  ; 0xFE84, set normal video 
   jsr INIT   ; 0xFB2F, init mode and window 
   jsr SETVID  ; 0xFE93, init CSWL (0x36) 
   jmp SETKBD  ; 0xFE89, init KSWL (0x38) 
   dfs 2,ZERO  ; add 2 bytes of space 
 ; 
 RESET1 jsr GOTOROM  ; 0xFBB4, enter CX ROM 
   lda CLRROM  ; 0xCFFF, disable extension ROM 
   bit CLRKEY  ; 0xC010, clear keyboard strobe 

  ... 
 
 
Now, working from upper memory to lower memory the changes to the NXTCHR and OLDRST 
routines can be better appreciated. 
 
 
 0xFFAD: 
 NXTCHR jsr UPMON   ; 0xFCFD, get next input char 
   eor #”0”   ; extract number 
   cmp #10   ; is it a decimal digit 
   bcc DIG   ; 0xFF8A, process decimal digit 
   adc #$88   ; shift value to get HEX digit 
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   cmp #$FA   ; is it a HEX digit 
   bcs DIG   ; 0xFF8A, process HEX digit 
   bcc LOOKASC0  ; 0xFF5F, process command 

  ... 
 

 0xFF59: 
 OLDRST jsr RSETINIT  ; 0xFA6A, do the initialization 
   jmp MON   ; 0xFF65, enter Monitor 
 ; 
 LOOKASC0 cmp #$89+$B0^””” ; 0x9B, is it Quote command 
   beq LOOKASC1  ; 0xFF18, process it (carry set) 
   bne LOOKASC  ; 0xFF0F, continue 
 
 
This six-byte space in the OLDRST routine area is just enough code space to eliminate the “jmp” 
instruction to LOOKASC at 0xFFBB and to provide the first check if there is a Quote command.  The 
next two checks determine if there is a Search command or an Apostrophe command at LOOKASC. 
 
 
 0xFF0F: 

LOOKASC cmp #$89+$B0^”X” ; 0xF1, is it Search command 
  beq SEARCH  ; 0xFED7, process it 
  cmp #$89+$B0^”’” ; 0xA0, is it Apostrophe command 
  bne IORTS   ; 0xFF58, branch if not (done) 
  clc    ; make sure carry flag is clear 
; 
LOOKASC1 php    ; save processor status 
  lda INPUT,Y  ; 0x0200, get the ASCII data 
  cmp #RETURN  ; 0x8D, is it a premature end 
  beq LOOKASC3  ; 0xFF2A, branch if so (done) 
  plp    ; recall processor status 
  bcs LOOKASC2  ; 0xFF25, branch if Quote command 
  and #MSBCLR  ; 0x7F, turn MSB off 
; 
LOOKASC2 ldx #7   ; get ASL counter for NXTBIT 
  iny    ; point to next data byte 
  bne NXTBIT  ; 0xFF90, always taken 
; 
LOOKASC3 plp    ; recall processor status 
  beq GETNUM  ; 0xFFA7, always taken 

 
 
Entering the Monitor Search command routine in this manner is certainly not normal, and its exit must 
be handled differently than the other CHRTBL/SUBTBL command routines.  Also, I found that adding 
an extra carriage return at the conclusion of the routine’s output highlights the addresses the routine 
finds.  There are eight bytes free at 0xFEFD after the CRMON routine at 0xFEF6 and before the 
TITLE data in upper ASCII at 0xFF05.  The return from the Mini-Assembler MINIASM routine fits 
nicely here, after CRMON where the READ routine used to be. 
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 0xFED7: 
 SEARCH ldy #1   ; index to second search address 
   lda A4H   ; 0x43, second search data 
   beq SEARCH1  ; 0xFEE1, skip if none requested 
   cmp (A1L),Y  ; 0x3C, check for match 
   bne SEARCH2  ; 0xFEEB, skip if no match 
 ; 
 SEARCH1 dey    ; index to first search address 
   lda A4L   ; 0x42, first search data 
   cmp (A1L),Y  ; 0x3C, check for match 
   bne SEARCH2  ; 0xFEEB, skip if no match 
   jsr PRA1   ; 0xFD92, print A1H and A1L 
 ; 
 SEARCH2 jsr NXTA1   ; 0xFCBA, increment address 
   bcc SEARCH  ; 0xFED7, still in search range 
   jsr CROUT   ; 0xFD8E, print carriage return 
   jmp CRMON1  ; 0xFEF9, fix program counter 
 ; 
 CRMON jsr BL1   ; 0xFE00, process input SPACE 
 ; 
 CRMON1 pla    ; pop stack, low address byte 
   Pla    ; pop stack, high address byte 
   bne MONZ   ; 0xFF69, enter Monitor 
 ; 
 MINIASM: ldy #13   ; index for XMINIASM 
   jsr GOTOROM  ; 0xFBB4, enter CX ROM 
   jmp CRMON   ; 0xFEF6, re-enter Monitor 
 ; 
 TITLE asc “Apple //e+” ; screen title during autostart 

  ... 
 
 
This just about completes the changes I made to the Enhanced Apple //e Monitor firmware.  One last 
detail is to integrate the Zap memory command into the CHRTBL and SUBTBL tables in place of the 
Search memory command.  Once that is accomplished there is little if any unused code space left in the 
Monitor firmware except for a sum of 19 bytes, all in byte pairs except for one single byte instance.  
This is certainly not enough address space to get excited about.  There are ten bytes of unused address 
space in the 0xC2 ROM page at 0xC2F6 as a result of moving the XRDKEY routine to 0xCE14. 
 
As an exercise I was able to compact the RESET diagnostic routines residing in CX ROM pages 0xC6 
and 0xC7 to gain an additional 34 bytes of address space without compromising the integrity of those 
routines.  That turned out to be more effort than it was actually worth.  Finally, I found that the RESET 
diagnostic routines do not play very well with the Zip Chip because the Zip Chip handles RESET 
activities internally before it releases the INH line so the MMU and IMU devices can initiate their 
internal switching.  It only staggers the imagination what one could do with two pages of code space in 
lieu of the virtually useless RESET diagnostic routines that only provide a PASS result if no errors are 
encountered or a FAIL result only for the first error encountered.  What about subsequent errors? 
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I came away from my analysis of the CX ROM code realizing I know little if anything about the 
required ROM entry points that support Pascal processing.  The 80-column video firmware residing in 
page 0xC3 of the CX ROM contains signature bytes at 0xC30B and 0xC30C followed by four offset 
bytes for the JPINIT, JPREAD, JPWRITE, and JPSTAT entry points.  These entry points provide jump 
instructions for the Init, Read, Write, and Status Pascal routines within the 0xC8 and 0xC9 pages of the 
CX ROM.  What I am unclear about are the CX ROM entry points for PXINIT at 0xC800, a jump 
instruction to PINIT1 located at 0xC9B0, for PXREAD at 0xC84D, a jump instruction to JPREAD 
located at 0xC350, and for PXWRITE at 0xC9AA, a load and jump instruction to JPWRITE located at 
0xC356.  The addresses 0xC800, 0xC84D, and 0xC9AA appear to be hard-coded such that other CX 
ROM routines must span these specific addresses and/or entry points.  I wonder if the original 
designers of the Pascal firmware failed to utilize a common jump-block structure strategy, perhaps at 
0xC800, where the jump-block order of jump instructions can remain constant, thus allowing the 
addresses within the jump-block to change.  Both Randall Hyde and Glen Bredon used this technique 
quite successfully when they designed Lisa and Big Mac, respectively.  Both software engineers put 
their jump-block structures at the beginning of page 0xE0, the traditional entry point area for ROM 
software, like Applesoft does for its warm-start and cold-start entry points.  If it is so important to 
support Pascal then there is little choice but to “dance” around these hard-coded addresses.  What I 
need to ascertain is what was the previous firmware that established the 0xC800, 0xC84D, and 
0xC9AA addresses in the first place, and why the Pascal software engineer created these hard-coded 
addresses that surely would cause future issues. 
 
It is quite straight forward to assemble the source code for the ROM firmware found on the ROM 
Source volume “ROM.SW16.Source”.  This ROM firmware does not include the TAPEIN and 
TAPEOUT routines nor does it include the Apple //e Memory Test routines.  This ROM firmware does 
include the Mini-Assembler, the complete 65C02 disassembler, the enhanced ASCII data input, Step, 
Trace, and Zap commands, and the Sweet 16 Metaprocessor.  It would take some effort to adapt this 
source code and its directives to another assembler other than Lisa.  Lisa provides all the enhancements 
and directives necessary as well as the addition of new directives to provide a straightforward 
assembly.  As discussed in Section IV.14 Lisa uses lower memory above 0x0800 for object code, 
source code, and the complete symbol table. 
 
To assemble the ROM.SW16 firmware place the Image volume “ROM.SW16.Image” in disk drive 1 
and boot the volume.  Lisa will automatically load.  Enter the “SE” command-line command to select 
the “SETUP” program in order to verify or set the “Start of Source Code” to 0x1A00 and the 
“End of Source Code” to 0x4A00.  Place the ROM.SW16 Source volume 
“ROM.SW16.Source” in disk drive 2, load the “ROM2E.L” file into memory, and start the 
assembler by entering either the “A” command-line command or the “Z” command-line command.  If a 
printed version of the screen output is desired simply preface the “A” or “Z” command with the “P1” 
command-line command.  Four object code files will be created on the Image volume:  “C0ROM”, 
“D0ROM”, “E0ROM”, and “F0ROM”.  The utility “BLDROM” can be used to combine the four object 
code files in memory sequentially starting at 0x1000, and the utility saves the complete ROM.SW16 
firmware file “SW16ROM” and the two half-firmware files “SW16ROM.A” and “SW16ROM.B” to the 
Image volume.  Now, the utility “BURNER” can used to burn a 27128 EPROM using the firmware file 
“SW16ROM” or two 2764 EPROMs using the firmware files “SW16ROM.A” and “SW16ROM.B”. 
 
It is beyond the scope of this manual to describe and include all the C language routines and programs 
I have created in the XQuartz environment that support and process Apple ][ DOS 4.1 volumes and 
files.  Suffice it to say that “~.dsk” files are simple binary files that begin with a 256-byte page of 
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data for track 0x00, sector 0x00 and end with a 256-byte page of data for track 0x23, sector 0x0F.  
There are no headers that preface each of the 256-byte pages of data that label their track and sector 
numbers.  I found that it was most efficient to read a “~.dsk” file into a three-dimensional array 
defined as “UCHAR Disk[48][32][SECTOR_SIZE]” and base the Track and Sector maximum 
index values on the size of the “~.dsk” file.  For example, a “~.dsk” file that is 143360 bytes in size 
when opened will have a maximum of 35 tracks, each track having 16 sectors.  A “~.dsk” file that is 
393216 bytes in size when opened will have a maximum of 48 tracks, each track having 32 sectors.  Of 
course, there are other quite valid algorithms to choose from.  My programs can extract files from and 
insert files onto any DOS 4.1 “~.dsk” volume simply by knowing the structure of Apple ][ files 
based on filetype and the structure of the DOS 4.1 VTOC and Catalog sectors.  Once I extract all the 
files from an Image volume such as “ROM.SW16.Image”, I can easily create a ROM firmware file 
for Virtual ][, like “APPLE2E.SW16.ROM”.  I prefer to use the UNIX “tcsh” C shell environment 
for processing UNIX command files.  Here are the entries in the command file “buildRom”: 
 
 

cat d0rom e0rom f0rom > romA 
cat c0rom romA > SW16.ROM 
cat zeropage zeropage zeropage slot3 > rom1 
cat zeropage zeropage slot6 zeropage > rom2 
cat zeropage zeropage zeropage zeropage > rom3 
cat rom1 rom2 rom3 rom3 romA > rom4 
cat rom4 c0rom romA > APPLE2E.SW16.ROM 
rm rom1 rom2 rom3 rom4 romA 

 
 
 
All that is left to do is to copy the ROM firmware file “APPLE2E.SW16.ROM” to the Virtual ][ ROM 
directory found at: 
 
Users/<username>/Library/Application Support/Virtual ][/ROM 
 
The directory “Library” must be made visible, of course. 
 
Within Virtual ][ simply pull down the Machine/Configure/Components/ROM memory tab and select 
the button for “Use specific ROM”.  The ROM firmware file “APPLE2E.SW16.ROM” can be 
selected from the ROM files listed.  Be sure to save this version of Virtual ][ appropriately labeled. 
 
Section II.5 discusses the Applesoft Garbage Collector.  The source code for the modifications to the 
ROM firmware that supports my Applesoft garbage collector is found on the ROM.SW16GC Source 
volume “ROM.SW16GC.Source” and Image volume “ROM.SW16GC.Image”.  The firmware files 
“SW16GCROM”, “SW16GCROM.A”, and  “SW16GCROM.B” can be created using the same procedures 
as above.  The resulting ROM firmware file “APPLE2E.SW16GC.ROM” can be copied to the 
“Virtual ][ ROM” directory as well. 
 
As mentioned earlier the Applesoft LOAD, RECALL, SAVE, STORE, and SHLOAD commands are 
useless without the cassette tape TAPEIN and TAPEOUT routines, which were removed from the 
0xC500 page in favor of the Mini-Assembler.  Instead of replacing the calls to the TAPEIN and 
TAPEOUT routines with a call to IORTS at 0xFF58 as in the Source volume “ROM.SW16.Source”, I 
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replaced the addresses to the Applesoft LOAD, RECALL, SAVE, STORE, and SHLOAD commands 
with a call to IORTS in the Source volume “ROM.SW16GC.Source”.  Doing this frees a total of 
0xAE bytes for other processing and/or other Applesoft commands.  The Applesoft commands’ text is 
located from 0xD0D0 to 0xD25F, and the commands’ entry addresses are located from 0xD000 to 
0xD0CF.  Table II.3.10 shows the available ROM space and its location when the Applesoft LOAD, 
RECALL, SAVE, STORE, and SHLOAD commands are disabled and effectively removed.  I have no 
doubt that I will innovate a terrific use for this ROM memory space in the next development cycle. 
 
 
 
 

Start End Length Applesoft Commands 
0xD8B0 0xD900 0x51 LOAD and SAVE 
0xF39F 0xF3D7 0x39 STORE and RECALL 
0xF775 0xF786 0x12 SHLOAD 
0xF7D5 0xF7E6 0x12 GETARYPT 

 
Table II.3.10.  Disabled Applesoft Commands 
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4.  Sweet 16 Metaprocessor 
Sweet 16 is a "pseudo microprocessor" implemented in 6502 assembly language.  Originally conceived 
and written by Steve “Woz” Wozniak, Sweet 16 and Integer BASIC were included in the ROM 
firmware of early Apple II computers.  Sweet 16 is a really smart and useful extension to a 6502 based 
computer and it can be ported to other 6502 based systems to provide useful 16-bit functionality.  It 
can be thought of as a virtual machine that gives the 6502 programmer a 16-bit extension to the 8-bit 
CPU.  Sweet 16 utilizes sixteen 16-bit registers/pointers in page-zero and it provides new opcodes to 
use those registers.  Although Sweet 16 instructions are not as fast as native 6502 instructions, it can 
reduce the code size of programs and ease some programming difficulties. 
 
Steve Wozniak wrote “While writing Apple BASIC for the 6502 microprocessor, I repeatedly 
encountered a variant of Murphy's Law.  Briefly stated, any routine operating on 16-bit data will 
require at least twice the code that it should.  Programs making extensive use of 16-bit pointers such as 
compilers, editors, and assemblers are included in this category.  In my case, even the addition of a few 
double-byte instructions to the 6502’s Instruction Set would have only slightly alleviated the problem.  
What I really needed was a hybrid of the MOS Technology 6502 and RCA 1800 architectures:  a 
powerful 8-bit data handler complemented by an easy to use processor with an abundance of 16-bit 
registers and excellent pointer capability.  My solution was to implement a non-existent 16-bit 
“metaprocessor” in software, interpreter style, which I call Sweet 16.  Sweet 16 is based around sixteen 
16-bit registers called R0 to R15, which are actually implemented as 32 memory locations.  R0 doubles 
as the Sweet 16 Accumulator (ACC), R15 as the Program Counter (PC), and R14 as the Status 
Register.  R13 holds compare instruction results and R12 is the Subroutine Return stack pointer if 
Sweet 16 subroutines are used.  All other Sweet 16 registers are at the user's unrestricted disposal. 
 
“Sweet 16 instructions fall into register and non-register categories.  The register instructions specify 
one of the sixteen registers to be used as either a data element or as a pointer to data in memory, 
depending on the specific instruction.  For example, the instruction INR R5 uses R5 as a data register 
and ST @R7 uses R7 as a pointer register to data in memory.  Except for the SET instruction, register 
instructions require one byte.  The non-register instructions are primarily 6502 style branch operations 
with the second byte specifying a +/- 127-byte displacement relative to the address of the following 
instruction.  If a Prior Register (PR) operation result meets a specified branch condition, the 
displacement is added to the Sweet 16 Program Counter, thus effecting a branch.  Sweet 16 is intended 
as an enhancement package to the 6502 processor, not as a standalone processor.  A 6502 program 
switches to Sweet 16 mode with a subroutine call, and subsequent code is interpreted as Sweet 16 
instructions.  The non-register instruction RTN returns the user program to the 6502’s direct execution 
mode after restoring the A, X, Y, P, and S internal registers.  Even though most opcodes are only one 
byte long, Sweet 16 runs approximately ten times slower than equivalent 6502 code, so it should be 
employed only when code is at a premium or execution is not.  As an example of its usefulness, I have 
estimated that about 1K byte could be weeded out of my 5K byte Apple ][ BASIC interpreter with no 
observable performance degradation by selectively applying Sweet 16.” 
 
Sweet 16 was probably the least used and least understood seed in the original Apple ][.  In exactly the 
same sense that the Integer and Applesoft Basics are languages, Sweet 16 is a language, too.  
Compared to the Basics, however, it would be classified as lower level with a strong likeness to 
conventional 6502 Assembly language.  Obviously, to use Sweet 16, you must learn the language.  
And according to "Woz", "The opcode list is short and uncomplicated.”  Sweet 16 was ROM based in 
every early Apple ][ from 0xF689 to 0xF7FC.  It uses the SAVE and RESTORE routines in the 
Apple’s Monitor to preserve the 6502 registers during its use, allowing Sweet 16 to be used as a 
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subroutine.  Table II.4.1 lists the Sweet 16 registers and the function of each register.  The complete 
Sweet 16 Instruction Set is shown in Tables II.4.2 and II.4.3 listing each opcode, its mnemonic, and a 
brief description what the opcode does.  Table II.4.2 lists the non-register opcodes and Table II.4.3 lists 
the register opcodes. 
 
 
 
 

Register Description 
R0 Sweet 16 Accumulator (ACC) 

R1-R11 Sweet 16 user registers 
R12 Sweet 16 subroutine return Stack Pointer (SP) 
R13 Sweet 16 compare instruction results 
R14 Sweet 16 Status Register (PR & carry flag) 
R15 Sweet 16 Program Counter (PC) 

 
Table II.4.1.  Sweet 16 Register Descriptions 

 
 
 
 

Opcode Mnemonic Description 
0x00 RTN Return to 6502 mode to process native 6502 instructions 
0x01 BR ea Branch always to PC+ea+2®PC 
0x02 BNC ea Branch if prior operation left carry clear to PC+ea+2®PC 
0x03 BC ea Branch if prior operation left carry set to PC+ea+2®PC 
0x04 BP ea Branch if Prior Register is positive to PC+ea+2®PC 
0x05 BM ea Branch if Prior Register is negative to PC+ea+2®PC 
0x06 BZ ea Branch if Prior Register is zero to PC+ea+2®PC 
0x07 BNZ ea Branch if Prior Register is not zero to PC+ea+2®PC 
0x08 BM1 ea Branch if Prior Register is minus one to PC+ea+2®PC 
0x09 BNM1 ea Branch if Prior Register is not minus one to PC+ea+2®PC 
0x0A SOUT chr Send character ‘chr’ to COUT (originally the BK opcode) 
0x0B RS Return from Subroutine, and POPD @SP®PC, SP=SP-2 
0x0C BS ea Branch to Subroutine, and PC®STD @SP, SP=SP+2, 

PC+ea+2®PC 
0x0D RSNS Return from Subroutine without stack, and SP®PC (originally 

unassigned opcode) 
0x0E BSNS ea Branch to Subroutine without stack, and PC®SP, PC+ea+2®PC 

(originally unassigned opcode) 
0x0F SJMP adr Jump to 16-bit address ‘adr’ and adr-1®PC (originally 

unassigned opcode) 
 

Table II.4.2.  Sweet 16 Non-Register Opcodes 
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Opcode Mnemonic Description 
0x1n SET Rn,val Load Rn with 16-bit value ‘val’ 
0x2n LD Rn Load ACC from Rn, PR=n 
0x3n ST Rn Store ACC into Rn, PR=n 
0x4n LD @Rn Load LO ACC indirectly using Rn, HO ACC=0, Rn=Rn+1, PR=0 
0x5n ST @Rn Store LO ACC indirectly using Rn, Rn=Rn+1, PR=0 
0x6n LDD @Rn Load ACC indirectly using Rn, Rn=Rn+2, PR=0 
0x7n STD @Rn Store ACC indirectly using Rn, Rn=Rn+2, PR=0 
0x8n POP @Rn Rn=Rn-1, load LO ACC indirectly using Rn, HO ACC=0, PR=0 
0x9n STP @Rn Rn=Rn-1, store LO ACC indirectly using Rn, PR=0 
0xAn ADD Rn ACC = ACC + Rn, status = carry, PR=0 
0xBn SUB Rn ACC = ACC – Rn, status = carry, PR=0 
0xCn POPD @Rn Rn=Rn-2, load ACC indirectly using Rn, PR=0 
0xDn CPR Rn R13 = ACC – Rn, status = carry, PR=13 
0xEn INR Rn Rn = Rn + 1, PR=n 
0xFn DCR Rn Rn = Rn – 1, PR=n 

 
Table II.4.3.  Sweet 16 Register Opcodes 

 
 
 
 
Glen Bredon utilized Sweet 16 extensively in his Big Mac software by incorporating the Sweet 16 
interpreter within its source code since the interpreter did not exist in the Apple ][+ or Apple //e 
ROMs.  Mr. Bredon re-coded the NUL and BNM1 opcodes to provide other functions specific to his 
needs.  He also did not use the R12 register as a Return from Subroutine stack pointer and he did not 
use the R14 register for the Prior Register and status.  Rather than using a stack pointer at all, he 
simply saved the Return from Subroutine address at 0xDA/0xDB and the Prior Register and status at 
0xFF.  I am simply astounded at how easy it is to utilize the Sweet 16 instructions for any task that 
processes large sets of data, like an assembler.  In fact, the early versions of the S-C Assembler II used 
Sweet 16 in several locations.  The TED/ASM assembler and all its descendants, including the DOS 
Tool Kit, TED II+, Merlin, and many others, used Sweet 16 heavily.  Several of the programs in the 
Apple Programmer's Aid ROM used Sweet 16 including the Integer BASIC Renumber/Append 
programs. 
 
As Tables II.4.2 and II.4.3 show, the Sweet 16 opcode list is short and uncomplicated.  Except for 
relative branch displacements, hand assembly is trivial.  All register opcodes are formed by combining 
two hexadecimal digits, one for the opcode and one to specify a register.  For example, opcodes 0x15 
and 0x45 both specify register R5 while opcodes 0x23, 0x27, and 0x2B are all LD Rn instructions.  
Most register instructions are assigned in complementary pairs to facilitate remembering them.  Thus, 
LD Rn and ST Rn are opcodes 0x2n and 0x3n respectively, while LD @Rn and ST @Rn are opcodes 
0x4n and 0x5n.  Opcodes 0x00 to 0x0F are assigned to the sixteen Non-Register Opcodes and opcodes 
0x1n to 0xFn opcodes are assigned to the fifteen Register Opcodes.  Except for the opcodes RTN 
(0x00), SOUT (0x0A), BS (0x0C), BSNS (0x0E), and SJMP (0x0F), the non-register opcodes are 
basic 6502 style branches.  The second byte of a branch instruction contains a +/- 127-byte 
displacement value (in two's complement form) relative to the address of the instruction immediately 
following the branch.  The SOUT (0x0A) opcode sends its second byte to COUT at 0xFDED.  Of 
course, the SJMP opcode, like the SET opcode, takes its second and third byte to form a 16-bit address, 
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or a 16-bit value in the case of SET.  Before the BS/RS opcodes can be used, R12 must be initialized 
with the address of the stack containing the return from subroutine addresses.  The stack must be a 
buffer of sufficient size to hold n-levels of subroutine calls.  If a specified branch condition is met by 
the Prior Register instruction result, the displacement is added to the Program Counter effecting a 
branch.  Except for the BR (Branch always) opcode, the BS (Branch to a Subroutine) opcode, and the 
BSNS (Branch to a Subroutine without stack) opcode, the branch opcodes are assigned in 
complementary pairs, thus rendering them easily remembered for hand coding.  For example, Branch if 
Plus and Branch if Minus are opcodes 0x04 and 0x05 while Branch if Zero and Branch if Not Zero are 
opcodes 0x06 and 0x07. 
 
 The original Sweet 16 software left the last three non-register opcodes unassigned, where any of them 
could be used as a NUL opcode, and the BK (Break, 0x0A) opcode simply executed a 6502 BRK 
instruction.  The Prior Register and the carry status were both combined in the high order (HO) byte of 
R14.  I chose to separate the Prior Register and carry status into separate bytes of the R14 register in 
order to reduce the code size and number of execution cycles for all of the non-register operations.  
Doing this allowed the inclusion of three additional opcodes within the limited, single memory page 
boundary that must contain all the SW16 routines:  Send character to COUT, Branch to Subroutine 
without stack, Return from Subroutine without stack, and Jump to Address.  Incidentally, one can jump 
to an address using the other Sweet 16 opcodes, but it requires using two of them (SET and ST), and 
the address must be already decremented by one, or decremented using a third opcode, DCR.  The new 
instruction, SJMP adr, will load the Sweet 16 Program Counter directly with adr-1. 
 
My implementation of Sweet 16 saves the register number (Prior Register) of the register receiving the 
value or change in value into the low order (LO) byte of R14 when a register opcode is processed.  If 
the register opcode is ADD, SUB, or CPR, I chose to save the state of the carry flag in bit 0 of the HO 
byte of R14.  The reasons for doing this are quite compelling.  Originally the LO byte of R14 was not 
utilized by the SW16 interpreter, so it was available to the user.  Personally, I found that unused byte to 
be virtually useless.  So, if there was a way to transform that byte into a more useful function I was 
more inclined to adopt that strategy.  Each time a non-register opcode is encountered, the original code 
used nine cycles in five bytes for part of the setup code, and 10 additional bytes were used for five of 
the branch instructions.  My implementation requires only eight cycles in five bytes for the setup code, 
and no additional bytes for the same five branch instructions.  This does not seem like very much of a 
savings, 1 cycle for every invocation of a non-register opcode, but in data processing loops that 
execute many, many times, a single cycle of savings adds up.  Mr. Bredon chose to use 16 cycles in 
seven bytes for the same capability.  While on the same subject, the SET command is another place 
where a few cycles can be saved just by using a different strategy.  The original code used 13 cycles in 
10 bytes to increment the SW16 Program Counter by two, not including its RTS instruction.  My 
implementation requires only 11 cycles in 10 bytes every time the SET command is utilized.  Mr. 
Bredon requires 35 cycles in seven bytes for the same functionality.  To me, that seems like a lot of 
overhead just to save three bytes.  This simply exemplifies the observable fact that when code is made 
extremely compact, the price paid is usually slower execution. 
 
As stated above the original image of Sweet 16 was located in ROM from 0xF689 to 0xF7FC, so it 
was 372 bytes in size, though the last three bytes of the 0xF7 page were set to 0xFF.  My 
implementation of Sweet 16 is exactly 400 bytes in size, though it includes four additional, and useful 
opcodes in my opinion.  Previously, in Section II.3 I wrote “It only staggers the imagination what one 
could do with two pages of code space in lieu of the virtually useless RESET diagnostic routines that 
only provide a PASS result if no errors are encountered or a FAIL result for the first error 
encountered.”  I believe having the Sweet 16 Metaprocessor in the Apple //e CX ROM rather than the 
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RESET diagnostic routines certainly makes a lot more sense to me.  And, what’s more, there is more 
than sufficient room for the interpreter in the CX ROM if, and only if, there is sufficient room for a 
calling and return location in the 0xF0 Monitor firmware.  Having those ten bytes of unused address 
space in the 0xC2 ROM page at 0xC2F6 certainly does help, too. 
 
I have revised the RESET interface yet again in order to provide a suitable ROM entry point for Sweet 
16 at 0xFA72.  I increased the entry address by one byte for XRESET to 0xC2AF because I believe a 
CLD instruction should be added to the DOCMD routine at 0xC22E before it makes a crucial 
hexadecimal calculation forming the “jump” address to some of the GOTOROM routines.  Removing the 
test for the state of the solid Apple key and the jump to the DIAGS diagnostic routines certainly help in 
providing enough room for the instructions removed from RESET at 0xFA62 and relocated to 
0xC2AF.  Now there remains only seven bytes of unused address space in the 0xC2 ROM page at 
0xC2F9.  It is totally awesome after plugging in a newly programmed EPROM to have the Sweet 16 
Metaprocessor at 0xFA72 ready to interpret any and all software routines containing Sweet 16 
instructions.  There remains the rare opportunity of what to do with the first 0x70 bytes that are still 
available in the 0xC6 ROM page. 
 
 
 0xC2AF: 

XRESETX cld    ; clear decimal 
  jsr RESETINIT  ; 0xFA66, do the initialization 
  lda ANN1OFF  ; 0xC058, turn annunciator 1 off 
  lda ANN2OFF  ; 0xC05A, turn annunciator 2 off 
  lda ANN3ON  ; 0xC05D, turn annunciator 3 on 
  lda ANN4ON  ; 0xC05F, turn annunciator 4 on 
  lda #NEGONE  ; 0xFF, get negative one 
  sta XMODE   ; 0x4FB, initialize MODE 
; 
;  lda PB2IN   ; 0xC062, get solid Apple key 
;  bpl >1   ; 0xC2C4, skip if not pressed 
;  jmp DIAGS   ; 0xC600, go to DIAGS 
; 
^1  lda PB1IN   ; 0xC061, get open Apple key 
  bpl CXRESET  ; 0xC2DF, switch in C3 ROM 
  ... 

   lda CLRROM  ; 0xCFFF, disable extension ROM 
   bit CLRKEY  ; 0xC010, clear keyboard strobe 
   rts    ; return to caller 
  

 
0xFA62: 

 RESET ldy #9   ; index for XRESET routine 
   bne RESET1  ; $FA7E, skip over RSETINIT 
 ; 
 RSETINIT jsr SETNORM  ; 0xFE84, set normal video 
   jsr INIT   ; 0xFB2F, init mode and window 
   jsr SETVID  ; 0xFE93, init CSWL (0x36) 
   jmp SETKBD  ; 0xFE89, init KSWL (0x38) 

; 
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 SWEET16 sta CXROMON  ; 0cC007, turn the CX ROM on 
   jmp SW16   ; 0xC670, enter the Sweet 16 
 SW16RTN sta CXROMOFF  ; 0xC006, turn the CX ROM off 
   jmp (R15L)  ; 0x1E, return to 6502 user code 
 ; 
 RESET1 jsr GOTOROM  ; 0xFBB4, enter CX ROM 
 ; 
 NEWMON cld    ; clear decimal 

  ... 
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5.  Applesoft Garbage Collector 
The Applesoft Garbage Collector routine GARBAG is located in ROM from 0xE484 to 0xE597, and 
that routine moves all currently active string variables up in String Pool memory as far as possible.  
There are several routines in ROM that rely on the garbage collector, as well as the Applesoft 
command “FRE( aexpr )”, to consolidate the Character String Pool when there is not enough Free 
Space memory as shown in Figure I.13.1 to perform the requested string variable manipulation.  When 
certain conditions are met while these ROM routines process character string data, GARBAG is called, 
and depending on how many variables are active, the processing time for GARBAG is proportional to 
the square of the number of active strings currently in use.  This processing time may be a few seconds 
if there are less than fifty active strings, or many minutes if there are hundreds of active strings.  It may 
even appear as if the Applesoft program has literally stopped, or hanged, for no apparent reason.  In 
section I.13 it was even suggested that strategically placing multiple Applesoft “FRE( aexpr )” 
commands throughout an Applesoft program may help to alleviate processing delays. 
 
Many years ago Cornelis Bongers of Erasmus University in Rotterdam, Netherlands, published a 
brilliant Garbage Collector algorithm for Applesoft strings in Micro in August, 1982.  According to an 
article in Apple Assembly Line, March, 1984, the speed of his program was incredible when compared 
to the GARBAG algorithm in ROM.  And the processing time for his algorithm was directly 
proportional to the number of active strings, rather than to the number of active strings squared.  The 
only problem with his algorithm was that the magazine that published it owned the algorithm.  Worse 
yet, the algorithm was tied to a program called Ampersoft, marketed by Microsparc, then publishers of 
Nibble magazine.  It was reported that a license to use Bongers’ algorithm was very costly at that time. 
 
Referring back to Table I.13.1 which shows the definition of a simple string variable descriptor as it is 
found in the Simple Variables memory area and to Table I.13.2 which shows the definition of an array 
string variable descriptor as it is found in the Array Variables memory area, Bongers introduced the 
idea of marking active strings located in the Character String Pool memory area:  he set the third byte 
in the string data to an upper ASCII value and swapped in the address of the string descriptor for the 
first two bytes of the string data.  Also during this first pass through the Simple Variables and Array 
Variables memory area he saved those first two bytes of the string data safely in the address field of its 
descriptor or string element.  The address previously in the address field would be changed anyway 
after all the strings are moved up in memory to their final location.  The second pass through the 
Character String Pool memory area moved all active strings as high in memory as they could go, 
retrieved the first two characters from storage in its descriptor or string element, and updated the 
address field to the new memory location for that string. 
 
Bongers’ algorithm is most efficient when the active strings are a least three bytes in length; so one- 
and two-character strings require different handling.  On the first pass through the Simple Variables 
and Array Variables memory area, the first byte of string data pointed to by these “short” descriptors is 
stored in the string length byte of its descriptor.  If the string length is two, the second data byte is 
stored in the low address byte of its descriptor.  For one-character strings the low address byte is 
flagged with an 0xFF byte.  The high address byte in all “short” descriptors is flagged with an 0xFF 
byte since no string can have an address greater than 0xFF00.  If “short” strings are found during the 
first pass, a third pass returns them to the string pool with their descriptors updated to their new 
memory location.  “Short” strings do slow down Bongers’ algorithm a little.  However, the number of 
passes is still proportional to the number of active strings, and not to the number of active strings 
squared.  Tables II.5.1 and II.5.2 illustrate Bongers’ algorithm during the first pass. 
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ADL/ADH Descriptor Before Pass 1 Þ ADL/ADH Descriptor After Pass 1 
+AS -AS 1 LSB MSB 0 0 +AS -AS 41 FF FF 0 0 

 
LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1 

41       41       
 
 

ADL/ADH Descriptor Before Pass 1 Þ ADL/ADH Descriptor After Pass 1 
+AS -AS 2 LSB MSB 0 0 +AS -AS 41 42 FF 0 0 

 
LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1 

41 42      41 42      
 
 

ADL/ADH Descriptor Before Pass 1 Þ ADL/ADH Descriptor After Pass 1 
+AS -AS >2 LSB MSB 0 0 +AS -AS LEN 41 42 0 0 

 
LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1 

41 42 43 44 45 46 47 ADL+2 ADH C3 44 45 46 47 
 

Table II.5.1.  Simple Variable Descriptor Processing in Pass 1 
 
 
 
 

ADL/ADH Element Before Pass 1 Þ ADL/ADH Element After Pass 1 
1 LSB MSB 41 FF FF 

 
LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1 

41   41   
 
 

ADL/ADH Element Before Pass 1 Þ ADL/ADH Element After Pass 1 
2 LSB MSB 41 42 FF 

 
LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1 

41 42  41 42  
 
 

ADL/ADH Element Before Pass 1 Þ ADL/ADH Element After Pass 1 
>2 LSB MSB LEN 41 42 

 
LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1 

41 42 43 44 45 46 47 ADL ADH C3 44 45 46 47 
 

Table II.5.2.  Array Variable Element Processing in Pass 1 
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Pass two in Bongers’ algorithm uses only the information in the String Pool to move all currently 
active string variables up in String Pool memory as far as possible.  This is accomplished by 
initializing a pool pointer and a string pointer to HIMEM and searching down to FRETOP for any 
upper ASCII bytes.  Once an upper ASCII byte has been found, its string descriptor is located at the 
address found two bytes before the upper ASCII byte.  That string descriptor contains the length of the 
string and the first two ASCII characters of the string.  Those two characters may be safely moved 
back to the string and the upper ASCII byte changed to a lower ASCII byte.  Now the string length can 
be subtracted from the current string pointer address, the new string address can be copied to the 
second and third byte in its string descriptor, and the string can be copied to its new string address.  
However, the string must be copied from its last character backward to prevent possibly overwriting 
part of the string if the string were to be copied from its first character forward.  Once the pool pointer 
reaches the original address in FRETOP, the current string pointer address becomes the new address in 
FRETOP if the “short” descriptors flag is clear. 
 
If the “short” descriptors flag is set then a third pass must be made through the Simple Variables and 
Array Variables memory area.  A memory pointer is initialized to VARTAB and the 0xFF marker is 
searched for in either the fifth byte of a Simple Variable descriptor or the third byte of an Array 
Variable element.  If there is an 0xFF marker in the prior byte then the descriptor is for a one-character 
string, otherwise the descriptor is for a two-character string.  The current string pointer is adjusted for 
one or two characters, the string data is copied from its descriptor to the string pool, and the string 
pointer address is copied to its string descriptor.  Once the memory pointer reaches STREND, the 
current string pointer address becomes the new address in FRETOP. 
 
It must be emphasized that Bongers’ algorithm depends on two important caveats:  normal Applesoft 
programs save all string data in lower ASCII, i.e. with the high-order bit of each byte cleared to zero, 
and normal Applesoft programs never allow more than one string descriptor to point to the same exact 
copy of that string in memory.  If a user should program something like “A$ = CHR$( 193 )”, 
Bongers’ algorithm will fail.  If an assembly language program should modify two string descriptors to 
point to the same string in the String Pool, Bongers’ algorithm will fail.  Therefore, reasonable care 
must be given to creating an Applesoft program and/or assembly language programs that take the 
above caveats seriously in order to exact the stupendous benefit in using a garbage collector routine 
located in ROM that is based on Bongers’ algorithm. 
 
Armed with only the above information, my attempt to recreate Bongers’ algorithm resulted in an 
assembly language program that was 0x200 bytes in size.  This necessitated creating a suitable 
Applesoft test program that would verify the accuracy of my algorithm and confirm that no character 
string was altered in length, modified in content, or destroyed.  My ultimate goal would be to replace 
GARBAG in ROM with my version of Bongers’ algorithm.  GARBAG occupies 0x113 bytes of ROM 
and there is 0x70 bytes of memory available in the CX ROM from 0xC600 to 0xC66F (0xC670 is 
where the Sweet 16 program begins).  If the CX ROM is used then CX ROM management must also 
be incorporated.  All totaled my garbage routine must fit within 0x183 bytes if it is to be located in 
ROM.  On the other hand, my garbage routine, after some adjustment, could be attached to an 
Applesoft program and simply called prior to issuing the DOS CHAIN command providing that the R 
keyword is utilized with CHAIN.  At least that would mitigate having GARBAG called in this 
particular instance.  Periodically the Applesoft program could check the remaining Free Space and call 
its attached garbage routine based on reasonable criteria.  There is still much indeterminacy whether a 
particular character string manipulation will trigger a call to GARBAG.  If that should happen 
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Applesoft processing could come to a grinding pause until the Character String Pool has been 
processed. 
 
In order to compact an assembly language routine certain decisions must be made that, hopefully, will 
not cause the introduction of more processor cycles than absolutely necessary.  Example strategies 
would be to limit subroutine calls in the inner-most loops and to limit the pushing and popping of 
variables onto the stack.  Sometimes simply reorganizing the order of a number of processing loops 
can greatly simplify the code and reduce the reinitialization of registers.  Keeping a variable’s MSB 
address in a register when addresses are compared often can help simplify and accelerate the code as 
well.  I have no doubt that Mr. Bongers could have condensed his algorithm down to 0x183 bytes (with 
six bytes required for CX ROM management).  My initial attempt to condense my garbage routine 
could not meet the goal of 0x183 bytes unless I removed the flag that signaled whether a third pass was 
necessary, and so the routine always made a third pass.  Many times it’s helpful to just take a break 
from a difficult programming task like this one, and work on something else.  Thus, when I returned to 
my garbage routine I took a fresh look and I found several additional strategies that could condense the 
code further allowing the reintroduction of the third pass flag.  I was able to fit one segment into the 
0x70 bytes located in CX ROM and the other segment into the 0x113 bytes where GARBAG resided.  
All that was left to do was the testing and the timing and the verification. 
 
As mentioned earlier a verification test must prove that no character string was altered in length, 
modified in content, or destroyed by the garbage collector algorithm.  The test results of the new 
algorithm must be identical to the results obtained using the GARBAG algorithm.  And since there is a 
DOS 4.1 DATE command available, each pass through the string array variables can be easily time 
stamped.  The Applesoft test created three two-dimension character string arrays where both 
dimensions were set to 26.  Each string array element was initialized with a single character that was 
“forced” into the String Pool.  On each successive pass another character was added to each element 
within the dimension that was being processed from 1 to 26.  This caused the utilization of memory to 
grow larger (or faster) on each successive pass.  Before each pass I monitored the size of Free Space.  
If Free Space was less than 15,000 bytes I issued the Applesoft “FRE( aexpr )” command forcing 
the garbage collector to process the String Pool.  I obtained identical memory results for each and 
every pass in my Applesoft test program whether I used GARGAG in ROM or my garbage routine in 
ROM.  The timing results of my test program are shown in Table II.5.3.  The left three columns 
summarize the results obtained from the original GARBAG routine.  The time each pass began is 
shown in the left column.  If the Free Space fell below 15,000 bytes another timestamp was recorded 
after a call to “FRE( aexpr )” was made.  This timestamp is shown in the middle column.  The 
delta time the routine required for processing is shown in the right column.  The right three columns 
contain the same information for my new garbage collector routine. 
 
My implementation of Bongers’ algorithm shows how amazing this routine is.  Table II.5.3 shows only 
a peek at what this routine can do.  When I changed the Free Space parameter from 15,000 to 5,000 
bytes the Applesoft program calling the original GARBAG routine did not complete, even after an 
hour, because I terminated it.  The Applesoft program using my garbage collector routine completed in 
06:54 minutes, and 24 of the 26 possible passes finished.  Table II.5.3 shows that only 18 of the 26 
possible passes finished before insufficient memory remained.  Finally, I booted DOS 4.1H because it 
provides far more Free Space, I removed the HIMEM command, and I removed all Free Space size 
checks.  The program completed all 26 passes for both versions of the garbage collector.  The program 
using the original GARBAG routine completed in 01:11:46 hours and the program using my garbage 
collector routine completed in 00:07:40 hours. 
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Pass 
Number 

Original Garbage Collector New Garbage Collector 
Time <15000 Delta Time <15000 Delta 

0 00:00   00:00   
1 00:02   00:02   
2 00:05   00:05   
3 00:09   00:09   
4 00:14   00:14   
5 00:21   00:20   
6 00:28   00:28   
7 00:37   00:36   
8 00:47 01:26 00:39 00:46 00:47 00:01 
9 02:37   00:58   
10 02:49 04:55 02:06 01:10 01:12 00:02 
11 05:11   01:25   
12 05:25 07:57 02:32 01:39 01:41 00:02 
13 08:13 11:08 02:55 01:56 01:58 00:02 
14 11:29 14:31 03:02 02:15 02:16 00:01 
15 14:59 18:12 03:13 02:34 02:36 00:02 
16 18:36 21:59 03:23 02:55 02:56 00:01 
17 22:27 26:00 03:33 03:17 03:19 00:02 
18 30:27 34:14 03:47 03:42 03:43 00:01 
 34:40   03:43   

 
Table II.5.3.  Garbage Collector Timing Results 
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6.  Apple Character Generator ROM 
Virtual ][, Gerard Putter’s MacOS application to emulate the Apple ][ computer, provides the 
capability to use a personally designed ASCII character set.  The character set is defined by a bitmap 
file that is either a PNG or TIFF file exactly 128 pixels wide and exactly 64 pixels high, and the bitmap 
depth must be 1 or 8 pixels.  Each character in the bitmap file is defined in a character cell that is 8 
pixels by 8 pixels.  Because characters displayed on the Apple ][ are only 7 pixels wide, the right most 
column of the character cell is ignored by Virtual ][.  The black pixels within a character cell comprise 
the background of the character; all other pixels comprise the character itself.  The bitmap file must be 
located at “Users/<username>/Library/Application Support/Virtual ][/CharacterSets.”  The Virtual ][ 
documentation suggests using the filename MyCharacters.tif for the bitmap file.  An XML file called 
International.plist must also be located in this directory and it defines the name of the bitmap character 
set file.  This XML file may include the name of an icon bitmap file called MyCharSetIcon.tif that can 
be up to 16 pixels wide by 11 pixels high.  The XML file may also include a keyboard translation table 
if that is needed as well.  The XML file I created is shown in Figure II.6.1 and it includes two character 
set bitmap files. 
 
I used Xcode to easily create the XML file.  Any “Property List Editor” will work as well.  To create 
the TIFF bitmap files I used the MacOS Paintbrush application because it was available for download 
at no charge.  I am not an expert Paintbrush user and I had some difficulties with the application to 
produce what I wanted easily.  Most of my difficulties occurred when I tried to save my work during 
incremental stages of testing.  I found that if I used the Lasso tool to copy the entire bitmap area into 
the clipboard, I could save the contents of the clipboard into a new bitmap file of the same size, and 
then discard the original file.  I do not know why the “save” or “save as” option failed to save my 
incremental work to the original file, and why I had to save my work in such a round-about way.  I 
used the Line tool configured for a “stroke” of 1 to toggle a pixel from black to white or white to black.  
Paintbrush saved the bitmap file as a TIFF file having a Color Space of RGB, a Color Profile of 
Generic RGB Profile, and the Alpha Channel set to Yes.  I have no idea what these specifications mean 
or imply, but Virtual ][ had no problem reading and utilizing all the TIFF files I created in this manner. 
 
My greatest source of irritation came when I discovered that the “Library” directory specified in the 
pathname above is a hidden file by default.  I lost more time putting the XML and TIFF files in the 
wrong location because I could not see the hidden Library directory in my personal Users account.  
Once I realized this directory was hidden it was extremely easy to unhide it using XQuartz or the 
Terminal application found in the Utilities directory.  Simply launch the Terminal application and enter 
“bash” on the command line.  This will start the GNU “Bourne-Again SHell.”  Now when you enter 
the UNIX command “ls” at /Users/<username>, all files, including “.” files and hidden files (i.e. 
directories), will be displayed.  Now enter the command “chflags nohidden Library” and 
have a look at a Finder window of your personal Users account.  You should now see a “Library” 
directory.  Once you locate the XML and TIFF files properly and launch Virtual ][, select Quick 
settings>Character Set>My character set.  Be sure to save your Virtual ][ session when you are 
satisfied with the selected character set bitmap file:  it will be loaded and selected every time Virtual ][ 
is launched. 
 
Figures II.6.2 and II.6.3 show the MyNewCharacters.tif and MyCharSetIcon.tif files I created for 
Virtual ][.  I modified quite a few of the characters to my preference.  Once I was satisfied with my 
character set bitmap I created a simple tool using LORES graphics that allowed me to create a 4 KB 
binary character set ROM file.  This file must also contain the inverse characters as well as the 
alternate keyboard characters which are not included in Figure II.6.2.  I found it was easier to dump the 
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character generator ROM, display its character data using my LORES tool, and edit a copy of each 
character which is displayed to the right of the original character as shown in Figure II.6.4.  Once I 
made all the changes to the character set, I saved the data currently in memory to another binary ROM 
file and burned the data to an equivalent sized 2732 EPROM.  All my Apple ][ computers use the 
character set shown in Figure II.6.2. 
 
 
 
 

 
Figure II.6.1.  International XML File 

 
 
 
 

 
 

Figure II.6.2.  New Character Set TIFF Bitmap File 
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Figure II.6.3.  Icon TIFF Bitmap File 
 
 
 
 

 
 

Figure II.6.4.  Binary Character Set LORES Editor 
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7.  Peripheral Slot Card Signature Bytes 
Most likely Apple Computer designed the concept of Signature Bytes when it marketed the Disk ][.  
The first eight bytes of the firmware on the peripheral slot card that connects the Disk ][ drive to the 
Apple ][ are the Signature Bytes for this slot card.  Other manufactures of peripheral slot cards adopted 
this scheme so that each slot card could be identified (potentially) by inspecting these eight bytes.  Slot 
cards that interface disk drives like the Disk ][ used the scheme developed by Apple Computer.  Real 
time clock cards used the scheme found on the ThunderClock.  Similarly, signature byte schemes were 
developed for printer interface slot cards, serial data interface slot cards, mouse interface slot cards, 
and display interface slot cards to list a few examples.  Each scheme has a general pattern that contains 
identical portions and unique portions of bytes.  Table II.7.1 lists the signature bytes for a number of 
peripheral slot cards. 
 
All of the odd signature bytes for peripheral slot cards that interface disk drives are the same.  This is 
done purposefully because the Autostart ROM that Apple Computer copyrighted in 1978 checks these 
four particular bytes during powerup or restart.  However, the Autostart routine was modified for the 
Apple //e Video Firmware, copyrighted in 1981 and in 1984.  According to the firmware notes 
“Check 3 ID bytes instead of 4.  Allows devices other than Disk II’s 
to be bootable.”  In other words, only the first three odd signature bytes are checked by the 
Apple //e Autostart ROM for a bootable disk drive.  After analyzing the disk startup firmware that 
follows the eight signature bytes for the Disk ][ peripheral slot card shows that upon entry the Y-
register must be 0x00, the X-register can be any value from 0x00 to 0x16, and the A-register can be 
any value.  The page-zero location 0x3C is a temporary storage location so any value can be stored 
there as done in the fourth instruction, “STX $3C”.  The first instruction, “LDX #$20”, does nothing 
since the third, and critical instruction rewrites the value of the X-register. 
 
Apparently Applied Engineering used the same signature bytes for their TimeMaster II clock card as 
found in the ThunderClock.  Only the first two bytes are significant as well as the last byte on that 
firmware page.  The last byte, or CLKID for the ThunderClock firmware is 0x07 and the last byte for 
the TimeMaster II firmware is 0x03.  The last byte for my clock card firmware is also 0x03.  It is these 
three bytes, the first two and the last, that DOS 4.1 checks for a valid clock card. 
 
In many cases a peripheral slot card not only must be compatible with DOS, but with possibly 
ProDOS, CP/M, and Pascal as well.  The peripheral-card ROM memory and the peripheral-card 
expansion ROM memory amounts to only nine pages of code space.  Therefore, even the signature 
bytes must perform a necessary function besides being unique to the particular peripheral slot card.  In 
some cases the signature bytes provide multiple return entry points for input and output data control.  If 
the peripheral slot card supports Pascal, the Pascal initialization, read, write, and status routine offsets 
closely follow the signature bytes. 
 
The firmware I wrote for the RANA is only dependent on the second signature byte instruction, “LDY 
#$00”, at bootup.  The SIDER, RamDisk 320, and CFFA firmware I wrote is not dependent on any of 
the signature byte instructions.  Since the operation of the first signature byte instruction is not used, 
any of the other ten Immediate Addressing Mode 6502 instructions can be used as a component 
identifier within the Disk ][ signature byte scheme.  Once I realized which were the important and 
unimportant bytes within the signature byte data, I could design a very simple strategy to quickly 
identify a Disk ][ signature byte scheme by checking the first three odd bytes like the Apple //e 
Autostart ROM does, and use the first byte to select the actual device.  Table II.7.2 lists the revised 
signature bytes for my collection of disk drive peripheral devices. 
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Slot Card 0 1 2 3 4 5 6 7 

Disk ][ LDX #$20 LDY #$00 LDX #$03 STX $3C 
 0xA2 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
SCSI ][ LDX #$20 LDX #$00 LDX #$03 LDX #$00 
 0xA2 0x20 0xA2 0x00 0xA2 0x03 0xA2 0x00 
         
RANA LDX #$20 LDY #$00 LDX #$03 LDX #$3C 
 0xA2 0x20 0xA0  0x00 0xA2 0x03 0xA2 0x3C 
         
SIDER LDA #$20 LDA #$00 LDA #$03 LDA $3C 
 0xA9 0x20 0xA9 0x00 0xA9 0x03 0xA9 0x3C 
         
RamDisk LDX #$20 LDY #$00 LDX #$03 STY $3C 
 0xA2 0x20 0xA0 0x00 0xA2 0x04 0x84 0x3C 
         
CFFA LDA #$20 LDX #$00 LDA #$03 LDA #$00 
 0xA9 0x20 0xA2 0x00 0xA9 0x03 0xA9 0x00 
         
ThunderClock PHP SEI PLP BIT $FF58 BVS $Cs0D 
 0x08 0x78 0x28 0x2C 0x58 0xFF 0x70 0x05 
         
TimeMaster II PHP SEI PLP BIT $FF58 BVS $Cs0D 
 0x08 0x78 0x28 0x2C 0x58 0xFF 0x70 0x05 
         
My Clock PHP SEI BIT $CFFF CLR BCC $Cs38 
 0x08 0x78 0x2C 0xFF 0xCF 0x18 0x90 0x30 
         
SuperSerial BIT $FF58 BVS $Cs11 SEC BCC $Cs20 
 0x2C 0x58 0xFF 0x70 0x0C 0x38 0x90 0x18 
         
Grappler CLC BCS $Cs3B BCC $Cs11 SEC BCC $Cs20 
 0x18 0xB0 0x38 0x90 0x0C 0x38 0x90 0x18 
         
Mouse BIT $FF58 BVS $Cs20 SEC BCC $Cs20 
 0x2C 0x58 0xFF 0x70 0x1B 0x38 0x90 0x18 
         
80 Column BIT $CE43 BCS $C317 SEC BCC CLC 
 0x2C 0x43 0xCE 0x70 0x12 0x38 0x90 0x18 

 
Table II.7.1.  Peripheral Slot Card Signature Bytes 
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Slot Card 0 1 2 3 4 5 6 7 

Disk ][ LDX #$20 LDY #$00 LDX #$03 STX $3C 
 0xA2 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
SCSI ][ LDX #$20 LDX #$00 LDX #$03 LDX #$00 
 0xA2 0x20 0xA2 0x00 0xA2 0x03 0xA2 0x00 
         
RANA ORA #$20 LDY #$00 LDX #$03 STX $3C 
 0x09 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
SIDER AND #$20 LDY #$00 LDX #$03 STX $3C 
 0x29 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
RamDisk EOR #$20 LDY #$00 LDX #$03 STX $3C 
 0x49 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
CFFA ADC #$20 LDY #$00 LDX #$03 STX $3C 
 0x69 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
available LDA #$20 LDY #$00 LDX #$03 STX $3C 
 0xA9 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
available CMP #$20 LDY #$00 LDX #$03 STX $3C 
 0xC9 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
available SBC #$20 LDY #$00 LDX #$03 STX $3C 
 0xE9 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
available LDY #$20 LDY #$00 LDX #$03 STX $3C 
 0xA0 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
available CPY #$20 LDY #$00 LDX #$03 STX $3C 
 0xC0 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 
         
available CPX #$20 LDY #$00 LDX #$03 STX $3C 
 0xE0 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C 

 
Table II.7.2.  Revised Disk Drive Peripheral Slot Card Signature Bytes 
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III.  DOS 4.1 Commands 
DOS 4.1 commands comprise a set of commands in addition to the Applesoft ROM commands.  As in 
Applesoft commands, DOS 4.1 commands and keywords may be entered in uppercase and/or 
lowercase.  DOS 4.1 uses a number of data tables in order to process a valid DOS command when it is 
found in the DOS Command Name Text table.  This table consists of the “DCI” ASCII name for each 
DOS command in the order of command index value.  The Command Valid Keyword table is used to 
determine which keywords if any are required or may be used in conjunction with each DOS command 
index.  Each command has a two-byte table entry, thus providing 16 possible bit flags indicating which 
keywords are legal, or if a filename is expected, for example.  The bit flag settings for the DOS 
Command Valid Keywords are defined in Table III.0.1.  The legal keywords have been ordered in a 
more logical and useful way from the order used in DOS 3.3.  Before processing a valid DOS 4.1 
command, the value of the R keyword is copied to the File Manager SUBCODE variable.  This allows 
users of the external File Manager handler to utilize the SUBCODE in order to simulate the R keyword 
as in the case of the File Manager FMCATACD command for CATALOG.  The DOS INIT command, 
however, overwrites the SUBCODE variable with DOSFLAGS for its own specific use as shown 
previously in Figure I.9.5. 
 
 
 
 

Bit Bit Position Value Flag Bit Description 
15 %1000 0000 0000 0000 0x8000 Filename legal but optional 
14 %0100 0000 0000 0000 0x4000 Command has no positional operands 
13 %0010 0000 0000 0000 0x2000 Filename #1 expected 
12 %0001 0000 0000 0000 0x1000 Filename #2 expected 
11 %0000 1000 0000 0000 0x0800 Slot number positional operand is expected 
10 %0000 0100 0000 0000 0x0400 MAXFILES value expected as positional operand 
9 %0000 0010 0000 0000 0x0200 Command is only issued from within a program 
8 %0000 0001 0000 0000 0x0100 Command creates a new file if the file is not found 
7 %0000 0000 1000 0000 0x0080 C, I, O keywords are legal 
6 %0000 0000 0100 0000 0x0040 S keyword is legal 
5 %0000 0000 0010 0000 0x0020 D keyword is legal 
4 %0000 0000 0001 0000 0x0010 V keyword is legal 
3 %0000 0000 0000 1000 0x0008 A keyword is legal 
2 %0000 0000 0000 0100 0x0004 L keyword is legal 
1 %0000 0000 0000 0010 0x0002 R keyword is legal 
0 %0000 0000 0000 0001 0x0001 B keyword is legal 

 
Table III.0.1.  DOS 4.1 Command Valid Keyword Table 
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Command Name Index ASCII Text S/W Handler Keyword 
CMDINIT 0x00 INIT DOINIT 0x317F 

CMDLOAD 0x02 LOAD DOLOAD 0xA072 
CMDSAVE 0x04 SAVE DOSAVE 0xA173 
CMDRUN 0x06 RUN DORUN 0xA074 

CMDCHAIN 0x08 CHAIN DOCHAIN 0x2274 
CMDDELET 0x0A DELETE DODELETE 0x2070 
CMDLOCK 0x0C LOCK DOLOCK 0x2070 

CMDUNLCK 0x0E UNLOCK DOUNLOCK 0x2070 
CMDCLOSE 0x10 CLOSE DOCLOSE 0x6000 
CMDREAD 0x12 READ DOREAD 0x2203 
CMDEXEC 0x14 EXEC DOEXEC 0x2072 

CMDWRITE 0x16 WRITE DOWRITE 0x2203 
CMDPOSTN 0x18 POSITION DOPSTION 0x2202 
CMDOPEN 0x1A OPEN DOOPENTX 0x2374 
CMDAPND 0x1C APPEND DOAPND 0x2270 

CMDRENAM 0x1E RENAME DORENAME 0x3070 
CMDCAT 0x20 CATALOG DOCAT 0x4072 
CMDMON 0x22 MON DOMON 0x4080 

CMDNOMAN 0x24 NOMON DONOMON 0x4080 
CMDPRNUM 0x26 PR# DOPRNUM 0x0800 
CMDINNUM 0x28 IN# DOINNUM 0x0800 
CMDMXFLS 0x2A MAXFILES DOMXFLS 0x0400 
CMDDATE 0x2C DATE DODATE 0x4000 
CMDLIST 0x2E LIST DOLIST 0x2077 

CMDBSAVE 0x30 BSAVE DOBSAVE 0x217F 
CMDBLOAD 0x32 BLOAD DOBLOAD 0x207A 
CMDBRUN 0x34 BRUN DOBRUN 0x2078 
CMDVERFY 0x36 VERIFY DOVERIFY 0x2072 
CMDLSAVE 0x38 LSAVE DOLSAVE 0x217F 
CMDLLOAD 0x3A LLOAD DOLLOAD 0x207A 
CMDTSAVE 0x3C TSAVE DOTSAVE 0x2173 
CMDTLOAD 0x3E TLOAD DOTLOAD 0x207F 

CMDDIFF 0x40 DIFF DODIFF 0x3070 
CMDGREP 0x42 GREP DOGREP 0x3071 
CMDMORE 0x44 MORE DOLIST 0x2077 
CMDCAT2 0x46 CAT DOCAT 0x4072 
CMDURM 0x48 URM DOURM 0x2070 
CMDCD 0x4A CD DOCD 0x0070 
CMDLS 0x4C LS DOCAT 0x4072 
CMDMV 0x4E MV DORENAME 0x3070 
CMDRM 0x50 RM DODELETE 0x2070 
CMDSV 0x52 SV DOSV 0x0008 
CMDTS 0x54 TS DOTS 0x402F 
CMDTW 0x56 TW DOTW 0x2170 

CMDHELP 0x58 HELP DOHELP 0x2000 
CMDUSER 0x5A - DOUSER - 

 
Table III.0.2.  DOS 4.1 Command Table 
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Table III.0.2 is a comprehensive listing of all DOS 4.1 commands in processing order showing the 
command name, index, ASCII text, software handler, and valid keyword value.  CMDHELP is only 
available in DOS 4.1H because there is additional room in RAM Bank 1 where RWTS is located.  This 
additional memory seemed like an ideal location for placing a Help Command handler in order to 
provide instant syntactical usage information for all DOS 4.1 commands.  DOS 4.1H was using track 
0x02 anyway because it needed two additional sectors for its interface and boot pages.  Why not use a 
few more sectors on track 0x02 for something quite useful like the Help Command handler?  Another 
DOS developer may choose to eliminate the Help Command handler and utilize the memory and/or the 
eight disk sectors for something else entirely. 
 
CMDUSER is designed and available to a user who needs to load DOS 4.1 into memory, initialize it, 
and then have DOS 4.1 return control back to that user instead of to BASIC.  After DOS 4.1 is copied 
into memory, the user needs to place the address of the user’s handler at USERADR, or 0xBEEC, 
place the value of CMDUSER-CMDTBL found at USERNDX, or 0xBFFA, into CMDVAL, or 
0xBEEE, and then initialize DOS using an indirect “JMP” instruction to DOSBEGIN, or 0xBED7, the 
address found at INITDOS, or 0xBFF8.  USERADR and CMDVAL are located at index byte 0x15 and 
index byte 0x17, respectively, from the address found at INITDOS.  INITDOS is at the same location 
in both DOS 4.1L and DOS 4.1H, so it makes no difference where USERADR, CMDVAL, and 
DOSBEGIN are technically located in either DOS 4.1L or DOS 4.1H.  Table I.8.7 shows where these 
variables are currently located.  These memory locations are subject to change, but not their index 
values.  Once DOS 4.1 has initialized, the command CMDUSER will be invoked which is simply an 
indirect “JMP” instruction to the address found in USERADR.  The user’s handler should restore the 
values originally found at USERADR (address of the Monitor routine MON, or 0xFF65) and 
CMDVAL (CMDRUN-CMDTBL, or 0x06) so that the DOS that is currently in memory can be used 
for “pure image” disk initialization, if desired.  An example assembly language routine is shown in 
Figure I.9.1 that illustrates how to set up USERADR and CMDVAL. 
 
DOS 4.1 uses the following four tables to parse valid keywords, ascertain a keyword’s bit position, and 
determine if a keyword is within a minimum and a maximum value:  PPARMS, PARMBITS, 
KWRANGEL, and KWRANGEH.  The content of these tables is summarized in Table III.0.3.  Unlike 
DOS 3.3, DOS 4.1 will allow up to 81 drives in order to support CFFA Volume Manager software for 
up to an 8 GB Compact Flash card, to allow default Volume numbers to be 0x00, and to allow BSAVE 
and LSAVE to write files greater than 0x7FFF bytes.  The Bit Positions for the keywords C, I, O are 
actually used to generate the MONVAL variable once the MSB of the bit position value is cleared.  
The other Bit Positions are added to the variable KYWRDFND as each keyword is parsed.  It is no 
accident that the Bit Position of each Keyword in Table III.0.3 is the same as in the lower byte of each 
command keyword shown in Table III.0.1.  When DOS 3.3 checks KYWRDFND against the Keyword 
of a DOS command as shown in Table III.0.2 in the “GETNXT” routine, any additional bits found set 
should immediately signal a Syntax Error as it does in DOS 4.1.  Instead, DOS 3.3 jumps to the 
“GETFRST” routine which has nothing to do with finding wrong bits set in KYWRDFND. 
 
The syntax of a DOS 4.1 command begins with the command, and is immediately followed by a 
filename or two if they are required.  All parameters whether they are required or optional follow the 
filename(s) or the command if no filename is required, and usually a comma must delineate each 
parameter.  Optional parameters are contained in square brackets, as in [,Vv].  Commands and 
keywords are shown in CAPITAL letters and keyword values are shown in lowercase letters for ease 
of explanation and not how they need to be used or entered on the Apple command line.  Table III.0.4 
lists all keywords and keyword value items. 
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Keyword Name Bit Position / Value Minimum Value Maximum Value 
C %1100 0000 / 0xC0 - - 
I %1010 0000 / 0xA0 - - 
O %1001 0000 / 0x90 - - 

MON/NOMON %1000 0000 / 0x80 - - 
S %0100 0000 / 0x40    1 (0x01)         7 (0x0007) 
D %0010 0000 / 0x20    1 (0x01)       81 (0x0051) 
V %0001 0000 / 0x10    0 (0x00)     255 (0x00FF) 
A %0000 1000 / 0x08    0 (0x00) 65535 (0xFFFF) 
L %0000 0100 / 0x04    0 (0x00) 65535 (0xFFFF) 
R %0000 0010 / 0x02    0 (0x00) 32767 (0x7FFF) 
B %0000 0001 / 0x01    0 (0x00) 32767 (0x7FFF) 

 
Table III.0.3.  DOS 4.1 Keyword Name and Range Table 

 
 
 
 

Keyword Name Description 
S Slot Keyword followed by slot number 
D Drive Keyword followed by drive number 
V Volume Keyword followed by volume number 
A Address Keyword followed by address number 
L Length Keyword followed by length number 
R Record Keyword followed by record number or nothing 
B Byte Keyword followed by byte number 
C Command Keyword to display or  not  to display DOS commands 
I Input Keyword to display or not to display input data 
O Output Keyword to display or not to display output data 
f filename Must begin with a letter and be 1-24 characters in length 
f2 2nd filename Must begin with a letter and be 1-24 characters in length 
s slot number Slot number of a peripheral slot card, value range 1-7 
d drive number Initialized to 1, value range 1-81 (for CFFA use) 
v volume number Initialized to 0, value range 0-255 
a address number Initialized to 0, value range 0-65535 
l length number Initialized to 0, value range 0-65535 
r record number Initialized to 0, value range 0-32767 
b byte number Initialized to 0, value range 0-32767 
n number Some numerical value required by some commands 

 
Table III.0.4.  DOS 4.1 Keywords and Keyword Value Items 
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In keeping with the original DOS 3.3 documentation, DOS 4.1 commands may be grouped into the 
following six categories.  Remember, the command HELP is a DOS 4.1H command only. 
 
 
 

File System Commands 
 

CAT CATALOG CD DATE 
DELETE DIFF GREP HELP 

INIT LIST LOCK LS 
MORE MV RENAME RM 

SV TS UNLOCK URM 
VERIFY    

 
 

System Commands 
 

IN# MAXFILES MON NOMON 
PR#    

 
 

Applesoft File Commands 
 

CHAIN LOAD RUN SAVE 
 
 

Binary File Commands 
 

BLOAD BRUN BSAVE LLOAD 
LSAVE    

 
 

Sequential Text File Commands 
 

APPEND CLOSE EXEC OPEN 
POSITION READ TLOAD TSAVE 

TW WRITE   
 
 

Random-Access Data File Commands 
 

CLOSE OPEN READ WRITE 
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Command Command Syntax 
CATALOG 

CAT 
LS 

[,Ss] [,Dd] [Vv] [,R] 
[,Ss] [,Dd] [Vv] [,R] 
[,Ss] [,Dd] [Vv] [,R] 

CD [,Ss] [,Dd] [Vv] 
DATE  

DELETE 
RM 

f [,Ss] [,Dd] [,Vv] 
f [,Ss] [,Dd] [,Vv] 

DIFF f, f2 [,Ss] [,Dd] [,Vv] 
GREP f, f2 [,Ss] [,Dd] [,Vv] [,Bn] 
HELP C 
INIT f, f2 [,Ss] [,Dd] [,Vv] [,An] [,Bn] [,Ln] [,R[n]] 
LIST 

MORE 
f [,Ss] [,Dd] [,Vv] [,Bb] [,Ll] [,R] 
f [,Ss] [,Dd] [,Vv] [,Bb] [,Ll] [,R] 

LOCK f [,Ss] [,Dd] [,Vv] 
MV 

RENAME 
f, f2 [,Ss] [,Dd] [,Vv] 
f, f2 [,Ss] [,Dd] [,Vv] 

SV An 
TS [,Ss] [,Dd] [,Vv] [,An] [,Bn] [,L] [,R] 

UNLOCK f [,Ss] [,Dd] [,Vv] 
URM f [,Ss] [,Dd] [,Vv] 

VERIFY f [,Ss] [,Dd] [,Vv] [,R1] 
 

Table III.1.1.  DOS 4.1 File System Commands 
 
 
 

1.  File System Commands 
The DOS 4.1 File System Commands manage the file system of a disk volume and display its contents.  
The syntax of the File System Commands is shown in Table III.1.1. 
 
 
 
CATALOG [,Ss] [,Dd] [,Vv] [,R] 
CAT  [,Ss] [,Dd] [,Vv] [,R]   ; short version of CATALOG 
LS  [,Ss] [,Dd] [,Vv] [,R]   ; UNIX version of CATALOG 
 
Example: CATALOG S6,D2 
  CAT D1 

LS R 
 
This command displays on the screen a wealth of information for the specified volume:  the current 
slot and drive for the volume (S= and D=), the volume number (V=), the remaining free space on the 
volume (F=), the date and time the VTOC was last modified, and a list of all files on the volume.  Each 
file is displayed with its lock/unlock status, its file type, its size in sectors including its TSL sector(s), 
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the first 14 characters of its filename, and the date and time of the file’s creation or last modification.  
Table I.7.3 lists all file types.  Figure III.1.1 shows an example of the CATALOG and the CAT 
command.  Notice that the asterisk shows that the files DOS4.1.46L and DOS4.1.46H are locked.  
DOS 4.1 commands may be entered in lowercase. 
 
 
 
 

 
 

Figure III.1.1.  CATALOG and CAT Command Display 
 
 
 
 
If the R keyword is included with the CATALOG command the screen displays the current version of 
DOS that is currently in memory (M=), the 24 character volume title (T=), the version and build of the 
DOS that created this volume (B=), the volume type (“boot” or “data”), the volume library value (L=), 
and the date and time the volume was created, followed by the information above.  The list of files on 
the volume also includes all deleted files shown by the “x” character.  Without the R keyword each file 
is displayed as shown in Figure III.1.1.  With the R keyword each file is displayed with its sequence 
number, the track and sector of its first TSL, and all 24 characters of its filename.  Figure III.1.2 shows 
an example the LS R command. 
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Figure III.1.2.  LS R Command Display 
 
 
 
 
CD  [,Ss] [,Dd] [,Vv] 
 
Example: CD S6,D2,V3 
  CD 
 
This command is new to DOS and it can change the default slot, drive, and volume parameters of the 
specified volume.  If no keywords are used with the CD command the current default slot, drive and 
volume parameters are displayed on the Apple command line after the CD command.  Figure III.1.3 
shows two examples of using the CD command.  When the CD command is used with no keywords, 
two values are displayed for volume.  The first comes from DISKVOL as shown in Table I.6.1 and the 
second comes from VOLNUMBR as shown in Table I.10.4.  DISKVOL is the actual volume number 
value in the VTOC and VOLNUMBR is the volume number value used by the File Manager.  When 
these values differ and VOLNUMBR is not 000 then the “Volume Number Error” message is issued. 
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Figure III.1.3.  CD Command Display 
 
 
 
 
DATE 
 
Example: DATE 
 
This command is new to DOS and it displays on the screen the current date and time as shown in 
Figure III.1.4.  DOS 4.1 supports three known clock cards and possibly others:  Thunderclock, 
TimeMaster, and the clock card I designed and built.  The only difference in these clock cards is the 
index into the output raw data string each card produces where the date and time data begin.  Figure 
III.1.4 also shows an example Applesoft program that displays the raw data string for a Thunderclock 
card residing in slot 4.  The index where the date and time data begin for this clock card is 0x00.  My 
clock card and the TimeMaster clock card both have an index of 0x03.  The indexes for the DOS 4.1 
supported clock cards are summarized previously in Table I.11.1.  DOS 4.1 can support any clock card 
having the standard signature bytes and CLKID, and a maximum index of 0x05 for its output raw data 
string where the date and time data begin. 
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Figure III.1.4.  DATE Command for Thunderclock Card Display 
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DELETE f [,Ss] [,Dd] [,Vv] 
RM  f [,Ss] [,Dd] [,Vv]    ; UNIX version of DELETE 
 
Example: DELETE COPYDOS 
  RM COPYDOS 
 
This command removes the filename ‘f’ from the catalog listing in the specified volume if the filename 
exists by setting the most significant bit of its TSL track byte, and marking the sectors in the file’s 
TSL(s) and the TSL sector(s) as available.  Refer to Figure I.7.1 showing a disk catalog sector.  Figure 
III.1.5 shows an example of a file being deleted.  It is prudent to undelete a deleted file as soon as 
possible before the sectors in the file’s TSL(s) and the TSL sector(s) are utilized by another file. 
 
 
 
 

 
 

Figure III.1.5.  DELETE Command Display 
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DIFF  f, f2 [,Ss] [,Dd] [,Vv] 
 
Example: DIFF TEST1,TEST2 
 
This command is new to DOS and it compares any two files ‘f’ and ‘f2’ in the specified volume up to 
the end of SECCNT-1 sectors of the second file, ‘f2’.  The routine will display on the screen the 
number of bytes compared on the Apple command line, and the location(s) where the files differ and 
the differing bytes.  The two files must reside on the same volume.  The location(s) where the files 
differ are the number of bytes from the beginning of each file.  The first differing byte comes from the 
first file, or file ‘f’, and the second differing byte comes from the second file, or file ‘f2’.  Displayed 
values are all shown in hexadecimal.  Figure III.1.6 shows an example of three pairs of files being 
compared.  The first pair of files are identical and the screen shows that 0x0100 bytes were compared 
even though the files themselves are only 0x0080 bytes in size.  CF compares whole sectors.  The 
second pair of files are exactly 0x1000 bytes in size but CF compared 0x1100 bytes.  Because these are 
Binary files their address and length bytes occupy the first four bytes of the file making the files 
actually 0x1004 bytes in length.  Again, CF compares whole sectors, and the last four bytes of data 
reside in an additional sector.  These files differed at only one location.  The third pair of files are 
0x300 bytes in size and they differ at five specific locations. 
 
 
 
 

 
 

Figure III.1.6.  DIFF Command Display 
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GREP  f, f2 [,Ss] [,Dd] [,Vv] [,Bn] 
 
Example: GREP HELLO,TEST 
  GREP HELLO,Manage Test*,B$AA 
 
This command is new to DOS and it searches the file ‘f’ for the single word ASCII string or the 
multiple word character-terminated string ‘f2’ in the specified volume up to the end of SECCNT-1 
sectors of the file.  The routine will display on the screen the number of bytes searched on the Apple 
command line and the location(s) where the string ‘f2’ occurs in the file.  The location(s) where ‘f2’ is 
found is the number of bytes from the beginning of the file up to the first character of ‘f2’.  Displayed 
values are all shown in hexadecimal.  Figure III.1.7 shows an example of three files being searched.  
The first file is an Applesoft file.  The second file is a binary file.  The third file is the same binary file 
that uses a multiple word character-terminated string for ‘f2’.  GREP searches whole sectors, and 
regardless how many actual bytes are associated with the file in the last sector, the entire last sector of 
the file is searched.  GREP is case sensitive as shown in Figure III.1.7., and GREP masks out the MSB 
as file ‘f’ is read so lower ASCII character 0x41 is the same as upper ASCII character 0xC1.  DOS 4.1 
expects the string contained in ‘f2’ to conform to the format and length of a filename, therefore the 
first character must be an alpha character, otherwise a “?SYNTAX ERROR” will be issued by 
Applesoft.  The maximum length of ‘f2’ is 24 characters, which includes the termination character if it 
is used.  Any ASCII character may be used for the termination character as long as it is unique within 
the characters comprising ‘f2’.  If a termination character is used it must be defined by the B keyword 
and equal to its upper ASCII value, that is, with its MSB on. 
 
 
 
 

 
 

Figure III.1.7.  GREP Command Display 
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HELP  C 
 
Example: HELP HELP 
  HELP CATALOG 
 
This command is new to DOS and is only available when DOS 4.1H is booted into memory.  In order 
to port DOS 4.1L to the Language Card I found that it was necessary to create an “interface” page of 
routines that managed some of the DOS routines vis-à-vis memory bank switching for the Language 
Card.  This implies having to use at least one disk sector on the next track, track 0x02, for the 
Language Card version of the DOS image.  Also, there was a lot of unused memory in RAM Bank 1 
where I put all the RWTS routines and nibble buffers.  It was an easy decision to utilize the remaining 
RAM Bank 1 memory for a HELP command and use as much of track 0x02 as I needed.  I created the 
HELP command to provide instant syntactical usage information for all DOS 4.1 commands.  Figures 
III.1.8 through III.1.11 display the command HELP HELP screens. 
 
Figure III.1.12 displays an example HELP screen for HELP INIT. 
 
 
 
 

 
 

Figure III.1.8.  HELP HELP Command Display 1 
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Figure III.1.9.  HELP HELP Command Display 2 
 
 
 
 

 
 

Figure III.1.10.  HELP HELP Command Display 3 
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Figure III.1.11.  HELP HELP Command Display 4 
 
 
 
 

 
 

Figure III.1.12.  HELP INIT Command Display 
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INIT  f, f2 [,Ss] [,Dd] [,Vv] [,An] [,Bn] [,Ln] [,R[n]] 
 
Example: INIT HELLO,<title>,V123,L$101  ; creates Volume Type “B” 
  INIT EXECFILE,<title>,V123,R$14  ; creates Volume Type “B” 
  INIT H,<title>,V123,R    ; creates Volume Type “D” 
 
This command initializes the specified volume with the filename ‘f’ and writing DOS 4.1 on tracks 
0x00 and 0x01 for DOS 4.1L or writing 10 additional sectors on track 0x02 for DOS 4.1H when the R 
keyword is not included or the value of the R keyword is not equal to 0x00 (Volume Type ‘B’, or 
Boot volume) as shown in Figure III.1.13.  All initialized disks are titled with the required upper 
ASCII string in ‘f2’.  The parameter ‘v’ is assigned the volume number if the V keyword is included; 
otherwise the disk is initialized with a volume number of 000.  If the R keyword is included without a 
value or with a value of 0x00, a data disk is initialized with a VTOC and an empty catalog structure, 
and all DOS sectors are available for data storage including track 0x00 (Volume Type ‘D’, or Data 
volume) as shown in Figure III.1.14.  The upper ASCII string in ‘f2’ is still used for the volume Title, 
but the filename ‘f’ is simply a placeholder and not utilized.  If the R keyword is included with a 
nonzero value, that value is copied to CMDVAL and a disk is initialized having a bootable DOS 
(Volume Type ‘B’) but no Applesoft boot file is saved to the disk even if there is an Applesoft file in 
memory.  It is up to the user to copy an APPLESOFT file for R$06, an EXEC file for R$14, or a 
BINARY file for R$34 to the disk as its “HELLO”, or ‘f’ filename.  Other possible values for the R 
keyword could be R$10 for CLOSE, R$2C for DATE, and R$2E for LIST, from Table III.0.2.  A 
complete set of initialization values is available from 0xBED7 through 0xBEFF for both DOS 4.1L 
and DOS 4.1H.  These values can be modified directly or with keywords before executing the INIT 
command in order to tailor a DOS 4.1 volume specific to ones needs and the target hardware.  See 
Table I.8.7 for a list of all of the possible initialization values. 
 
If the A and B keywords are not used or are set to 0x00, the default initialization values for SECVAL 
and ENDTRK come from FIRSTCAT and LASTRACK, respectively.  The default value for ENDSEC 
is 0x10.  The A keyword is used to specify a new ENDTRK, the number of tracks on a Disk ][ volume.  
The B keyword is used to specify the number of Catalog sectors from 1 to 15, and to select 16-sector 
tracks if its MSB is clear or 32-sector tracks if its MSB is set.  The L keyword is used to specify a 
Library Value (or, subject value) for the disk volume if it is included, from 0x0000 to 0xFFFF, 
otherwise the Library Value is set to 0x0000.  Once any other initialization parameter has been 
changed, it remains equal to that value except for SECVAL, ENDTRK, ENDSEC and SUBJCT; that 
is, there is no reset to “default” settings for NMAXVAL, YEARVAL, TRKVAL, VRSN, BLD, 
RAMTYP, TSPARS, ALCTRK, ALCDIR, and SECSIZ as shown previously in Table I.8.7.  Use 
common sense when modifying these parameters. 
 
The value in SECVAL determines the number of sectors the catalog will contain not including the 
VTOC sector.  The useable values for SECVAL are 0x00<SECVAL<0x80.  If that value is more than 
15, no more than 15 Catalog sectors will be created.  Table III.1.2 shows the number of available data 
sectors in a volume based on Volume Type and catalog size for a volume having 35 tracks and 16 
sectors per track.  A few disk drives, either physical or solid state, were manufactured to access 40 
tracks for a volume.  Set ENDTRK to 0x28 (or use A$28) to provide access to all 40 tracks, or to 0x30 
(or use A$30) to access 48 tracks if they are available.  The VTOC is designed to manage up to 50 
tracks per volume as shown previously in Figure I.6.1.  Table III.1.3 shows the same information as 
Table III.1.2 for a volume having 32 sectors per track.  Table III.1.4 shows the total number of sectors 
on a volume having 35, 40, or 48 tracks with 16 or 32 sectors per track. 
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Figure III.1.13.  INIT Command Display 1 
 
 
 
 

 
 

Figure III.1.14.  INIT Command Display 2 
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SECVAL Catalog 
Size 

4.1L Data Sectors 4.1H Data Sectors 
‘B’ ‘D’ ‘B’ ‘D’ 

0x01 1 sector 526 558 516 558 
0x02 2 sectors 525 557 515 557 
0x03 3 sectors 524 556 514 556 
0x04 4 sectors 523 555 513 555 
0x05 5 sectors 522 554 512 554 
0x06 6 sectors 521 553 511 553 
0x07 7 sectors 520 552 510 552 
0x08 8 sectors 519 551 509 551 
0x09 9 sectors 518 550 508 550 
0x0A 10 sectors 517 549 507 549 
0x0B 11 sectors 516 548 506 548 
0x0C 12 sectors 515 547 505 547 
0x0D 13 sectors 514 546 504 546 
0x0E 14 sectors 513 545 503 545 
0x0F 15 sectors 512 544 502 544 

 
Table III.1.2.  Initialized Catalog Size for 35 Tracks, 16 Sectors/Track 

 
 
 
 

SECVAL Catalog 
Size 

4.1L Data Sectors 4.1H Data Sectors 
‘B’ ‘D’ ‘B’ ‘D’ 

0x01 1 sector 1086 1118 1076 1118 
0x02 2 sectors 1085 1117 1075 1117 
0x03 3 sectors 1084 1116 1074 1116 
0x04 4 sectors 1083 1115 1073 1115 
0x05 5 sectors 1082 1114 1072 1114 
0x06 6 sectors 1081 1113 1071 1113 
0x07 7 sectors 1080 1112 1070 1112 
0x08 8 sectors 1079 1111 1069 1111 
0x09 9 sectors 1078 1110 1068 1110 
0x0A 10 sectors 1077 1109 1067 1109 
0x0B 11 sectors 1076 1108 1066 1108 
0x0C 12 sectors 1075 1107 1065 1107 
0x0D 13 sectors 1074 1106 1064 1106 
0x0E 14 sectors 1073 1105 1063 1105 
0x0F 15 sectors 1072 1104 1062 1104 

 
Table III.1.3.  Initialized Catalog Size for 35 Tracks, 32 Sectors/Track 
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Tracks/Volume Sectors/Track Total Sectors 
35 16 560 
35 32 1120 
40 16 640 
40 32 1280 
48 16 768 
48 32 1536 

 
Table III.1.4.  Total Sectors for Volumes 

 
 
 
 
LIST  f [,Ss] [,Dd] [,Vv] [,Bb] [,Ll] [,R] 
MORE f [,Ss] [,Dd] [,Vv] [,Bb] [,Ll] [,R]  ; UNIX version of LIST 
 
 
Example: LIST EXECFILE,B8,L10,R 
 
This command is new to DOS and it displays on the screen the contents of file ‘f ‘in the specified 
volume in ASCII if the file is a Text type file or in hexadecimal for all other file types.  If the R 
keyword is included, the contents of a Text type file will be displayed in hexadecimal rather than in 
ASCII.  If the B keyword is included, that number of bytes, ‘b’, into the file will be skipped.  If the L 
keyword is included, that number of bytes, ‘l’, will only be displayed, or until the end of the file, 
whichever occurs first.  LIST displays a complete sector of data at a time, and LIST can be terminated 
at any time by pressing the ESC key.  Figure III.1.15 shows an example of using LIST on a Text type 
file utilizing the various keywords.  First, the entire file is listed.  Then the first 6 bytes of the file are 
listed.  Then, the first 9 bytes are skipped and the next 7 bytes are listed.  Finally, those same 7 bytes 
are displayed in hexadecimal.  Hexadecimal pairs of bytes are displayed corresponding to even/odd 
bytes in the file beginning with zero when counting, so the “L” in “BLOAD” is an odd byte in the file 
and is skipped, and the second “O” in “FOO” and the carriage return are added.  Remember to count 
the carriage return (i.e. 0x8D) as an ASCII character as well.  LIST will not skip over a NULL byte 
(i.e. 0x00) as found in Random Access Text Files when displayed in ASCII.  These particular files 
should only be displayed in hexadecimal in order to display the contents of the records contained in 
those type of text files. 
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Figure III.1.15.  LIST Command Display 
 
 
 
 
LOCK f [,Ss] [,Dd] [,Vv] 
 
Example: LOCK TEST 
 
This command sets the most significant bit of the Type byte of the file ‘f’ in the specified volume as 
shown in Tables I.7.1 through I.7.3.  A locked file cannot be deleted or renamed until it is unlocked, 
and the lock status of a file is indicated in the volume Catalog using an asterisk, *, next to the file’s 
type character as shown in Figure III.1.16.  The date and time stamp for the file is also updated but not 
the date and time stamp for the VTOC because nothing in the VTOC was changed. 
 
 
 
 
RENAME f, f2 [,Ss] [,Dd] [,Vv] 
MV  f, f2 [,Ss] [,Dd] [,Vv]   ; UNIX version of RENAME 
 
Example: RENAME COPYDOS,COPYDOS.EXEC 
 
This command changes the name of the file ‘f’ to ‘f2’ in the specified volume if the file ‘f’ exists.  The 
time stamp of the renamed file is also updated as shown in Figure III.1.17.  A locked file cannot be 
renamed until it is unlocked.  The VTOC time stamp remains unchanged when a file is renamed 
because nothing in the VTOC was changed. 
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Figure III.1.16.  LOCK Command Display 
 
 
 
 

 
 

Figure III.1.17.  RENAME Command Display 
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SV  An 
 
Example: SV A$1234 
  SV A1234 
 
This command is new to DOS and it displays on the Apple command line the decimal and hexadecimal 
value of the A keyword value whether the keyword variable is entered as a decimal or as a 
hexadecimal value.  Figure III.1.18 shows the use of the SV (i.e. Show Value) command.  Using the 
SV command is a convenient way to convert numbers from decimal to hexadecimal or hexadecimal to 
decimal without having to reach for the calculator. 
 
The DOS 3.3 Print Decimal (i.e. Base-10) routine “PRTDEC” was severely flawed, and it consumed 37 
bytes for its ridiculous implementation.  DOS 4.1 needs to convert 16-bit hexadecimal values to 
decimal and selectively print from one to five zero-prefaced Base-10 digits.  The DOS command SV is 
one example where five zero-prefaced Base-10 digits are printed to the screen.  The algorithm I 
designed for the DOS 4.1 routine “PRTDEC” is only 32 bytes in size, but it requires five additional 
bytes for the high-order bytes in the Decimal Table “DECTBLH” and one additional byte for the low-
order bytes in the Decimal Table “DECTBLL”. 
 
 
 
 
TS  [,Ss] [,Dd] [,Vv] [,An] [,Bn] [,L] [,R] 
 
Example: TS 
  TS A$11,B7 
  TS L 
 
This command is new to DOS and it displays on the screen the contents of the specified sector in 
hexadecimal of the specified track in the specified volume.  The A keyword is used to specify a track 
value and the B keyword is used to specify a sector value, and if not given, their value is 0x00.  The 
value ‘n’ for these keywords may be entered in decimal or hexadecimal, and range checking is done 
against that volume’s VTOC parameters NUMTRKS (i.e. number of tracks) and NUMSECS (i.e. 
number of sectors in a track).  It is critical that a relevant DOS command (i.e. CATALOG) has been 
previously issued to ensure that the volume’s VTOC has been read and is currently in memory and 
NUMTRKS and NUMSECS have relevant values.  If the L or R keyword is included then any A or B 
keyword is ignored if they happen to be included.  The R keyword takes precedence over the L 
keyword if both are included.  The L keyword will display the previous sector (i.e. to the Left, or 
down) and the R keyword will display the next sector (i.e. to the Right, or up).  Figure III.1.19 shows a 
typical TS view of an initialized data disk VTOC:  the screen is cleared and the sector data is displayed 
in hexadecimal byte pairs followed by the TS command and the specified track and sector values. 
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Figure III.1.18.  SV Command Display 
 
 
 
 

 
 

Figure III.1.19.  TS Command of a Data Disk VTOC Display 
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UNLOCK f [,Ss] [,Dd] [,Vv] 
 
Example: UNLOCK TEST 
 
This command clears the most significant bit of the Type byte of the file ‘f’ in the specified volume as 
shown in Tables I.7.1 through I.7.3.  The date and time stamp of the file is also updated as shown in 
Figure III.1.20.  A file must be unlocked before it can be deleted or renamed.  The date and time stamp 
for the VTOC is not updated because nothing is changed in the VTOC. 
 
 
 
 
URM f [,Ss] [,Dd] [,Vv] 
 
Example: URM MOVEDOS 
 
This command is new to DOS and it restores the file ‘f’ to the catalog of the specified volume by 
clearing the most significant bit of its TSL track byte and marking the sectors in the file’s TSL(s) and 
the TSL sector(s) as used.  It is prudent to restore a deleted file as soon as possible before the sectors in 
a file’s TSL(s) and the TSL sector(s) are utilized by another file.  Even if a file requires multiple TSL 
sectors, all data sectors and all TSL sectors are restored with the URM command.  There is no harm in 
attempting to undelete a file that is already displayed in the volume Catalog.  Figure III.1.21 shows an 
example of a deleted file being restored using the URM command.  Notice the “x” before the deleted 
filename is now gone after the file is restored.  This command was implemented by adding the 
URMHNDL handler to the File Manager Subroutine table as shown previously in Table I.9.6.  The 
DOS 4.1 File Manager handles this command much like the DELHNDLR hander.  The date and time 
stamp for the VTOC is updated because the VTOC is changed when a file is restored.  The date and 
time stamp for a file and for the VTOC are both updated even when the URM command is used to 
restore a file that is already displayed in the volume Catalog. 
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Figure III.1.20.  UNLOCK Command Display 
 
 
 
 

 
 

Figure III.1.21.  URM Command Display 
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VERIFY f [,Ss] [,Dd] [,Vv] [,R1] 
 
Example VERIFY DOS4.1,R1 
 
This command reads into memory each sector listed in the TSL sector(s) of the file ‘f’ in the specified 
volume.  The read routine in RWTS simply verifies the checksum for each sector read.  No data is 
changed and the date and time stamp of the file is not changed.  The TSL sector(s) is indirectly verified 
since it is read into a DOS buffer and used to obtain the file’s track and sector list, but it is not included 
in the verified sector count.  Only when a non-zero R keyword is included will the number of verified 
sectors be displayed on the Apple command line as shown in Figure III.1.22.  If a non-zero R keyword 
is included with the DOS 4.1 commands SAVE, BSAVE, LSAVE, and TSAVE, not only is the 
address and length information displayed, but also the number of verified sectors displayed as well.  
The VTOC time stamp remains unchanged when a file is verified because nothing in the VTOC was 
changed. 
 
 
 
 

 
 

Figure III.1.22.  VERIFY Command Display 
  



 128 

Command Command Syntax 
IN# s 

MAXFILES [n] 
MON [C] [,I] [,O] 

NOMON [C] [,I] [,O] 
PR# s 

 
Table III.2.1.  DOS 4.1 System Commands 

 
 
 

2.  System Commands 
The DOS 4.1 System Commands manage the Input/Output data streams, the display of commands and 
data items, and the number of data buffers within DOS 4.1.  The syntax of the System Commands is 
shown in Table III.2.1. 
 
 
 
IN#  s 
 
Example: IN#7 
 
This command configures the KSWL interface to receive all subsequent data from the peripheral 
device residing in the specified slot ‘s’ instead of from the Apple keyboard.  Previously, Figure III.1.4 
shows an example of using the IN# command in communicating with the Thunderclock card. 
 
 
 
 
MAXFILES [n] 
 
Example: MAXFILES 4 
  MAXFILES 
 
This command specifies the number of file buffers ‘n’ that can be active at any given time up to a 
maximum of 9 buffers for DOS 4.1L and 5 buffers for DOS 4.1H.  When DOS 4.1 boots, the default 
number of file buffers is configured by the NMAXVAL variable at 0xBEEF as shown in Table I.8.7.  
This value is set to 3 in DOS 4.1L and 5 in DOS 4.1H.  Each file buffer requires 585 (or 0x249) bytes 
of memory.  DOS 4.1L builds its file buffers down in memory beginning at 0x9D00 whereas DOS 
4.1H builds its file buffers up in memory beginning at 0xEC00.  DOS 4.1H was designed this way 
such that setting MAXFILES to ‘3’ will allow the MiniAssembler and its associated Monitor to be read 
into memory at 0xF500 and not perturb any of the DOS file buffers.  Apple ][ memory is very precious 
so specifying more file buffers than is absolutely necessary may prevent the development of a very 
large, complex Applesoft or Binary program.  MAXFILES with no parameter ‘n’ will display the 
current number of active file buffers on the Apple command line as shown in Figure III.2.1.   In Figure 
III.2.1 the difference of 150,37 (or $9625) and 147,220 (or $93DC) is 2,73, or 585 (or 0x249) bytes.  
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The number of file buffers can never be zero.  Even the CATALOG command requires a file buffer.  
Table III.2.2 shows the memory locations for all file buffers in DOS 4.1L and in DOS 4.1H.  Reducing 
the number of file buffers in DOS 4.1H does not provide additional program space because those file 
buffers reside in the Language Card memory; reducing the number of file buffers to 3 would only 
allow the use of the MiniAssembler, for example.  Before the MAXFILES command rebuilds the file 
buffers and allow DOS 4.1 to utilize them it terminates any active EXEC file and closes all open files.  
Therefore, the MAXFILES command should be issued early in a program before any files are opened 
for data input or output. 
 
 
 
 

 
 

Figure III.2.1.  MAXFILES, MON, and NOMON Command Display 
 
 
 
 
MON  [,C] [,I] [,O] 
 
Example: MON C,I,O 
  MON 
 
This command enables the display of commands, input data, and output data to a volume.  If the C 
keyword is included all programmatically executed DOS Commands are displayed.  If the I keyword is 
included all Input data from a volume is displayed.  If the O keyword is included all Output data to a 
volume is displayed.  If no keywords are included the CSWL and KSWL pointers are initialized and 
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DOS enters the Apple Monitor at 0xFF65.  Entering a ctrl-C from the Apple Monitor re-enables DOS’s 
control of the CSWL and KSWL pointers as shown in Figure III.2.1. 
 
 
 
 

MAXFILES 
Value 

DOS 4.1L DOS 4.1H 
Memory HIMEM Memory HIMEM 

1 0x9AB7-0x9CFF 0x9AB7 0xEC00-0xEE48 0xBE00 
2 0x986E-0x9AB6 0x986E 0xEE49-0xF091 0xBE00 
3 0x9625-0x986D 0x9625 0xF092-0xF2DA 0xBE00 
4 0x93DC-0x9624 0x93DC 0xF2DB-0xF523 0xBE00 
5 0x9193-0x93DB 0x9193 0xF524-0xF76C 0xBE00 
6 0x8F4A-0x9192 0x8F4A - 0xBE00 
7 0x8D01-0x8F49 0x8D01 - 0xBE00 
8 0x8AB8-0x8D00 0x8AB8 - 0xBE00 
9 0x886F-0x8AB7 0x886F - 0xBE00 

 
Table III.2.2.  MAXFILES Memory Locations 

 
 
 
 
NOMON [,C] [,I] [,O] 
 
Example: NOMON C,I,O 
  NOMON 
 
This command disables the display of commands, input data, and output data to a volume.  If the C 
keyword is included all programmatically executed DOS Commands are no longer displayed.  If the I 
keyword is included all Input data from a volume is no longer displayed.  If the O keyword is included 
all Output data to a volume is no longer displayed.  If no keywords are included the CSWL and KSWL 
pointers are initialized and DOS enters the Apple Monitor at 0xFF65.  Entering a ctrl-C from the Apple 
Monitor re-enables DOS’s control of the CSWL and KSWL pointers as shown in Figure III.2.1. 
 
 
 
 
PR#  s 
 
Example: PR#7 
 
This command configures the CSWL interface to send all subsequent data to the peripheral device 
residing in the specified slot ‘s’ instead of to the Apple display.  Previously, Figure III.1.4 shows an 
example of using the PR# command in communicating with the Thunderclock card. 
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Command Command Syntax 
CHAIN f [,Ss] [,Dd] [,Vv] [,Ll] [,R] 
LOAD f [,Ss] [,Dd] [,Vv] [,R] 
RUN f [,Ss] [,Dd] [,Vv] [,Ll] 
SAVE f [,Ss] [,Dd] [,Vv] [,R[1]] [,B] 

 
Table III.3.1.  DOS 4.1 Applesoft File Commands 

 
 
 

3.  Applesoft File Commands 
The DOS 4.1 Applesoft File Commands manage Applesoft files.  The syntax of the Applesoft File 
Commands is shown in Table III.3.1. 
 
 
 
CHAIN f [,Ss] [,Dd] [,Vv] [,Ll] [,R] 
 
Example: CHAIN TESTPART2, D2 
 
This command is new to DOS and is used only from within an Applesoft program.  It LOADs and 
RUNs the Applesoft file ‘f’ in the specified volume.  It does not clear the value(s) of any previous 
variable so that file ‘f’ can use the data and results of the previous program(s), and can provide data 
and results for any following CHAINing program.  If the L keyword is included processing will begin 
at that line number only if that line number exists in program ‘f’, otherwise an error is reported and 
Applesoft processing terminates.  This capability opens up a myriad of programming possibilities.  If 
the R keyword is NOT used CHAIN calls the Applesoft ROM routine GARBAG at 0xE484 before 
moving the Simple Variables and Array Variables descriptors to their new location at the end of 
program ‘f’.  This allows a user to either invoke the FRE( aexpr ) command or utilize another 
method of string garbage collection before or after using the CHAIN command.  It is critical that 
simple string variables and string array variables that will be used in the next CHAINing program be 
moved to the Character String Pool memory area where string data is stored.  See section I.13 for a 
more thorough discussion of the DOS CHAIN command. 
 
Table I.13.1 shows the definition of the descriptor for the simple variables used in Applesoft programs.  
The string descriptor consists of only the first two characters of the string name (so care must be given 
in naming variables), the string length, the address in low/high byte order where the string resides in 
memory, and two NULL filler bytes.  String descriptors for array variables are shown in Table I.13.2 
and each string element contains the string length and the address in low/high byte order where the 
string resides in memory.  The address in the string descriptor or string element will initially be 
location where the actual string data exists within the contents of a program.  Once the next CHAINing 
file ‘f’ replaces that Applesoft program, the actual string data will be overwritten and lost, and its 
address will become invalid.  Therefore, caution must be exercised when using string variables and 
CHAIN if the string variables are not moved to the Character String Pool memory area. 
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Figure III.3.1.  Listing of START and PROGRAM2 Programs Display 
 
 
 
 

 
 

Figure III.3.2.  Output of Programs START and PROGRAM2 Display 
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Figure III.3.1 shows two Applesoft programs called START and PROGRAM2.  START defines four 
simple variables D$, AB, CD%, and EF$.  The string variable EF$ is defined in such a way as to force 
Applesoft to move it immediately into the Character String Pool memory area where string data is 
stored.  Applesoft will also move the variable D$ to the Character String Pool memory area before it is 
used with the CHAIN command.  All four variables will be available to the CHAINing program 
PROGRAM2 as shown in Figure III.3.2 when the program START is RUN. 
 
 
 
 

 
 

Figure III.3.3.  LOAD and SAVE Commands Display 
 
 
 
 
LOAD f [,Ss] [,Dd] [,Vv] [,R] 
 
Example LOAD HELLO 
  LOAD HELLO,R 
 
This command reads into memory at 0x0801 the Applesoft file ‘f’ in the specified volume.  Applesoft 
program files are file type 0x02 as shown in Table I.7.3.  This command will also process “A type” 
files (i.e. 0x20) as an Applesoft file similarly as in DOS 3.3.  If the R keyword is included the memory 
load address (i.e. 0x0801) and the number of bytes loaded (i.e. 0x02A7) are displayed as shown in 
Figure III.3.3. 
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RUN  f [,Ss] [,Dd] [,Vv] [,Ll] 
 
Example: RUN START 
 
This command reads into memory at 0x0801 the Applesoft file ‘f’ in the specified volume and begins 
program execution.  DOS pointers are first initialized, then DOS calls 0xD665 in ROM to clear 
Applesoft variables, clears the prompt and ONERR flags, and finally calls 0xD7D2 in ROM to begin 
program execution.  If the L keyword is included processing will begin at that line number only if that 
line number exists in program ‘f’, otherwise an error is reported and Applesoft processing terminates.  
An example of the use of the RUN command was shown previously in Figure III.3.2. 
 
 
 
 
SAVE f [,Ss] [,Dd] [,Vv] [,R[1]] [,B] 
 
Example: SAVE HELLO2 
  SAVE HELLO2,R 
  SAVE HELLO2,R1 
 
This command saves the Applesoft file ‘f’ to the specified volume.  If the R keyword is included the 
save address (i.e. 0x0801) and the number of bytes saved (i.e. 0x02A7) are displayed as shown in 
Figure III.3.3.  If a non-zero R keyword is included, the number of verified sectors is also displayed as 
shown in Figure III.3.3.  The B keyword can be used to implement the “File Delete/File Save” 
strategy.  That is, the Applesoft file ‘f’ will be deleted from the volume Catalog and then saved to the 
volume in order to ensure that the file’s TSL contains the exact number of track/sector entries that are 
required. 
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Command Command Syntax 
BLOAD f [,Ss] [,Dd] [,Vv] [,Aa] [,R] 
BRUN f [,Ss] [,Dd] [,Vv] [,Aa] 

BSAVE f [,Ss] [,Dd] [,Vv] [,Aa] [,Ll] [,R[1]] [B] 
LLOAD f [,Ss] [,Dd] [,Vv] [,Aa] [,R] 
LSAVE f [,Ss] [,Dd] [,Vv] [,Aa] [,Ll] [,R[1]] [B] 

 
Table III.4.1.  DOS 4.1 Binary File Commands 

 
 
 

4.  Binary File Commands 
The DOS 4.1 Binary File Commands manage Binary, or assembly language files.  The syntax of the 
Binary File Commands is shown in Table III.4.1. 
 
 
 
BLOAD f [,Ss] [,Dd] [,Vv] [,Aa] [,R] 
 
Example: BLOAD RD 
  BLOAD RD,R 
  BLOAD RD,A$1000,R 
 
This command reads into memory at address ‘a’ if the A keyword is included, the Binary file ‘f’ in the 
specified volume.  If the A keyword is not included the file is read into memory at the address the file 
was originally saved.  Binary files are file type 0x04 as shown in Table I.7.3.  If the R keyword is 
included the memory load address and the number of bytes read are displayed as shown in Figure 
III.4.1. 
 
 
 
 
BRUN f [,Ss] [,Dd] [,Vv] [,Aa] 
 
Example: BRUN INSTALLL 
  BRUN INSTALLL,A$1000 
 
This command reads the Binary file ‘f’ in the specified volume into memory at address ‘a’ if the A 
keyword is included, and begins program execution at that address.  If the A keyword is not included, 
the Binary file ‘f’ is loaded into memory at the address the file was originally saved and execution 
begins at that address.  In DOS 4.1 the DOSWARM address is pushed onto the stack before executing 
an indirect “JMP” to ADRVAL, the Binary file memory load address, to guarantee that DOS will be in 
control after the Binary program exits.  An example of the BRUN command is shown in Figure III.4.2. 
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Figure III.4.1.  BLOAD and BSAVE Commands Display 
 
 
 
 

 
 

Figure III.4.2.  BRUN Command Display 
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BSAVE f [,Ss] [,Dd] [,Vv] [,Aa] [,Ll] [,R[1]] [,B] 
 
Example: BSAVE RD2 
  BSAVE RD2,R 
  BSAVE RD3,A$4000,L$1C00,R1 
 
This command saves the Binary file ‘f’ to the specified volume using the memory address ‘a’ and 
length ‘l’ in bytes if the A and L keywords are included.  In DOS 4.1 these keywords are optional, but 
if they are included they are both required.  If the A and L keywords are not included, the address ‘a’ 
and length ‘l’ of the previous BLOAD or BSAVE command are used.  If the R keyword is included the 
memory save address and the number of bytes saved are displayed as shown previously in Figure 
III.4.1.  If a non-zero R keyword is included, the number of verified sectors is also displayed as shown 
in Figure III.4.1.  Also shown in Figure III.4.1 is a byte comparison of the two files RD and RD3 using 
the DOS DIFF command.  The DIFF command proves that both files are identical.  The B keyword 
can be used to implement the “File Delete/File Save” strategy.  That is, the Binary file ‘f’ will be 
deleted from the volume Catalog and then saved to the volume in order to ensure that the file’s TSL 
contains the exact number of track/sector entries that are required. 
 
 
 
 
LLOAD f [,Ss] [,Dd] [,Vv] [,Aa] [,R] 
 
Example: LLOAD README.L 
  LLOAD README.L,R 
  LLOAD README.L,A$1000,R 
 
This command is new to DOS and it reads into memory the Lisa Binary file ‘f’ in the specified volume 
at address ‘a’ if the A keyword is included.  If the A keyword is not included the Lisa file is read into 
memory at the address the file was originally saved.  Lisa files are file type 0x40 as shown in Table 
I.7.3.  If the R keyword is included the memory load address and the number of bytes read are 
displayed as shown in Figure III.4.3. 
 
 
 
 
LSAVE f [,Ss] [,Dd] [,Vv] [,Aa] [,Ll] [,R[1]] [,B] 
 
Example: LSAVE README2.L 
  LSAVE README2.L,R 
  LSAVE README3.L,A$2100,L$CED,R1 
 
This command is new to DOS and it saves the Lisa Binary file ‘f’ to the specified volume using the 
address ‘a’ and length ‘l’ if the A and L keywords are included.  In DOS 4.1 these keywords are 
optional, but if they are included they are both required.  If the A and L keywords are not included, the 
address ‘a’ and length ‘l’ of the previous LLOAD or LSAVE command are used.  If the R keyword is 
included the memory save address and the number of bytes saved are displayed as shown in Figure 
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III.4.3.  If a non-zero R keyword is included, the number of verified sectors is also displayed as shown 
in Figure III.4.3.  Also shown in Figure III.4.3 is a byte comparison of the two files README.L and 
README3.L using the DOS DIFF command.  The DIFF command proves that both files are identical.  
The B keyword can be used to implement the “File Delete/File Save” strategy.  That is, the Lisa Binary 
file ‘f’ will be deleted from the volume Catalog and then saved to the volume in order to ensure that 
the file’s TSL contains the exact number of track/sector entries that are required. 
 
 
 
 

 
 

Figure III.4.3.  LLOAD and LSAVE Commands Display 
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Command Command Syntax 
APPEND* f [,Ss] [,Dd] [,Vv] 

CLOSE [f] 
EXEC f [,Ss] [,Dd] [,Vv] [,Rr] 

OPEN* f [,Ss] [,Dd] [,Vv] 
POSITION* f [,Rr] 

READ* f [,Bb] 
TLOAD f [,Ss] [,Dd] [,Vv] [,A] [,Bb] [,Ll] [,R] 
TSAVE f [,Ss] [,Dd] [,Vv] [,R[1]] [B] 

TW f [,Ss] [,Dd] [,Vv] 
WRITE* f [,Bb] 

 
Table III.5.1.  DOS 4.1 Sequential Text File Commands 

 
 
 

5.  Sequential Text File Commands 
The DOS 4.1 Sequential Text File Commands manage sequential Text files.  The syntax of the 
Sequential Text File Commands is shown in Table III.5.1.  The commands shown with an asterisk 
cannot be used on the Apple command line, whereas the other sequential Text file commands are 
allowed to be used on the Apple command line.  Sequential Text files are composed of sequential 
fields of ASCII characters where a RETURN (i.e. 0x8D) character terminates each field, and a NULL 
(i.e. 0x00) character terminates the file.  DOS 4.1 differentiates between sequential Text files and 
random-access Data files in how the file is opened.  If the L keyword is not included with the OPEN 
command the file is treated as a sequential Text file, and the READ and WRITE commands must not 
use the R keyword as shown in Table III.5.1. 
 
Data may be read from or saved to a sequential Text file immediately after the file is opened, after the 
file pointer has been positioned to a particular byte location, or after the file pointer has been 
positioned to a particular field.  If the B keyword is included with the READ or WRITE command, it 
will take precedence over any previous POSITION command.  That is, even though the file pointer 
may be at the beginning of the ‘r’th field specified by a previous POSITION command, the B 
keyword, if it is included with a subsequent READ or WRITE command, will force the file pointer to 
be recalculated to point to the ‘b’th byte relative to the beginning of the file. 
 
 
 
APPEND f [,Ss] [,Dd] [,Vv] 
 
Example: APPEND STEST.T 
 
This command will open the sequential Text file ‘f’ in the specified volume if it is not already opened.  
The APPEND command must be followed by a WRITE command to file ‘f’.  The APPEND command 
will read the entire file ‘f’ and position the file pointer to the first NULL (i.e. 0x00) character found in 
the file.  All subsequent input data will be saved to the file beginning at that location.  Figure III.5.1 
shows an example Applesoft program that uses the OPEN, WRITE, and CLOSE commands in order to 
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create the sequential Text file STEST.T.  Figure III.5.2 is similar in that it shows an example Applesoft 
program that uses the APPEND command to add more information to the file STEST.T. 
 
The APPEND command was flawed in several locations in DOS 3.3 requiring patches in how the 
internal variable BYTOFFST and the File Manager Context Block variable RECNUM were 
manipulated.  DOS 4.1 manipulates these variables correctly within the File Manager driver routine 
“FMDRVR”, in the Common Open routine “CMNOPN” as described in Section I.10, and in the Calculate 
Position routine “CALPOSN”.  The original DOS 3.3 Calculate Position routine failed to ensure that the 
carry flag was clear before manipulating its variables in order to calculate the desired file position. 
 
 
 
 

 
 

Figure III.5.1.  OPEN, WRITE, and CLOSE Commands Display 
 
 
 
 
CLOSE [f] 
 
Example: CLOSE 

CLOSE STEST.T 
 
This command will de-allocate the file buffer associated with the sequential Text file ‘f’, thereby 
closing the file from further data input or data output.  If a filename is not supplied with the CLOSE 
command, all open files regardless of their file type will be closed except for an open EXEC file.  If a 
file ‘f’ was open for data input, a CLOSE command will cause all remaining data in its file buffer to be 
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saved to the file and then the file ‘f’ will be closed.  Figures III.5.1 and III.5.2 show examples of using 
the CLOSE command in an Applesoft program. 
 
 
 
 

 
 

Figure III.5.2.  APPEND Command Display 
 
 
 
EXEC f [,Ss] [,Dd] [,Vv] [,Rr] 
 
Example: EXEC ETEST.T 
  EXEC ETEST.T,R3 
 
This command opens the file ‘f’ in the specified volume with the expectation of reading either 
Applesoft or DOS 4.1 commands as if the commands had been issued from the Apple command line.  
There can be only one active EXEC file, but an EXEC file may transfer control to another EXEC file.  
If the R keyword is included the file pointer is positioned that number of fields ‘r’ from the beginning 
of the file.  A field is a sequence of characters terminated by a RETURN (i.e. 0x8D) character.  Figure 
III.5.3 shows an example of an EXEC file in operation.  In Figure III.5.4 the file pointer is positioned 
at the first character after counting three RETURN characters, thus ignoring those fields, and issuing 
all subsequent commands in that file.  Notice that the first three commands in the EXEC file ETEST.T 
are skipped.  If MAXFILES is used in an EXEC file, the EXEC command processing will terminate 
and close the executing EXEC file.  In both Figures III.5.3 and III.5.4 command-line spacing is set to 
single spacing while an EXEC file is open.  Once the EXEC file is closed DOS 4.1 will return to 
double spacing for displaying successive Apple command lines. 
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Figure III.5.3.  EXEC Command Display 
 
 
 
 

 
 

Figure III.5.4.  EXEC,Rr Command Display 
 



 143 

OPEN f [,Ss] [,Dd] [,Vv] 
 
Example: OPEN STEST.T 
 
This command will allocate one of the available file buffers, which is 585 (i.e. 0x249) bytes in size, for 
the sequential Text file ‘f’ in the specified volume.  This file buffer will be initialized to read from or 
write to the beginning of this file.  If this file does not exist in the specified volume, the file is created 
and an entry is made in the volume Catalog.  If this file is already open, the file is flushed so any 
remaining data in its file buffer is saved to the file, the file is closed, and the specified file is again 
opened.  Figures III.5.1 and III.5.2 show examples of using the sequential Text OPEN command in an 
Applesoft program.  The L keyword must not be included with the OPEN command when reading and 
writing sequential Text files. 
 
 
 
POSITION f [,Rr] 
 
Example: POSITION STEST.T,R1 
 
This command will position the file pointer in the file ‘f’ that number of fields ‘r’ ahead relative to the 
current file pointer position.  A field is a sequence of ASCII characters terminated by a RETURN (i.e. 
0x8D) character.  Figure III.5.5 shows an example Applesoft program where the file pointer is 
positioned at the first character after counting one RETURN character relative to the beginning of the 
file STEST.T since this POSITION command follows an OPEN command.  Otherwise the file pointer 
would be positioned ahead relative to the current file pointer position. 
 
 
 
READ f [,Bb] 
 
Example: READ STEST.T 
 
This command will configure the sequential Text file buffer for file ‘f’ such that all data will come 
from that file.  If the B keyword is included the file pointer position will be located that many actual 
bytes ‘b’ from the beginning of the file before any data is read from the file.  Figure III.5.6 shows an 
example Applesoft program that uses the sequential Data READ command with a byte ‘b’ offset.  Any 
previous POSITION command will be ignored if the B keyword is included with the READ command. 
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Figure III.5.5.  POSITION and READ Commands Display 
  
 
 
 

 
 

Figure III.5.6.  READ,Bb Command Display 
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TLOAD f [,Ss] [,Dd] [,Vv] [,A] [,Bb] [,Ll] [,R] 
 
Example: TLOAD ETEST.T,L31 
  TLOAD STEST,A,R 
  TLOAD ETEST.T,A,B31 
 
This command is new to DOS and it will read into memory the sequential Text file ‘f’ in the specified 
volume to memory address 0x0900.  If the A keyword is included in a subsequent TLOAD command, 
that sequential Text file ‘f’ will be appended to the sequential Text file(s) already in memory as long as 
the internal variable FILELAST+1 is not 0x00; that is, a sequential Text file must already be in 
memory.  If the B keyword is included, that number of bytes ‘b’ will be skipped before reading the file 
into memory.  If the L keyword is included, that number of bytes ‘l’ will be read into memory, or until 
the end of the file if that should occur first.  If the R keyword is included the start address and total 
number of bytes of text data currently in memory is displayed once the TLOAD command completes.  
In Figure III.5.7 the first 31 bytes of the file ETEST.T are read into memory at memory address 
0x0900.  The entire contents of the file STEST.T is next read into memory and appended to the 
previous Text data already in memory because the A keyword was specified.  The total Text data now 
in memory is shown to be 89 (i.e. 0x59) bytes.  Finally, the first 31 bytes of the file ETEST.T are 
skipped and the remaining contents of the file ETEST.T is appended to all the previous Text data 
already in memory.  The complete sequential Text data is saved to the file TOTAL.T, and the entire 
file is displayed using the DOS 4.1 LIST command.  It is quite apparent that a complete sequential 
Text file may be easily created from extracting pieces of other sequential Text files using the TLOAD 
command and its keywords. 
 
 
 
TSAVE f [,Ss] [,Dd] [,Vv] [,R[1]] [B] 
 
Example: TSAVE TOTAL.T,R 
  TSAVE TOTAL2.T,R1 
 
This command is new to DOS and it will save the sequential Text data currently in memory to the file 
‘f’ in the specified volume.  The start address and total number of bytes of Text data currently in 
memory is internal to DOS 4.1.  If the R keyword is included the start address and total number of 
bytes of sequential Text data currently in memory is displayed as shown in Figure III.5.7 once the 
TSAVE command completes.  If a non-zero R keyword is included, the number of verified sectors is 
also displayed.  The B keyword can be used to implement the “File Delete/File Save” strategy.  That is, 
the Text file ‘f’ will be deleted from the volume Catalog and then saved to the volume in order to 
ensure that the file’s TSL contains the exact number of track/sector entries that are required. 
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Figure III.5.7.  TLOAD and TSAVE Command Display 
 
 
 
 

 
 

Figure III.5.8.  TW Display 
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TW  f [,Ss] [,Dd] [,Vv] 
 
Example: TW ETEST 
 
This command is new to DOS and it will record all keystrokes typed on the Apple command line into 
the sequential Text file ‘f’ in the specified volume.  If the file does not exist it is created, otherwise the 
file is always opened in APPEND mode.  The file is flushed and closed when the ESC key is pressed; 
that is, all buffered data is saved to file ‘f’, and then the file is closed.  No line editing is provided and 
all keystrokes including arrow keystrokes (quasi editing) are recorded to the file as well.  The TW (i.e. 
Text Write) command provides a convenient and expeditious way to create or append an EXEC file as 
the example shows in Figure III.5.8. 
 
 
 
WRITE f [,Bb] 
 
Example: WRITE STEST.TXT 
 
This command will configure the sequential Text file buffer for file ‘f’ such that all data will be saved 
to that file.  If the B keyword is included the file pointer position will be located that many actual bytes 
‘b’ from the beginning of the file before any data is saved to the file.  Figures III.5.1 and III.5.2 show 
examples of using the sequential Data WRITE command in an Applesoft program.  Any previous 
POSITION command will be ignored if the B keyword is included with the WRITE command. 
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Command Command Syntax 
CLOSE [f] 
OPEN* f, Ll [,Ss] [,Dd] [,Vv] 
READ* f, Rr [,Bb] 
WRITE* f, Rr [,Bb] 

 
Table III.6.1.  DOS 4.1 Random-Access Data File Commands 

 
 
 

6.  Random-Access Data File Commands 
The DOS 4.1 Random-Access Data File Commands manage random-access Data files.  The syntax of 
the Random-Access Data File Commands is shown in Table III.6.1.  The commands shown with an 
asterisk, or OPEN, READ, and WRITE, cannot be used on the Apple command line, whereas the 
CLOSE command is allowed to be used on the Apple command line.  Random-access Data files are 
composed of specified sized records.  A record may be comprised of Text fields, numerical data fields, 
or both, and can be as small as 1 byte or as large as 65535 (i.e. 0xFFFF) bytes in size.  The record size 
is established by the OPEN command.  A Text field is any number of sequential ASCII characters 
terminated with a RETURN (i.e. 0x8D) character.  A numerical field may be any number of digits, 
either integer or floating point, in decimal or hexadecimal, or expressed in scientific notation in the 
case of real and imaginary numbers.  All fields must reside within the specified record size.  All 
records comprising a file ‘f’ do not necessarily have to contain the same number or order of fields; 
however, all records must be the same size within file ‘f’.  DOS 4.1 allows the R keyword ‘r’ value to 
be specified up to 32767 (i.e. 0x7FFF), thus permitting up to 32768 records in a single file ‘f’.  DOS 
4.1 differentiates sequential Text files and random-access Data files by how the file is opened.  If the L 
keyword is included with the OPEN command the file is treated as a random-access Data file and the 
READ and WRITE commands must use the R keyword as shown in Table III.6.1.  All programs that 
access a random-access Data file must open this file with the same record size ‘l’, otherwise the results 
will be unpredictable and quite possibly disastrous as the file is processed. 
 
Data sectors are created as necessary when a random-access record is supplied with data.  The file 
pointer is calculated based on record size ‘l’ and record number ‘r’.  From the file pointer value the 
necessary TSL index is determined, and if there is no track/sector entry in the respective TSL sector, 
an entry is made and the data sector is created.  The remainder from the TSL index calculation plus any 
‘b’ index value determines the byte offset within the data sector where the record data is saved. 
 
 
 
CLOSE [f] 
 
Example: CLOSE RTEST.T 
 
This command will de-allocate the file buffer associated with the random-address Data file ‘f’, thereby 
closing the file from further data input or data output.  If a filename is not supplied with the CLOSE 
command, all open files regardless of their file type will be closed except for an open EXEC file.  If a 
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file ‘f’ was open for data input, a CLOSE will cause all remaining data in its file buffer to be saved to 
the file.  Figure III.6.1 shows an example of using the CLOSE command in an Applesoft program. 
 
 
 
 
OPEN f, Ll [,Ss] [,Dd] [,Vv] 
 
Example: OPEN RTEST.T, L32 
 
This command will allocate one of the available file buffers, which is 585 (i.e. 0x249) bytes in size, for 
the random-access Data file ‘f’ in the specified volume, and set the record length to the number of 
bytes ‘l’ specified by the L keyword.  If this file does not exist in the specified volume, the file is 
created and an entry is made in the volume Catalog.  If this file is already open, the file is flushed so 
any remaining data in its file buffer is saved to the file, the file is closed, and the specified file is again 
opened.  Figures III.6.1 and III.6.3 show examples of using the random-access Data OPEN command 
in an Applesoft program.  The L keyword must be included with the OPEN command when reading 
data from and writing data to random-access Data files. 
 
 
 
 

 
 

Figure III.6.1.  OPEN, WRITE, and CLOSE Commands Display 
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Figure III.6.2.  Contents of RTEST.T Display 
 
 
 
 
READ f, Rr [,Bb] 
 
Example: READ RTEST.T, R1, B12 
 
This command will configure the random-access Data file buffer for the file ‘f’ such that all data will 
come from that file.  Data will be read from the specified Record ‘r’, one field at a time.  If the R 
keyword is not included no error will be generated and the file pointer will simply be positioned at the 
beginning of the file.  DOS 4.1 does not check for the presence or absence of the R keyword; it simply 
utilizes its value.  However, even though the R keyword is initialized to 0x00 before a DOS command 
is parsed, the practice of not using the R keyword with the random-access READ command is not 
advised.  If the B keyword is included the file pointer will be positioned that many bytes ‘b’ from the 
beginning of the specified Record ‘r’ before any data is read from the file. 
 
Figure III.6.2 shows a hexadecimal list of the contents of RTEST.T using the DOS LIST command.  
Each record is 32 bytes in size from byte 0 to byte 31.  There is no data in the first record, Record 0, 
data in Record 1 begins on byte 12, data in Record 2 begins on byte 6, and data in Record 3 begins on 
byte 0.  Figure III.6.3 shows an example of using the random-access READ command in an Applesoft 
program.  The file records may be specified and will be read from the file in any order, hence the 
descriptive term ‘random-access’.  Figure III.6.3 also shows the results of running the RTEST2 
Applesoft program. 
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WRITE f, Rr [,Bb] 
 
Example: WRITE RTEST.T, R1, B12 
 
This command will configure the random-access Data file buffer for file ‘f’ such that all data will be 
saved to that file.  Data will be saved to the specified Record ‘r’, one field at a time.  If the R keyword 
is not included no error will be generated and the file pointer will simply be positioned at the beginning 
of the file.  The practice of not using the R keyword with the random-access WRITE command is not 
advised.  If the B keyword is included the file pointer will be positioned that many bytes ‘b’ from the 
beginning of the specified Record ‘r’ before any data is saved to the file.  Figure III.6.1 shows an 
example of using the random-access WRITE command in an Applesoft program.  The file records may 
be specified and will be saved to the file in any order, hence the descriptive term ‘random-access’. 
 
 
 
 

 
 

Figure III.6.3.  READ and RUN Command Display 
 
 
 
 
Denis Molony, a citizen of Australia and author of DiskBrowser, provided me with an excellent 
example of an Applesoft program that creates a random-access Data file that will quickly become 
useless after a few records are saved to the file.  Figure III.6.4 shows Molony’s Applesoft program.  
His program certainly looks simple enough until you realize that the program writes to the last possible 
record allowed by DOS 4.1, record 32767 (i.e. 0x7FFF).  When DOS first creates a random-access 
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Data file only the first TSL file is created as in line 400 and the value of the L keyword, 467 in this 
example, is saved in the file’s workarea in the RECDLNGH parameter.  When this file is reopened 
sometime in the future, the file must be opened with the same L keyword value in order to accurately 
locate the desired records.  When Molony’s program writes to record 32767 in line 600 a file pointer is 
calculated and sufficient TSL sectors are created in order to save that particular record to its data 
sector.  Notice how long it took DOS 4.1, running on an Apple //e at normal speed, to create BIGFILE.  
The program CREATE was saved, then loaded into memory, listed, and executed.  The time difference 
from file save to VTOC update is 3:25 minutes:  certainly a huge processing effort for DOS. 
 
How many TSL sectors are created may seem puzzling at first though easy to determine.  Each TSL 
sector contains 122 (i.e. 0x7A) track/sector entries.  These entries are for sectors of data, not for 
records of data.  Each sector of data contains 256 (i.e. 0x100) bytes.  Including record 0, therefore, 
 
{ ( 467 bytes/record * 32768 records ) / 256 bytes/sector } / 122 sectors/TSL = 490 TSLs 
 
When the actual data is written to the file in line 700 an entry is made in the 490th TSL sector for the 
sector that is created to contain the actual data.  The data is not necessarily written to the first byte of 
the sector, but in this instance to byte 46, which comes at the end of record 32766, or the 32767th 
record.  The entire record of 467 bytes is not written to the file but only the data provided in the PRINT 
command in line 700.  This byte offset into the data sector is the remainder from the file pointer 
calculation: 
 
( 467 bytes/record * 32767 records ) / 256 bytes/sector = 59,774 sectors + 45 bytes 
 
 
 
 

 
 

Figure III.6.4.  Example Random-Access Data File CREATE 
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Figure III.6.4 shows that BIGFILE is 491 sectors in size, currently composed of 490 TSL sectors and 1 
data sector.  There are only 61 sectors free on this DOS 4.1 data volume which originally contained 
554 sectors when it was initialized.  Why has DOS created all these TSL sectors?  It seems rather 
ludicrous, because 59,774 sectors are required to contain all the data for all 32768 records if every 
record of 467 bytes contained data and were written to this file.  But that would require a volume 
having at least 3,736 additional disk tracks.  At the very least DOS has created the minimum number of 
required linked-list TSL sectors to write record 32767.  It is rather obvious that the file BIGFILE is not 
at all suitable to contain all the data the program CREATE intended.  Therefore, it is critical that 
random-access Data files are properly sized to the volumes on which they are stored. 
 
Family Roots by Stephen C. Vorenberg and marketed by Quinsept, Inc., utilizes sequential Text files 
and random-access Data files for the Family Roots data base.  Each data volume contains three files:  
CONTROL, NAMELIST, and FAMILY.  The random-access Data file NAMELIST uses 26 sectors.  
The sequential Text file CONTROL uses 2 sectors, and it contains the Start and End record numbers 
that exist in the random-access Data file FAMILY whose records have been pre-initialized with a 256-
byte empty buffer.  The CONTROL file also contains the size of the FAMILY file records, and a few 
other parameters, so that the file FAMILY is always opened with the correct value ‘l’ for the L 
keyword.  Essentially, each FAMILY file contains 224 records that can utilize a record up to 512 bytes 
in size.  The equations required to verify whether there is sufficient disk space for this random-access 
Data file when all of its records are completely filled with data can be expressed as follows: 
 
( 224 records * 512 bytes/record ) / 256 bytes/sector = 448 sectors 
 
448 sectors / 122 sectors/TSL = 4 TSLs 
 
Since Family Roots utilizes the DOS 3.3 disk operating system, track 0x00 is unavailable and the 
VTOC and Catalog require 16 sectors.  This leaves 528 sectors for data.  Using the above results each 
data volume for Family Roots requires 26 + 2 + 448 + 4 = 480 sectors.  Therefore, at least 48 sectors 
should be left available on each data volume for additional files.  A few data volumes did contain one 
or two additional files:  LASTID and DATE.  These files were only two sectors in size and they 
appeared transitory.  Vorenberg sized his data files such that 91% of each data volume can only be 
utilized giving the program Family Roots an adequate safety margin. 
 
These examples demonstrate how important it is to consider whether a single data volume can provide 
sufficient room to store the contents of a particular random-access Data file, or whether several 
volumes would be required to store all the generated data by using multiple random-access Data files.  
Performing the file sizing analysis upfront certainly saves much grief later on when and if a random-
access Data file should exceed its storage media.  Certainly, a random-access Data file cannot grow 
endlessly and it must have limits built into its design.  Given “R” for number of records, “L” for size of 
each record in bytes, and “S” for number of available sectors where each sector contains 256 bytes, the 
general sizing equations incorporating TSL sector overhead can be expressed as follows: 
 
 
S = ( R * L * 123 ) / ( 256 * 122 )      (always round up) 
 
R = ( S * 256 * 122 ) / ( L * 123 )      (always round down) 
 
L = ( S * 256 * 122 ) / ( R * 123 )      (always round down) 
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Inserting Vorenberg’s parameters: 
 
S = ( 224 * 512 * 123 ) / ( 256 * 122 ) = 451.67 => 452 sectors 
 
 
This is precisely the same value obtained above:  480 data sectors + 4 TSL sectors = 452 sectors. 
 
For Molony’s example program, the required number of sectors for his random-access Data file is: 
 
S = ( 32768 * 467 * 123 ) / ( 256 * 122 ) => 60,266 sectors 
 
 
A single 35-track volume is hardly the appropriate medium for this random-access Data file.  
Assuming this Data file can be spread over several 35-track volumes each providing 554 sectors when 
using DOS 4.1, the number of records on each volume would be: 
 
R = ( 554 * 256 * 122 ) / ( 467 * 123 ) => 302 records 
 
 
And, the number of volumes required would be: 
 
32768 records / 302 records/volume => 109 volumes   (always round up) 
 
 
A database of this magnitude would require quite a substantial programing effort, but easily managed 
on the CFFA using DOS 4.1 and the VOLMGR.  Vorenberg strongly recommended using the Sider 
with Family Roots and that is exactly how my mother digitized our family tree. 
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IV.  DOS 4.1 Operational Environment 
DOS 4.1 provides a far more advanced operational environment for programming tools and utilities 
particularly when they make full use of its open architecture.  I have developed my own programming 
tools and utilities such as Applesoft Formatter, Binary File Installation (BFI), Real Time Clock (my 
own hardware, too), Disk Window, EPROM Operating System (EOS), Volume Manager for the CFFA 
Card (VOLMGR), and VTOC Manager (VMGR), or I have created source files for commercial 
programs that include Asynchronous Data Transfer (ADT), Big Mac, PROmGRAMER, CFFA Card 
firmware, File Developer (FID), Lazer’s Interactive Symbolic Assembler (Lisa), Program Global 
Editor (PGE), Global Program Line Editor (GPLE), RamDisk 320 firmware, RanaSystems EliteThree 
firmware, The Sider firmware, and Sourceror to utilize the features of DOS 4.1. 
 
Because so much time has passed since these commercial programs were published, I did not consider 
it necessary to request permission from the authors of this software, or object code, to “source” their 
software:  sadly, many of the authors have already passed on.  My intent from these programs was to 
learn their internal dependencies on DOS 3.3.  Collectively, these dependencies partially drove my 
design of DOS 4.1 to best provide enough visibility into the DOS 4.1 processing internals and data 
structures these authors required. 
 
As is said, “The proof is in the pudding.”  I have successfully modified all the above-mentioned 
commercial programming tools, utilities, and firmware to be fully DOS 4.1 compliant as if DOS 4.1 is 
some black box with a few special access points:  there should be no need to directly access any of 
DOS 4.1 internal routines.  To be sure I am a staunch capitalist, however, I have neither need nor 
desire to sell any of the source files I have created.  They were created for my own intellectual 
edification and for my own use.  I am simply showing the effort and time I have invested to modify 
what I consider to be valuable software programs written by other brilliant Apple ][ software 
programmers to function successfully within the operational environment of DOS 4.1, Build 46. 
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1.  Applesoft Formatter 
After about six months of writing test and demonstration Applesoft programs on my new Apple ][+ I 
began thinking about writing a serious Applesoft program.  Binary File Installation was that program, 
but it became a hybrid program because it included attached assembly language routines as described 
in section IV.2.  I also thought I was now capable of writing a standalone assembly language program.  
How an Applesoft program appeared on the screen when listed or printed by a printer appalled me and 
I was determined to use assembly language to design and write an Applesoft Formatter program.  
Along with aligning program line numbers and spacing all parentheses consistently, two inherent 
features of this program were to optionally split multiple BASIC commands on one line to appear on 
separate lines and to optionally indent BASIC commands within a FOR/NEXT loop no matter how 
nested they became.  Since I owned an Epson MX100 printer I could easily print up to 120 characters 
on each line if I used wide paper.  Basically, this was an exercise in parsing Applesoft tokens, keeping 
track of FOR/NEXT loops, and counting quotes.  As an interesting aside, I wrote this software to 
execute at any memory address.  It was certainly an intriguing exercise. 
 
 
 
 

 
 

Figure IV.1.1.  Applesoft Program Listing 
 
 
 
 
A very simple, unimaginative test Applesoft program is shown in Figure IV.1.1 along with some 
results when RUN.  I have purposefully put several Applesoft commands on the same line and 
embedded the FOR/NEXT loop within those lines.  Even when this program is listed to a printer it 
appears just as awkward and difficult to read.  Needless to say a program many times this size would 
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be exceedingly difficult to read, debug, and analyze.  I am sure there must have been at least one utility 
if not more available in the early 1980’s (i.e. Roger Wagner’s Apple-Doc) that could format Applesoft 
programs with multiple formatting options.  And I am sure those programs did their task 
magnificently, too.  But that was not my intention, to purchase someone else’s labors. 
 
I wanted to understand how to parse Applesoft programs, and how to separate the Applesoft command 
tokens from the variable names and the embedded ASCII text.  So this exercise would require me to do 
some research, study, and hard work.  Figure IV.1.2 shows the output of Applesoft Formatter when the 
split line and indent line options are enabled.  Seriously, this listing is totally easy to read, debug, and 
analyze now that the Applesoft program has been formatted in an appealing and precise way.  I also 
gained an exceptional understanding in assembly language programming for the 6502-microprocessor, 
how to best use an assembler, and how to write relocatable software.  Obviously, the lessons learned in 
writing Applesoft Formatter were forever invaluable to me. 
 
To assemble the ASLIST source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the ASLIST Source volume “ASLIST.Source” in disk drive 2, load the 
“ASLIST.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  The complete binary 
image will be saved to the ASLIST Source volume as “ASLIST”. 
 
 
 
 

 
 

Figure IV.1.2.  Applesoft Program Programmatically Formatted 
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2.  Binary File Installation (BFI) 
Binary File Installation was the first totally useful Applesoft program I wrote on my Apple ][+.  I 
began writing Applesoft programs initially, but soon explored assembly language for various sort 
algorithms and disk I/O routines.  If I wrote the sort algorithms and disk I/O routines such that they 
could execute at any memory address then I could attach their binary code to the end of an Applesoft 
program, modify some page-zero pointers, and save the composite, albeit hybrid program.  Whenever I 
RAN the Applesoft program, the program logic would obtain its program size from page-zero 
locations and then calculate the addresses of the sort algorithm and the disk I/O routines knowing their 
lengths in bytes, or that many bytes before the end of the program.  A CALL could then be made 
directly to the address of the sort algorithm or the disk I/O routine from any place within the Applesoft 
program. 
 
I learned I could even pass parameters to an assembly language routine and also have variables 
returned to the Applesoft program.  Any number of relocatable routines could be attached to the end of 
an Applesoft program and CALLed as long as their location in memory could be precisely determined.  
I thought a utility could more easily handle this attachment process, so I created Binary File 
Installation to do just that.  The user tells BFI which Applesoft program to select that would receive the 
binary file attachment(s) and all the relocatable binary files to attach.  BFI then modifies the size of the 
Applesoft program on disk (its first two bytes in the file) and calls the File Manager to append the 
binary files to the end of the program on disk after its last three null bytes:  simple, clean, and efficient.  
Once the attachment is done, BFI prints the order and size of all the binary files it attached.  The 
Applesoft program can be edited at any time using the Apple command line and cursor move routines.  
However, if a tool such as GPLE or PGE is used to edit the Applesoft program, any attached binary 
files will be stripped from the program when it is saved to disk.  I have yet to explore how to repair this 
feature in GPLE and PGE. 
 
I have modified BFI a number of times as I increased my knowledge of the VTOC and RWTS, and the 
HIRES screen and HIRES drawing routines.  Sierra’s ScreenWriter used a HIRES screen font that I 
adapted for BFI, and BFI uses an adaptation of the HIRES icon drawing routine I developed for 
Sierra’s HomeWord Speller product.  I even wrote the icon development and edit tool that I use to 
create and generate the “shape table” data for all screen icons used in BFI.  After the initial splash 
screen, the Main Menu screen is displayed as shown in Figure IV.2.1.  Selecting the Hardware icon 
displays the Peripheral Selection screen as shown in Figure IV.2.2. 
 
BFI displays the results of the binary file installation when it completes its processing, and the user can 
selectively print this report as well.  Figure IV.2.3 shows the report that is generated when attaching all 
the binary files required by the Applesoft code comprising BFI.  I probably learned more about my 
Apple from this single program at a very early stage in my computer programming self-education after 
having been recently graduated with a bachelor’s degree in Electrical Engineering. 
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Figure IV.2.1.  BFI Main Menu 
 
 
 
 

 
 

Figure IV.2.2.  BFI Peripheral Selection 
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Binary File Installation Report 
 

*** Applesoft File *** Length in Bytes 
BFI  6337 
  
*** Binary Files ***  
CR   453 
SS   336 
RW   178 
FA   129 
MM    93 
FS    78 
IC    33 
DI  1486 
SD  1115 
  

Total: 10238 
 

Figure IV.2.3.  BFI Installation Report on BFI 
 
 
 
 
To assemble the BFI assembly language source code routines place the DOS 4.1 Tools volume 
“DOS4.1.ToolsL” in disk drive 1, boot, and start Lisa.  Enter the “SE” command-line command to 
select the “SETUP” program in order to verify or set the “Start of Source Code” to 0x2100 
and the “End of Source Code” to 0x6000.  Place the BFI Source volume “BFI.Source” in 
disk drive 2, load a Lisa source code file into memory, and start the assembler by entering either the 
“A” command-line command or the “Z” command-line command.  If a printed version of the screen 
output is desired simply preface the “A” or “Z” command with the “P1” command-line command.  The 
object code (i.e. binary file) will be saved to the BFI Source volume.  Continue to assemble all the BFI 
assembly language source code routines until all the routines have been assembled.  Place the BFI 
Source volume “BFI.Source” in disk drive 1 and run “BFI”.  Select a single drive installation and 
whatever slot the printer interface slot card resides in.  Select “BFI.RAW” for the Applesoft program.  
Successively select the binary files shown in Figure IV.2.3.  Binary files from other volumes may be 
selected as well.  Perform the installation and print the Binary File Installation Report if desired. 
 
Alternatively, place the BFI Source volume “BFI.Source” in disk drive 1 and run “BFI”.  Select a 
double drive installation and whatever slot the printer interface slot card resides in.  Place the volume 
containing the target Applesoft program in disk drive 1 and the volume containing the binary files in 
disk drive 2.  Select the Applesoft program and the necessary binary files to install, perform the 
installation, and print the Binary File Installation Report if desired. 
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3.  Apple ][+ Memory Upgrade  
Now that I was an Electrical Engineering graduate student in the early 1980’s, I certainly wanted to use 
my Apple ][+ as an opportunity to make some practical hardware modifications.  First and foremost I 
wanted to incorporate a shift key modification, add in keyboard repeat logic, and provide an “alt” key 
circuit to the keyboard that would set or clear specific bits in the keyboard data in order to generate all 
the other ASCII characters the Apple ][+ keyboard could not generate.  This drove me to burn my own 
character generator EPROM that included lowercase characters, rather similar to what Dan Paymar 
was selling as his Lowercase Adaptor Interface.  Then I fixed the “glitch” I noticed when switching 
modes from TEXT, LOWRES, and HIRES using a couple of additional logic gates:  it was all a matter 
of timing in order to alter an inherent logic delay when the display mode was switched.  I reached a 
level of competence when I decided to remove all 24 16 Kb DRAM chips from the motherboard and 
replaced them with eight 64 Kb DRAM chips.  This required cutting some foil traces, rerouting power, 
and building a satellite circuit board that would generate an additional DRAM row/column address 
line.  The satellite circuit even included logic to model the Language Card in order to emulate the 
action of certain addresses that act as soft switches.  In theory it all worked perfectly in my head, of 
course.  The satellite circuit I developed is shown in Figure IV.3.1.  I paused a very long moment 
before applying power to my modified motherboard the first time.  I was pleased, if not absolutely 
delighted to find that my 48 KB Apple ][+ was fully 64 KB functional as if a Language Card resided in 
Slot 0.  There was no blue smoke.  Wow! 
 
 

 
Figure IV.3.1.  Apple ][+ Satellite Circuit Diagram 

 
 
 
 
The satellite circuit contains the eight logic chips shown in Figure IV.3.1, three LED’s, eight DIP 
switches, and a 26-pin connector for the signals shown in Table IV.3.1 along with power and ground.  
Either DIP switch 1 or 2 must be closed, but not both.  If DIP switch 1 is closed then the 74LS175 
configuration register is clocked only with a read to 0xC08n, where “n” can be 0x0 to 0xF.  If DIP 



 162 

switch 2 is closed then the configuration register is clocked with either a read or a write to 0xC08n.  
Language Card RAM is enabled if 0xC080, 0xC083, 0xC088, or 0xC08B is read, and the green LED 
glows.  If RAM bank 1 is enabled (i.e. 0xC088 to 0xC08F is read) the yellow LED glows.  RAM is 
write-enabled if 0xC081, 0xC083, 0xC089, or 0xC08B is read twice and DIP switch 3 is closed, then 
the red LED glows.  Opening DIP switch 3 will absolutely write-protect Language Card RAM. 
 
 
 
 

Signal Location Signal Location 
ø1 B1,6 (74LS175) A12 H4,3 (8T97) 
AX C2,14 (74LS195) A13 H5,3 (8T97) 

DevSel H2,15 (74LS138, Slot 0) A14 J1,9 (74LS257) 
INH F3,18 (ROM-E8) A15 J1,12 (74LS257) 
RES A7,3 (keyboard socket) A12* to C1,3 (74LS157) 
R/W H5,5 (8T97) A14* to F2,14 (74LS139) 
A0 H5,11 (8T97) RA7 to all 4164,9 
A1 H4,5 (8T97) CE to all EPROM’s CE 
A2 H5,7 (8T97) ALT to all EPROM’s A14 
A3 H5,9 (8T97) CS0-CS3 to each EPROM CS 

 
Table IV.3.1.  Apple ][+ Satellite Circuit Board Connections 

 
 
 
 
A 27128 EPROM is the minimum size that will hold the ROM firmware from 0xD000 to 0xFFFF, 
although the first 32 KB of the EPROM is not addressed.  When a 27256 EPROM is used to contain 
two ROM firmware images, DIP switch 4 (to pin 27, A14) can be used to select the desired image.  If 
DIP switch 4 is closed, the lower image is selected.  DIP switches 5, 6, 7, and 8 select one of four 
possible EPROMs on the Apple ][+ motherboard.  I removed all six 24-pin ROM sockets and installed 
four 28-pin EPROM sockets making sure pins 1, 2, 27, and 28 were electrically isolated from the 
motherboard.  Only one of these four DIP switches should be closed, otherwise multiple EPROMs will 
be enabled simultaneously.  Honestly, I ended up preparing and burning only a single EPROM 
containing two ROM images.  Providing access to four similar EPROMs never became necessary. 
 
Table IV.3.1 lists all the signals I required and the location on the Apple ][+ motherboard where I 
obtained that signal.  In order to provide two banks of Language Card RAM for the 0xD000 to 
0xDFFF range, address lines A12* and A14* must be derived from the outputs of the circuit’s 
74LS175 configuration register, the A12 and A13 address lines, and the A14 and A15 address lines 
from a 74LS257 at motherboard location J1 that also support memory data access and memory refresh.  
These two derived address lines are connected directly to the pins of C1,3 and F2,14.  Memory refresh 
for the 4164 chips is accomplished using the current RA0 through RA6 signals on the motherboard 
without regard to RA7.  The derived RA7 signal simply provides the eighth row and eighth column 
address in order to access 64 Kb of memory per chip.  Tables IV.3.2 and IV.3.3 provide the details of 
the operation of the Apple ][+ Satellite Circuit Board vis-á-vis input address, the state of each LED, 
whether RAM is read-enabled or write-enabled, whether ROM is read-enabled, and the effective 
address generated for other motherboard logic. 
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Input to 
74LS175 

Latch 

Input 
Address 

Bus 

Red 
LED 
State 

Grn 
LED 
State 

Yel 
LED 
State 

Final 
A12* 
State 

RAM 
Enabled 

ROM 
Read 

Enable 

Output 
Address Bus 
RAM/ROM R W 

0xC080 
RAM2 

WP 
 

%0100 

<0xC000 0 1 0 A12 1 1 0 <0xC000 
0xCnnn 0 1 0 0 0 0 0 0xCnnn 
0xDnnn 0 1 0 1 1 0 0 0xDnnn 
0xEnnn 0 1 0 0 1 0 0 0xEnnn 
0xFnnn 0 1 0 1 1 0 0 0xFnnn 

          
0xC081 
ROM2 

WP 
 

%0010 

<0xC000 0 0 0 A12 1 1 0 <0xC000 
0xCnnn 0 0 0 0 0 0 0 0xCnnn 
0xDnnn 0 0 0 1 0 0 1 0xDnnn 
0xEnnn 0 0 0 0 0 0 1 0xEnnn 
0xFnnn 0 0 0 1 0 0 1 0xFnnn 

          
0xC081 
0xC081 
ROM2 

WE 
%0011 

<0xC000 1 0 0 A12 1 1 0 <0xC000 
0xCnnn 1 0 0 0 0 0 0 0xCnnn 
0xDnnn 1 0 0 1 0 1 1 0xDnnn 
0xEnnn 1 0 0 0 0 1 1 0xEnnn 
0xFnnn 1 0 0 1 0 1 1 0xFnnn 

          
0xC082 
ROM2 

WP 
 

%0000 

<0xC000 0 0 0 A12 1 1 0 <0xC000 
0xCnnn 0 0 0 0 0 0 0 0xCnnn 
0xDnnn 0 0 0 1 0 0 1 0xDnnn 
0xEnnn 0 0 0 0 0 0 1 0xEnnn 
0xFnnn 0 0 0 1 0 0 1 0xFnnn 

          
0xC083 
RAM2 

WP 
 

%0110 

<0xC000 0 1 0 A12 1 1 0 <0xC000 
0xCnnn 0 1 0 0 0 0 0 0xCnnn 
0xDnnn 0 1 0 1 1 0 0 0xDnnn 
0xEnnn 0 1 0 0 1 0 0 0xEnnn 
0xFnnn 0 1 0 1 1 0 0 0xFnnn 

          
0xC083 
0xC083 
RAM2 

WE 
%0111 

<0xC000 1 1 0 A12 1 1 0 <0xC000 
0xCnnn 1 1 0 0 0 0 0 0xCnnn 
0xDnnn 1 1 0 1 1 1 0 0xDnnn 
0xEnnn 1 1 0 0 1 1 0 0xEnnn 
0xFnnn 1 1 0 1 1 1 0 0xFnnn 

          
%0001 This configuration is not possible to select, so it is not valid. 

          
%0101 This configuration is not possible to select, so it is not valid. 

 
Table IV.3.2.  Apple ][+ Satellite Circuit Board Operation Part 1 
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Input to 
74LS175 

Latch 

Input 
Address 

Bus 

Red 
LED 
State 

Grn 
LED 
State 

Yel 
LED 
State 

Final 
A12* 
State 

RAM 
Enabled 

ROM 
Read 

Enable 

Output 
Address Bus 
RAM/ROM R W 

0xC088 
RAM1 

WP 
 

%1100 

<0xC000 0 1 1 A12 1 1 0 <0xC000 
0xCnnn 0 1 1 1 0 0 0 0xDnnn 
0xDnnn 0 1 1 0 1 0 0 0xCnnn 
0xEnnn 0 1 1 0 1 0 0 0xEnnn 
0xFnnn 0 1 1 1 1 0 0 0xFnnn 

          
0xC089 
ROM1 

WP 
 

%1010 

<0xC000 0 0 1 A12 1 1 0 <0xC000 
0xCnnn 0 0 1 1 0 0 0 0xDnnn 
0xDnnn 0 0 1 0 0 0 1 0xCnnn 
0xEnnn 0 0 1 0 0 0 1 0xEnnn 
0xFnnn 0 0 1 1 0 0 1 0xFnnn 

          
0xC089 
0xC089 
ROM1 

WE 
%1011 

<0xC000 1 0 1 A12 1 1 0 <0xC000 
0xCnnn 1 0 1 1 0 0 0 0xDnnn 
0xDnnn 1 0 1 0 0 1 1 0xCnnn 
0xEnnn 1 0 1 0 0 1 1 0xEnnn 
0xFnnn 1 0 1 1 0 1 1 0xFnnn 

          
0xC08A 
ROM1 

WP 
 

%1000 

<0xC000 0 0 1 A12 1 1 0 <0xC000 
0xCnnn 0 0 1 1 0 0 0 0xDnnn 
0xDnnn 0 0 1 0 0 0 1 0xCnnn 
0xEnnn 0 0 1 0 0 0 1 0xEnnn 
0xFnnn 0 0 1 1 0 0 1 0xFnnn 

          
0xC08B 
RAM1 

WP 
 

%1110 

<0xC000 0 1 1 A12 1 1 0 <0xC000 
0xCnnn 0 1 1 1 0 0 0 0xDnnn 
0xDnnn 0 1 1 0 1 0 0 0xCnnn 
0xEnnn 0 1 1 0 1 0 0 0xEnnn 
0xFnnn 0 1 1 1 1 0 0 0xFnnn 

          
0xC08B 
0xC08B 
RAM1 

WE 
%1111 

<0xC000 1 1 1 A12 1 1 0 <0xC000 
0xCnnn 1 1 1 1 0 0 0 0xDnnn 
0xDnnn 1 1 1 0 1 1 0 0xCnnn 
0xEnnn 1 1 1 0 1 1 0 0xEnnn 
0xFnnn 1 1 1 1 1 1 0 0xFnnn 

          
%1001 This configuration is not possible to select, so it is not valid. 

          
%1101 This configuration is not possible to select, so it is not valid. 

 
Table IV.3.3.  Apple ][+ Satellite Circuit Board Operation Part 2 
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4.  Real Time Clock Card 
The experience I gained in building the memory upgrade for my Apple ][+ led me to design and build 
my own Real Time Clock peripheral slot card.  I had to learn some new skills in order to build a 
peripheral slot card that would fit within the dimensions allowed for a slot card in the Apple ][+.  I had 
never etched a double-sided copper clad board that large nor had I thought about how to place TTL 
components in terms of organization, data and signal flow, wire length, and clean power.  I also had to 
include circuitry to charge the onboard rechargeable batteries.  All these ideas mattered one way or 
another I am sure, but honestly, I didn’t have much of a clue.  In hindsight I should have taken a class 
in TTL circuit board design and layout before I was graduated with my degree in Electrical 
Engineering.  My garage was my ultimate laboratory and workshop!  But most importantly I wanted 
the hardware design to provide a simple, elegant, and thoroughly elementary software interface. 
 
I wanted to design my Real Time Clock card around the SaRonix RTC58321 Real Time Clock 
module, which I probably obtained from Jameco Electronics in the mid 1980’s.  The RTC58321 
incorporated an internal quartz crystal in a single 16-pin DIP package thereby eliminating the need for 
an external crystal and timing circuit.  This clock module provided me with everything I needed:  read 
and write for date and time values and an external “busy” signal.  I wanted the software interface to be 
as simple as possible so I put a lot of effort into the design of the hardware logic so the hardware 
would negotiate with the RTC58321’s data and address setup time requirements.  Unfortunately, the 
6502-clock read/write period happened to be far too short for the required data and address setup time 
needed for the RTC58321.  Initially, I used a breadboard for the TTL logic components to figure out 
how to negotiate with the RTC58321 using a full 6502-clock period by utilizing a flip-flop.  Then I 
wrote the slot interface firmware for the onboard 2732 EPROM.  I modeled my general user Applesoft 
interface from the Applied Engineering TimeMaster II Applesoft interface.  Whatever commands the 
TimeMaster could handle, I made sure my clock card could handle in addition to all the other 
commands and capabilities I could devise and had room for in the EPROM.  And I figured out how to 
make use of the standard signals generated by the RTC58321 to pull the IRQ and/or NMI line low in 
order to initiate a hardware interrupt.  Once I had the schematic drawn and the components organized, 
I drilled all the necessary holes for chip sockets and components, and etched the copper for the power, 
ground, and some circuit lines.  I hand-wired and soldered the remaining connections for the interface 
board slot finger, chip sockets, transistors, batteries, LEDs, configuration block, resistors, and 
capacitors.  My Real Time Clock card is fully operational today as it was over 30 years ago.  I’ve only 
had to replace the rechargeable batteries a couple of times!  Figure IV.4.1 shows the complete circuit 
diagram for my Real Time Clock card that I had originally drawn on March 20, 1988. 
 
Only four of the sixteen peripheral-card I/O memory locations are used for clock configuration, clock 
address, clock status, clock register, clock data, and interrupt clear and set.  Table IV.4.1 shows the 
description of those memory locations where “s” is equals to eight plus the slot number of the Real 
Time Clock card.  Only Memory Address bits 0x0 and 0x1 are captured so it does not matter what is 
used for Memory Address bits 0x2 and 0x3.  Addresses 0xC0s4, 0xC0s8, and 0xC0sC are all valid 
for 0xC0s0 in order to read and write the Real Time Clock configuration register.  Table IV.4.2 shows 
the description of the configuration register bits.  This register retains its configuration until it is 
changed by another write to 0xC0s0 or when RESET is pressed.  When RESET is pressed the register 
is cleared to 0x00.  Before loading the clock data registers it is important to stop the clock by setting 
the STOP Enable bit to one.  Once the clock is loaded its previous configuration data can be restored. 
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Figure IV.4.1.  Real Time Clock Circuit Diagram 
 
 
 

Address Operation Description 
0xC0s0 read Read configuration register 
0xC0s0 write Write configuration register 
0xC0s1 read Read status register 
0xC0s1 write Write clock register number 
0xC0s2 read Read clock data register 
0xC0s2 write Write clock data register 
0xC0s3 read Clear interrupt flip-flop 
0xC0s3 write Set interrupt flip-flop 

 
Table IV.4.1.  Real Time Clock Peripheral-Card I/O Addresses 
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Bit Description 
0 Interrupt enable, 0 = off 
1 Interrupt rate select A 
2 Interrupt rate select B 
3 Interrupt rate select C 
4 STOP enable, 0 = run 
5 TEST enable, 0 = normal operation 
6 NMI enable, 0 = off 
7 IRQ enable, 0 = off 

 
Table IV.4.2.  Real Time Clock Configuration Register 

 
 
 
 

C B A Description 
0 0 0 1 Hz interrupt rate 
0 0 1 4 Hz interrupt rate 
0 1 0 16 Hz interrupt rate 
0 1 1 64 Hz interrupt rate 
1 0 0 256 Hz interrupt rate 
1 0 1 1024 Hz interrupt rate 
1 1 0 1 minute interrupt rate 
1 1 1 1 hour interrupt rate 

 
Table IV.4.3.  Interrupt Rate Selection 

 
 
 
Table IV.4.3 shows the description of the eight interrupt rates that are available for the generation of 
IRQ and/or NMI interrupts.  The selected interrupt rate is made active by setting the Interrupt Enable 
bit to one as shown in Table IV.4.2.  In order for interrupts to be generated either the NMI Enable bit 
and/or the IRQ Enable bit must be set to one. 
 
Table IV.4.4 lists the sixteen registers available in the RTC58321.  Any time when an 0xE or 0xF 
register number is latched the clock module is put into its idle state and the standard signals are 
available at its data ports when the READ port of the RTC58321 is set to one.  Setting the READ port 
of the RTC58321 to one is accomplished by setting the Interrupt Enable bit in the configuration 
register to one as shown in Table IV.4.2.  The 1024 Hz signal is divided by two 74LS161 binary 
counters to obtain the remaining interrupt rates that can be selected by the configuration register.  Even 
though the Real Time Clock card can also generate NMI interrupts, the EPROM software only has 
provisions to generate and handle IRQ interrupts.  Nevertheless, software can easily be written to 
utilize an NMI interrupt if there is an occasion for such an interrupt to be generated.  The configuration 
register also provides control of the TEST enable port of the RTC58321.  I no longer can locate any 
documentation that describes how to test the RTC58321 using the TEST enable port.  Setting data bit 
D3 in register 0x5 of the RTC58321 will select 24-hour mode.  Doing this will clear bit D2 of the same 
register.  If 12-hour mode is selected then bit D2 will select PM if that bit is set to one.  The RTC58321 
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divides the 10-year digit in register 0xC by 4 in order to determine leap year.  The remainder of this 
division is saved to bits D2 and D3 of register 0x8.  If the remainder is zero then leap year is selected.  
The RTC58321 may be reset by latching register 0xD and writing any data to the register.  This sets 
the WRITE port of the RTC58321 to one.  The EPROM firmware does not reset the RTC58321. 
 
 
 
 
Reg D3 D2 D1 D0 Name D3 D2 D1 D0 Count Notes 

0 0 0 0 0 S1 s8 s4 s2 s1 0 to 9 1-second digit 
1 0 0 0 1 S10 - s40 s20 s10 0 to 5 10-second digit 
2 0 0 1 0 MI1 mi8 mi4 mi2 mi1 0 to 9 1-minute digit 
3 0 0 1 1 MI10 - mi40 mi20 mi10 0 to 5 10-minute digit 
4 0 1 0 0 H1 h8 h4 h2 h1 0 to 9 1-hour digit 
5 0 1 0 1 H10 24/ 

12 
PM/ 
AM 

h20 h10 0 to 2 
0 to 1 

10-hour digit 

6 0 1 1 0 W - w4 w2 w1 0 to 6 week digit 
7 0 1 1 1 D1 d8 d4 d2 d1 0 to 9 1-day digit 
8 1 0 0 0 D10 leap year d20 d10 0 to 3 10-day digit 
9 1 0 0 1 MO1 mo8 mo4 mo2 mo1 0 to 9 1-month digit 
A 1 0 1 0 MO10 - - - mo10 0 to 1 10-month digit 
B 1 0 1 1 Y1 y8 y4 y2 y1 0 to 9 1-year digit 
C 1 1 0 0 Y10 y80 y40 y20 y10 0 to 9 10-year digit 
D 1 1 0 1 reset - - - -  reset register 
E 1 1 1 0 idle 1 

hour 
1 

min. 
1 

sec. 
1024 
Hz 

 standard signal 
register F 1 1 1 1 idle 

 
Table IV.4.4.  Real Time Clock Registers 

 
 
 
 
The Real Time Clock card utilizes two switches to control function.  Closing Switch 1 disables the 
frequency data selector module and blocks the output of the selected interrupt rate.  Therefore, the 
clock card cannot generate an interrupt even if the NMI enable bit or the IRQ enable bit is set to one in 
the configuration register.  Closing Switch 2 will disable the Address Write and Data Write flip-flops.  
Therefore, the data in the clock module cannot be changed rendering the RTC58321 write protected.  
The clock card utilizes three LEDs to indicate what function the clock card is performing.  The Green 
LED lights whenever the 2732 EPROM is accessed.  The Yellow LED lights at the same frequency as 
the selected interrupt rate if the frequency data selector module is enabled by the Interrupt Enable bit of 
the configuration register and if Switch 1 is open.  The Red LED lights whenever the output of the 
Interrupt Flip-Flop is set to one regardless whether the NMI enable bit or the IRQ enable bit is set to 
one in the configuration register.  If either bit is set the base of a 2N3904 general purpose transistor is 
pulled high thereby allowing its collector-emitter junction to conduct and pull the respective interrupt 
line safely to ground.  I placed an R/C network between the output of the 74LS133 and the data input 
to the EPROM enable flip-flop in order to shift the derived CLRROM signal slightly because of the 
slight delay inherent in the clock pulse to that flip-flop. 
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Offset Name Description 
0x00 MAINSELC php instruction 
0x01  sei instruction 
0x02  PR# and IN# DOS command handler 

Issues CLRROM, branches to INITCLK 
0x08 WRITSELC Issues CLRROM, branches to LOADCLK 
0x10 READSELC Issues CLRROM, branches to READCLK 
0x18 MODESELC Issues CLRROM, branches to SETMODE 
0x20 IRQSELC Issues CLRROM, branches to SETIRQ 
0x28 STRTSELLC Issues CLRROM, branches to STRTCLK 
0x30 STOPSECL Issues CLRROM, branches to STOPCLK 
0x38 INITCLK Saves registers, branches to HNDLINIT 
0x3F LOADCLK Saves registers, branches to HNDLLOAD 
0x46 READCLK Saves registers, branches to HNDLREAD 
0x4D SETMODE Saves registers, branches to HNDLMODE 
0x54 SETIRQ Saves registers, branches to HNDLIRQ 
0x5B STRTCLK Saves registers, branches to HNDLSTRT 
0x62 STOPCLK Saves registers, branches to HNDLSTOP 
0x69 WRITCLK Issues CLRROM, branches to HNDLWRIT 
0x71 SETRTN Issues CLRROM, branches to HNDLRTN 
0x79 IRQHNDLR Issues CLRROM, branches to EXECIRQ 
0x80 EXIT Restores registers, issues CLRROM, returns to caller 
0x8A HNDLINIT Gets slot, processes input command 
0x93 HNDLLOAD Gets slot, writes clock buffer at 0x2F0-0x2FC to clock 
0x9C HNDLREAD Gets slot, reads clock to clock buffer at 0x2F0-0x2FC 
0xA5 HNDLMODE Gets slot, stores mode value 0x21-0x3E to MODE, 0x478 
0xAE HNDLIRQ Gets slot, sets IRQ 0-7, clears IRQBUF, 0x2FD-0x2FF 
0xB7 HNDLSTRT Gets slot, updates clock config, puts SETRTN address in KSWL 
0xC0 HNDLSTOP Gets slot, stops clock, puts SETRTN address in KSWL 
0xC9 HNDLWRIT Saves registers, gets slot, stop clk, write clk register, start clk 
0xD7 HNDLRTN Saves registers, gets slot, puts “<rtn>” at 0x200-0x201 
0xE5 EXECIRQ Saves registers, gets slot, updates IRQBUF, restores registers, 

issues CLRROM, returns with “rti” instruction 
0xFA  upper ASCII “41” 
0xFC  upper ASCII “RTC” 
0xFF  CLKID (0x03) 

 
Table IV.4.5.  Clock Firmware Entry Points 

 
 
 
 
The first half of the 2732 EPROM is used for eight copies of the same interface software for the 
peripheral-card ROM address space, one copy for each possible slot in which the Clock card could 
reside.  The second half of the EPROM maps into the peripheral-card expansion ROM address space.  
Whenever the 6502-microprocessor fetches an instruction only in the first half of the peripheral-card 
ROM memory, 0xCs00 to 0xCs7F, where “s” is the slot number of the Clock card, the peripheral-
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card expansion ROM memory, 0xC800 to 0xCFFF, is enabled.  This allows the CLRROM address, 
0xCFFF, to disable the expansion ROM memory when CLRROM is used in the second half of the 
peripheral-card ROM memory, a hardware design trick I learned from the hardware design of the 
RamDisk 320 peripheral slot card.  Table IV.4.5 shows all the entry points in the EPROM slot 
firmware for the Real Time Clock card.  This firmware conforms to the clock card protocol where the 
first two instructions are ‘php’ and ‘sei’, and the last byte, the clock ID, is “0x03”.  Clock ID “0x07” 
can also be used.  DOS 4.1 accepts either value as valid. 
 
The program Set Clock utilizes some of the special features I designed into the Real Time Clock card.  
Its primary purpose is to set the clock card with the current date and time, of course.  The program also 
displays the current date and time that is stored in its registers, and those values may be automatically 
selected or new values entered for each of the registers.  The surprising feature of this program is that it 
utilizes an interrupt handler.  The clock card is configured to generate an IRQ interrupt every second.  
Every time the interrupt handler executes it reads the clock card and displays its date and time data.  
Once the correct date and time data is displayed that data can be written to the clock card.  The 
interrupt handler will continue to display the current date and time data of the clock card while the real 
time clock continues to update its internal registers.  Before the Set Clock program exits it restores the 
data originally found at MASKIRQ (i.e. 0x3FE) as shown in Table I.9.1. and sets the clock card 
configuration register as shown in Table IV.4.2. to 0x00. 
 
The Set Clock program first issues the ‘sei’ instruction to the 6502 microprocessor to inhibit all 
interrupts.  During initialization it copies the address found at MASKIRQ to a safe location and sets 
MASKIRQ to the address of the interrupt handler in Set Clock.  Set Clock then sets the clock card 
configuration register to #%10000001 in order to enable interrupts and to enable the IRQ interrupt 
specifically.  Once the initialization routine issues the ‘cli’ instruction to the 6502 microprocessor, the 
Set Clock interrupt handler will be able to field all IRQ interrupts while the user is setting the various 
values for the date and time.  When the interrupt handler is invoked it first issues the ‘cld’ instruction 
to the 6502 microprocessor, pushes the X and Y registers onto the stack, clears the IRQ interrupt on the 
real time clock card, reads the real time clock card, displays the current date and time data, restores the 
X and Y registers from the stack, restores the A-register from the page-zero location 0x45, and issues 
the ‘rti’ instruction to the 6502 microprocessor.  It is amazing how simple it is to use interrupts for this 
program.  Of course, the well thought out hardware design of the Real Time Clock card makes 
utilizing interrupts on the Apple computer easy and fun. 
 
To assemble the Clock EPROM firmware source code place the DOS 4.1 Tools volume 
“DOS4.1.ToolsL” in disk drive 1, boot, and start Lisa.  Enter the “SE” command-line command to 
select the “SETUP” program in order to verify or set the “Start of Source Code” to 0x2100 
and the “End of Source Code” to 0x5800.  Place the Clock Source volume “CLOCK.Source” 
in disk drive 2, load the “CLOCK.L” file into memory, and start the assembler by entering either the 
“A” command-line command or the “Z” command-line command.  If a printed version of the screen 
output is desired simply preface the “A” or “Z” command with the “P1” command-line command.  The 
complete binary image will be saved to the Clock Source volume as “CLOCK”. 
 
To assemble the Set Clock source code follow the same procedure as above, load the “SETCLOCK.L” 
file into memory and start the assembler.  The complete binary image will be saved to the Clock 
Source volume as “SETCLOCK”. 
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5.  Disk Window 
I have no doubt Don Worth and Pieter Lechner inspired thousands of computer hobbyists with their 
Example Programs found in their book “Beneath Apple DOS,” for these authors certainly inspired me.  
The learning curve was a bit steep if I recall, diskettes were expensive at that time, and I had some 
preconceived underlying fear that I would destroy something precious, be it hardware or software, if I 
started messing around with RWTS.  Patience was certainly a virtue, and when one is examining the 
sectors and tracks of a diskette, it was like peering through some sort of digital microscope.  The idea 
of reading a specific sector on a diskette and displaying that data was awe-inspiring.  Furthermore, 
having a utility that could edit those data bytes and write those edits back to that same sector, or any 
other sector for that matter, was totally mind blowing:  what can of worms would that capability open?  
Worth’s and Lechner’s utility Zap did inspire me to design Disk Window, what I call my fancy zap 
program.  It is like having a digital window focused on any device, track, sector, or Logical Block 
Address (LBA) of my choosing. 
 
The current version of Disk Window now supports the reading and writing of any valid LBA sector on 
a CFFA card.  If a CFFA card is detected in the selected slot, LBA mode will be used for reading and 
writing block data.  If a Disk ][ interface or similar slot card is detected in the selected slot, track-sector 
mode will be used for reading and writing sector data.  Regardless of which mode is used to read and 
write volume data, the appropriate LBA for the selected volume-track-sector will be displayed 
according to the conversion algorithm I developed.  The startup screen for Disk Window is displayed 
as shown in Figure IV.5.1.  The four commands at the bottom of the screen “Configure”, “Select 
LBA”, “Select D/V”, and “Select T/S” utilize the respective variables at the top of the screen.  
The commands “Forward” and “Backward” simply increment or decrement the track/sector if in 
track-sector mode or LBA if in LBA mode.  The commands “Edit”, “Write”, and “Print” display 
a respective screen for their function. 
 
Figure IV.5.2 shows the display of the VTOC data for the diskette in a Disk ][ whose interface card 
resides in Slot 6, and Drive 1 is selected.  The data is displayed both in hexadecimal and in ASCII, 
unless it is a control character.  The hexadecimal values from 0x00 to 0x1F and 0x80 to 0x9F are 
displayed as a period.  Lower ASCII values from 0x20 to 0x7F are displayed in inverse text and upper 
ASCII values from 0xA0 to 0xFF are displayed in normal text.  If “Edit” is selected the same VTOC 
data is displayed as shown in Figure IV.5.3, where the cursor is initially placed on row 0x70 and 
column 0x07.  After all edits have been applied the “Write” command will write the sector data to 
the selected sector or to any other sector (or LBA) as shown in Figure IV.5.4.  It must be noted that 
LBA blocks are 512 bytes in size.  “Page 0” refers to the first 256 bytes and “Page 1” refers to the 
second 256 bytes.  Thus, CFFA sectors 0x00-0x0F reside on “Page 0” and CFFA sectors 0x10-0x1F 
reside on “Page 1”.  The 256-byte sector data may be saved to any available LBA, either on “Page 
0” or on “Page 1”.  “Page 0” is selected by pressing the “L” key and “Page 1” is selected by 
pressing the “H” key.  The contents of the screen can also be printed using the “Print” command as 
shown in Figure IV.5.5.  The command “Configure” in Figure IV.5.5 allows the user to change the 
“Printer Slot” value if desired without having to return to the main menu screen as shown in 
Figure IV.5.1.  If an RWTS error should occur it is prominently printed in the center of the 
hexadecimal data display window as shown in Figure IV.5.6.  I purposefully opened the Disk ][ door 
for drive 1 to cause a disk drive error.  According to Table I.9.4 an error value of 0x40 is an RWTS 
Drive error.  The error message will remain until any key is pressed on the keyboard. 
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Figure IV.5.1.  Disk Window Startup Screen 
 
 
 
 

 
 

Figure IV.5.2.  Select T/S Mode 
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Figure IV.5.3.  Edit Data Screen 
 
 
 
 

 
 

Figure IV.5.4.  Write Sector Data Screen 
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Figure IV.5.5.  Print Sector Data Screen 
 
 
 
 

 
 

Figure IV.5.6.  Disk Window Error Message Display 
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Disk Window is certainly a giant leap from Worth’s and Lechner’s utility Zap, but they are the giants 
whose shoulders I stood on in utilizing their insight and their enthusiasm for everything Apple ][. 
 
To assemble the Disk Window source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in 
disk drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” 
program in order to verify or set the “Start of Source Code” to 0x2100 and the “End of 
Source Code” to 0x6000.  Place the Disk Window Source volume “DISKWINDOW.Source” in 
disk drive 2, load the “DW.L” file into memory, and start the assembler by entering either the “A” 
command-line command or the “Z” command-line command.  If a printed version of the screen output 
is desired simply preface the “A” or “Z” command with the “P1” command-line command.  Five 
object code files will be created on the Disk Window Source volume:  “SEG01” to “SEG05”.  The 
five object code files can be combined in memory sequentially starting at 0x0900 using the “ctrl-P” 
command.  The complete binary image can be saved to the Disk Window Source volume, or any other 
volume, as “DW”. 
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6.  EPROM Operating System (EOS) for quikLoader 
Southern California Research Group’s (SCRG) quikLoader as well as their PROmGRAMER were 
must-have peripheral slot cards when they first appeared in the early 1980’s.  Without question data 
can be read many, many times faster from the Disk ][ than data read from cassette tape.  But data can 
be read many, many times faster from EPROM than data read from the Disk ][.  Literally in a fraction 
of a second DOS can be read into memory from EPROM and begin its command-line processing.  I 
attended a Los Angeles computer convention where I bought the quikLoader after seeing several 
demonstrations in what it could do.  Essentially, it is a very simple, though elegant peripheral slot card 
that can hold up to eight 2716 to 27512 EPROMs, and it has some hardware logic that maps the 
selected EPROM to the 0xC100 to 0xFFFF address space.  The software SCRG provided with the 
quikLoader resides in the first EPROM, or EPROM 0, along with room for a few additional programs.  
Their documentation explained how to organize the contents of programs and utilities in an EPROM 
and build a catalog for those contents.  Once an EPROM was “burned” with its catalog and its 
contents, and seated in the quikLoader, a selected primary program would be read into memory after 
pressing its EPROM number followed by the RESET key.  The EPROM Catalog was displayed when 
the letter “Q” followed by RESET was pressed.  I built several EPROMs using the SCRG software 
interface, but I found the process to be tedious and cumbersome, and I thought I might be able to 
design a better interface.  Once I sourced the SCRG “firmware” code, I realized their software 
interface could have been perhaps better thought out.  And I saw there was absolutely no way to 
programmatically access any of the EPROM contents using the current SCRG hardware interface 
unless I included a lot of their software routines within my software. 
 
Peripheral slot cards for the Apple ][ typically incorporate and utilize firmware code in its peripheral-
card ROM address space, that is, 0xCs00 to 0xCsFF where “s” is the slot number of the peripheral 
slot card.  Also, a peripheral slot card can use its peripheral-card expansion ROM address space, 
0xC800 to 0xCFFF, for additional firmware code when the slot card is enabled.  As an aside, putting 
0xCFFF onto the address bus should turn off all peripheral-card expansion ROMs so another 
peripheral slot card, enabled by accessing its own peripheral-card ROM address space, can select and 
utilize its own peripheral-card expansion ROM without causing memory contention with another 
peripheral slot card.  The quikLoader could not, so did not, utilize its peripheral-card ROM address 
space and, therefore, could not utilize any peripheral-card expansion ROM address space for any of its 
interface software.  This inability is simply a hardware design choice, but I viewed it as a hardware 
design deficiency.  I did find one unused 74LS08 AND gate on the quikLoader.   That single AND 
gate allowed me to modify the quikLoader hardware logic just enough such that it was now possible to 
access its peripheral-card ROM address space that was mapped to a page of EPROM data in the 
quikLoader’s address space.  Now I had something physical I could work with, and this led me to 
develop the EPROM Operating System, or EOS.  In addition to this minor hardware logic modification 
I added an LED to glow when the quikLoader was enabled and an SPDT switch to mechanically turn 
off the quikLoader without having to physically remove it from its slot.  The complete circuit of the 
quikLoader with my modifications is shown in Figure IV.6.1. 
 
Fortunately I had acquired the “improved” quikLoader, the model capable of addressing a 27512 
EPROM.  A 74LS74 dual D flip-flop was added to capture the state of the 6502 A1 address line when 
writing to the quikLoader’s 74LS174 control register, and to ever so slightly delay the 6502 clock edge 
for latching EPROM data.  The control register data byte can be saved to any of the sixteen I/O address 
space locations dedicated to the quikLoader’s slot:  0xC0s0 through 0xC0sF, where “s” is equal to 
eight plus the slot number of the quikLoader.  However, only the first four addresses (or their relatives) 
do anything different since the control register also latches the state of address line A0 as the 74LS74 
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latches the state of address line A1.  The state of address lines A2 and A3 are not latched, so they are 
not utilized. 
 
 
 

 
 

Figure IV.6.1  quikLoader Circuit Diagram with Modifications 
 
 
 
 



 178 

Data lines D0, D1, and D2 of the control register select one of eight EPROMs, data line D3 is the USR 
bit, and data line D4 turns the quikLoader ON and OFF where 0 is ON; data lines D5, D6, and D7 are 
not utilized.  The SCRG documentation describes how an area of EPROM memory at a given offset is 
mapped to the Apple ][’s 0xC100 to 0xFFFF address space, but I found using the first half of this 
address space confusing and strange, and not very amenable to programmatic utilization.  Rather, I 
found that I could access an entire 27512 EPROM by using eight 8-KByte banks, where each bank 
uses the upper 0xE000 to 0xFFFF address space.  The described function of the USR bit was also 
confusing and strange, as well as the role it was to perform according to the SCRG documentation, as a 
master/slave flag when multiple quikLoaders are used in the same computer.  For the moment I have 
quite a few programs that I routinely use, and those programs and EOS fit comfortably into two 27512 
EPROMs and one-half of a third 27512 EPROM.  I cannot imagine needing more than one quikLoader 
in my computer, so my vision of EOS became even more tailored when I limited EOS to manage a 
single quikLoader.  Table IV.6.1 lists the six EPROM sizes the quikLoader can address, their 
associated memory banks, and the latched control register data values necessary for USR, A0, and A1 
to access those banks. 
 
 
 
 

Bank EPROM EPROM Offset Memory Access A1 A0 US
R 

0 2716 0x0000-0x07FF 0xF800-0xFFFF 0 0 0 
0 2732 0x0000-0x0FFF 0xF000-0xFFFF 0 0 0 
0 2764 0x0000-0x1FFF 0xE000-0xFFFF 0 0 0 
0 27128 0x0000-0x1FFF 0xE000-0xFFFF 0 0 0 
1  0x2000-0x3FFF 0xE000-0xFFFF 0 0 1 
0 27256 0x0000-0x1FFF 0xE000-0xFFFF 0 0 0 
1  0x2000-0x3FFF 0xE000-0xFFFF 0 0 1 
2  0x4000-0x5FFF 0xE000-0xFFFF 0 1 0 
3  0x6000-0x7FFF 0xE000-0xFFFF 0 1 1 
0 27512 0x0000-0x1FFF 0xE000-0xFFFF 0 0 0 
1  0x2000-0x3FFF 0xE000-0xFFFF 0 0 1 
2  0x4000-0x5FFF 0xE000-0xFFFF 0 1 0 
3  0x6000-0x7FFF 0xE000-0xFFFF 0 1 1 
4  0x8000-0x9FFF 0xE000-0xFFFF 1 0 0 
5  0xA000-0xBFFF 0xE000-0xFFFF 1 0 1 
6  0xC000-0xDFFF 0xE000-0xFFFF 1 1 0 
7  0xE000-0xFFFF 0xE000-0xFFFF 1 1 1 

 
Table IV.6.1.  quikLoader Bank Switching 
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Offset Name Description 
0x00 QLASEOS Applesoft interface entry, parses command variables 
0x5F EXIT10 Return unknown command error, 0x10 
0x62 EXIT20 Return wrong number of parameters error, 0x20 
0x65 EXIT30 Return search range invalid error, 0x30 
0x68 EXIT40 Return file not found error, 0x40 
0x6B EXIT00 Return no error, 0x00 
0xA6 QLEXIT If ZipChip present flush cache and enable it, fall into QLEXIT2 
0xC2 QLEXIT2 Turn quikLoader off, jump to QBMEXIT at 0x0118 
0xD0 QLUSER1 Return from DOS USERCMD, entry #1 
0xD8 QLUSER2 Return from DOS USERCMD, entry #2 
0xE0 QLBINEOS Turn quikLoader on, load QBMCODE, jump to BINEOS 
0xF0 QLEOS Turn quikLoader on, jump to EOS at 0xE800 
0xF8 QLBINTXT ASCII “QLBINEOS” used to find which slot a quikLoader is in 

 
Table IV.6.2.  quikLoader Firmware Entry Points 

 
 
 

Bank Offset Memory Size Contents 
0 0x0000 0xE000 0x0004 Sync bytes 
 0x0004 0xE004 0x00FC Catalog 
 0x0100 0xE100 0x0100 Slot 1 ASEOS/BINEOS interface 
 0x0200 0xE200 0x0100 Slot 2 ASEOS/BINEOS interface 
 0x0300 0xE300 0x0100 Slot 3 ASEOS/BINEOS interface 
 0x0400 0xE400 0x0100 Slot 4 ASEOS/BINEOS interface 
 0x0500 0xE500 0x0100 Slot 5 ASEOS/BINEOS interface 
 0x0600 0xE600 0x0100 Slot 6 ASEOS/BINEOS interface 
 0x0700 0xE700 0x0100 Slot 7 ASEOS/BINEOS interface 
 0x0800 0xE800 0x17FA EOS software 
 0x1FFA 0xFFFA 0x0002 NMI vector, address of EOS 
 0x1FFC 0xFFFC 0x0002 RESET vector, address of EOS 
 0x1FFE 0xFFFE 0x0002 IRQ/BRK vector, address of EOS 
1 0x2000 0xE000 0x2000 DOS4.1L 
2 0x4000 0xE000 0x2A00 DOS4.1H 
3 0x6A00 0xEA00 0x3000 Lisa 1 code segment 
4 0x9A00 0xFA00 0x1000 Lisa 2 code segment 
5 0xAA00 0xEA00 0x08D0 LED code segment 
5 0xB2D0 0xF2D0 0x1900 RamDisk 
6 0xCBD0 0xEBD0 0x12B8 FID 
6 0xDE88 0xFE88 0x0DAD ADT 
7 0xEC35 0xEC35 0x0418 Volume Copy 
7 0xF04D 0xF04D 0x0647 Set Clock 
7 0xF694 0xF694 0x096C unused 

 
Table IV.6.3.  EPROM 0 Containing EOS and Programs 
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When RESET is pressed the 74LS174 and 74LS74 data control registers are cleared in order to select 
EPROM 0, force Bank 0 to be mapped into memory from 0xE000 to 0xFFFF, and turn the quikLoader 
ON.  The 6502-microprocessor automatically loads the RESET vector at 0xFFFC/0xFFFD into the 
program counter and continues fetching instructions from there.  As an aside, the NMI vector is at 
0xFFFA/0xFFFB and the IRQ/BRK vector is at 0xFFFE/0xFFFF.  These three vectors point to the 
start of EOS which begins at 0xE800 in Bank 0.  Therefore, EOS must reside within the remaining 
0x17FA bytes of memory in Bank 0 of a 2764 EPROM, at a minimum, otherwise some sort of bank 
switching would need to be utilized in order to extend EOS processing into another EPROM bank, an 
option I did not wish to employ.  Table IV.6.2 shows the firmware entry points of one of seven copies 
of the firmware that is mapped to the peripheral-card ROM address space of the quikLoader by 
incorporating that single, unused 74LS08 AND gate as shown in Figure IV.6.1. 
 
Fortunately there is enough room for EOS to process the 26 commands shown in Figure IV.6.2 and 
room for the EPROM Catalog function, the Applesoft interface (ASEOS), the assembly language 
interface (BINEOS), the ZipChip configuration software to support a ZipChip if one is present, and the 
software to manage Primary files.  Unlike the SCRG interface, EOS does not capture the state of the 
keyboard at the moment the RESET key is pressed.  Instead, EOS displays an “EOS Main Menu”, 
and any of the displayed options may be selected.  I simply chose those programs and utilities I liked 
best to display in the “EOS Main Menu”.  Someone else may display a different set of favorite 
utilities.  The way I have organized EPROM 0 is so simple that all one needs to do is model their 
EPROM 0 after mine.  The remaining seven banks on EPROM 0 contain DOS 4.1L and DOS 4.1H, 
ROM Copy, Set Clock, Volume Copy, Lisa and LED, RamDisk Installation, FID, and ADT.  Table 
IV.6.3 shows the contents of EPROM 0 that contains EOS.  Both Disk Window and Volume Manager 
reside on other EPROMs.  EOS uses the power and flexibility of BINEOS to load and run those 
utilities without regard to a specific EPROM number.  An example EOS Catalog screen is shown in 
Figure IV.6.3 and continues in Figure IV.6.4. 
 
Later in the discussion concerning the ASEOS interface, Table IV.6.4 shows the definition of the file 
types used in EOS, how each file type is displayed in the EOS Catalog screen, and the hexadecimal 
value of each file type.  Notice in Figure IV.6.3 that DOS.4.1.46H is file type “S” having a value of 
0x5C.  This value is derived from the logical OR of System file, Binary file (main memory), Binary 
file (Bank 1), and Binary file (Bank 2) because parts of DOS.4.1.46H reside in all these memory 
locations.  Mathematically, the file type for the DOS.4.1.46H file is: 
 
 File Type = 0x40 ∨ 0x04 ∨ 0x08 ∨ 0x10 = 0x5C 
 
EOS provides Applesoft users with three commands when using the ASEOS interface:  Load file, Run 
file, and Catalog.  In order to access ASEOS, the quikLoader control register must be initially 
configured to EPROM 0, Bank 0, and turned OFF.  For example, if the quikLoader resides in slot 4, 
the program must “POKE 49344, 16” (i.e. POKE 0xC0C0,0x10) to initially configure the 
quikLoader hardware before making the CALL to ASEOS.  In this example “CALL 50176” (i.e. 
CALL 0xC400) will begin ASEOS processing.  The CALL command must be followed by some 
required arguments, and there are some optional arguments as well.  These arguments must be integer 
variables, integer arrays, ASCII strings, or ASCII string arrays where indicated.  Real variables and 
real arrays must never be used in an ASEOS CALL statement because those numbers are floating point 
values and they are not supported by the ASEOS routines. 
 
 



 181 

 
 

Figure IV.6.2.  EOS Commands at RESET 
 
 
 
 

 
 

Figure IV.6.3.  EOS Catalog for EPROM 0, Part 1 
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Figure IV.6.4.  EOS Catalog for EPROM 0, Part 2 
 
 
 
 
The following shows how to use the ASEOS interface: 
 
LOAD file command.  In order to load a file into memory from an EPROM using ASEOS: 
 
 QL = quikLoader slot number 
 OFF = 16       ; 0x10 
 DEV = QL * 16 + 49280    ; QL * 0x10 + 0xC080 

EOS = QL * 256 + 49152    ; QL * 0x100 + 0xC000 
 C% = 1       ; LOAD file command 
 S% = -1       ; init Status to error 

E% = EPROM search range 
F$ = Filename (1 to 24 upper ASCII characters) 
A% = Alternate load address (optional) 

 
 POKE DEV, OFF 

CALL EOS, C%, S%, E%, F$ [, A%] 
 
 

RUN file command.  In order to run a file in memory loaded from an EPROM using ASEOS: 
 
 QL = quikLoader slot number 
 OFF = 16       ; 0x10 
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 DEV = QL * 16 + 49280    ; QL * 0x10 + 0xC080 
EOS = QL * 256 + 49152    ; QL * 0x100 + 0xC000 

 C% = 2       ; RUN file command 
 S% = -1       ; init Status to error 

E% = EPROM search range 
F$ = Filename (1 to 24 upper ASCII characters) 
[A%] = Alternate load address (optional) 

 
 POKE DEV, OFF 

CALL EOS, C%, S%, E%, F$ [, A%] 
 
 
CATALOG command.  In order to catalog the EPROMs residing in a quikLoader using ASEOS: 
 
 QL  = quikLoader slot number 
 OFF  = 16      ; 0x10 
 M%  = Maximum number of anticipated entries 
 DEV  = QL * 16 + 49280   ; QL * 0x10 + 0xC080 

EOS  = QL * 256 + 49152   ; QL * 0x100 + 0xC000 
 C%  = 3      ; CATALOG command 
 S%  = -1      ; init Status to error 

E%  = EPROM search range 
 N%  = Number of entries returned (not initialized) 

F$(N%) = Filename array (1 to 24 upper ASCII characters) 
[P%(0,N%)]= Parameter Array returned (optional) 

 
 DIM F$(M%), P%(4,M%) 
 POKE DEV, OFF 
 N% = 0       ; start index 

CALL EOS, C%, S%, E%, N%, F$(N%) [, P%(0,N%)] 
 
 
 
Returned Status values: 
 
 S% = 0  no error 
 S% = -1 number of parameters exceeded  ; 0xFF 
 S% = 16 unknown command    ; 0x10 
 S% = 32 number of parameters invalid   ; 0x20 
 S% = 48 search range invalid    ; 0x30 
 S% = 64  file not found     ; 0x40 
 
 
EPROM search range: 
 
 E% = 0-7 for a single, specific EPROM 
 E% = 0-7:0-7, or ( last EPROM ) * 16 + ( start EPROM ) 
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Optional Parameter Array returned: 
 
 P%(0,N%) = EPROM number 
 P%(1,N%) = file type 
 P%(2,N%) = EPROM offset 
 P%(3,N%) = file size in bytes 
 P%(4,N%) = destination memory address 
 
 
 
 

Parameter Value Catalog Description 
P%(1,N%) 0x01 T Text file, NULL terminated, like an EXEC file 
P%(1,N%) 0x02 A Applesoft file 
P%(1,N%) 0x04 B Binary file, main memory 
P%(1,N%) 0x08 B Binary file, Bank 1 Language Card memory 
P%(1,N%) 0x10 B Binary file, Bank 2 Language Card memory 
P%(1,N%) 0x20 R Reserved file 
P%(1,N%) 0x40 S System file 
P%(1,N%) 0x80 P Primary file 

 
Table IV.6.4.  EOS File Types Used in Optional Parameter Array 

 
 
 
 
EOS file types are shown in Table IV.6.4 with their optional Parameter Array index, their value, and 
their display designation in the EOS Catalog function.  EOS currently uses two Reserved type files:  
the ROM code from 0xD000 to 0xFFFF and the four Catalog sync bytes.  Primary files are Binary files 
that may be activated directly by the EOS EPROM Catalog function and they load or run System files.  
The EOS EPROM Catalog function cannot directly load or run System files.  System files may be 
Text, Applesoft, or other Binary files.  System files may be attached to a Primary file, or loaded or run 
by activating its associated Primary file either using the EOS Catalog function, ASEOS, or BINEOS.  
EOS is not designed to handle Integer BASIC type files because DOS 4.1 does not support Integer 
BASIC type files.  A DOS image and the software tool Sourceror are examples of System type files.  
The program that loads Sourceror into memory for execution is an example of a Primary file.  System 
and Primary files used in EOS are different in function and concept than those files used in the SCRG 
interface. 
 
In EOS an EPROM Catalog for the files contained in that EPROM is prefaced with four sync bytes, 
0xC4, 0xB8, 0x90, and 0xED.  The actual catalog begins at offset 0x0004 and it may contain any 
number of entries, where each entry is a variable size depending on the length in bytes of its filename.  
An EPROM catalog filename is a character string that uses lower ASCII for all its bytes except for the 
last byte in the string which is in upper ASCII.  The Lisa assembler calls this use of lower and upper 
ASCII as “DCI” format.  The catalog is terminated with a NULL (i.e. 0x00) character.  An example 
catalog file entry structure is shown in Table IV.6.5. 
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Offset Length Variable Description 
0 1 FILETYPE File type as defined in Table IV.6.4 
1 2 SRCVAL EPROM source address (offset) 
3 2 LENVAL File length or size in bytes 
5 2 DSTVAL Destination memory address 
7 1-24 FILENAME Filename, 1 to 24 ASCII bytes (“DCI” format) 

 
Table IV.6.5.  EOS Catalog File Entry Structure 

 
 
 
 
EOS provides assembly language users with three commands when using the BINEOS interface:  Load 
file, Run file, and Catalog.  A Data Context Block, or DCB is used for the input variables and returned 
status.  The structure of the DCB is command specific.  Any assembly language program like Primary 
files can use QLBINEOS to load and run System files.  QLBINEOS is located at the 0xE0th byte in the 
peripheral-card ROM memory of the quikLoader as shown in Table IV.6.2.  For example, if the 
quikLoader resides in slot 4, QLBINEOS is at memory address 0xC4E0.  The following code shows 
how to utilize the BINEOS interface: 
 
 
0800              1           ttl "QLBINEOS Utilization, QLBINEOS.L"  
0800              2  ;  
0800              3  ; 
0800              4  ; QLBINEOS.L 
0800              5  ; 
0800              6  ; 
002A              7  SRCPTR   epz $2A  
002E              8  DSTPTR   epz $2E  
0800              9  ;  
0000             10  ZERO     equ $00 
00FF             11  NEGONE   equ $FF 
0800             12  ;  
0000             13  QLON     equ $00  
0010             14  QLOFF    equ $10  
0800             15  ; 
0020             16  CHKNUM   equ $20  
0800             17  ;  
C080             18  QLSELC   equ $C080 
0800             19  ;  
C0E0             20  QLBINEOS equ $C0E0  
C0F8             21  QLBINTXT equ $C0F8 
0800             22  ;  
C700             23  PAGEC7   equ $C700  
E700             24  PAGEE7   equ $E700  
0800             25  ;  
CFFF             26  CLRROM   equ $CFFF  
0800             27  ; 
0800             28  ; 
0800             29           org $800  
0800             30           obj $800  
0800             31           usr  
0800             32  ;  
0800             33  ;  
0800 20 0C 08    34           jsr FINDQL          ; find quikLoader  
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0803 B0 07       35           bcs FINDERR  
0805             36  ;  
0805 A0 71       37           ldy #EOSDCBL        ; address of  
0807 A9 08       38           lda /EOSDCBL        ;  Load DCB  
0809             39  ;  
0809 20 63 08    40           jsr QLBINJMP        ; Load the file  
080C             41  ;  
080C             42  ;        :::  
080C             43  ;  
080C             44  FINDERR:  
080C             45  ;        :::  
080C             46  ;  
080C             47  ;  
080C             48  FINDQL:  
080C A0 00       49           ldy #PAGEC7         ; get address  
080E A9 C7       50           lda /PAGEC7         ;  of 0xC700  
0810             51  ;  
0810 84 2A       52           sty SRCPTR          ; store address at  
0812 85 2B       53           sta SRCPTR+1        ;  source pointer  
0814             54  ;  
0814 A9 E7       55           lda /PAGEE7         ; bank 0 slot address  
0816             56  ;  
0816 84 2E       57           sty DSTPTR          ; store address at  
0818 85 2F       58           sta DSTPTR+1        ;  destination pointer  
081A             59  ;  
081A A9 07       60           lda #7              ; initialize  
081C 8D 66 08    61           sta QLSLOT          ;  for slot 7  
081F             62  ;  
081F AD 66 08    63  ^1       lda QLSLOT          ; get slot number  
0822             64  ;  
0822 0A          65           asl                 ; multiply by 16 
0823 0A          66           asl  
0824 0A          67           asl  
0825 0A          68           asl  
0826             69  ;  
0826 AA          70           tax                 ; use as index  
0827             71  ;  
0827 A9 00       72           lda #QLON           ; turn quikLoader ON  
0829 9D 80 C0    73           sta QLSELC,X  
082C             74  ;  
082C 2C FF CF    75           bit CLRROM          ; detach expansion ROM memory  
082F             76  ;  
082F A0 20       77           ldy #CHKNUM         ; initialize index  
0831             78  ;  
0831 B1 2A       79  ^2       lda (SRCPTR),Y      ; compare slot memory  
0833 D1 2E       80           cmp (DSTPTR),Y      ;  and EPROM bank 0  
0835 D0 1E       81           bne >4  
0837             82  ;  
0837 88          83           dey  
0838 D0 F7       84           bne <2  
083A             85  ;  
083A A9 10       86           lda #QLOFF          ; turn quikLoader OFF  
083C 9D 80 C0    87           sta QLSELC,X  
083F             88  ;  
083F A0 F8       89           ldy #QLBINTXT       ; point to QLBIN text  
0841             90  ;  
0841 B1 2A       91  ^3       lda (SRCPTR),Y      ; compare slot memory  
0843 D9 71 07    92           cmp QLTEXT-NEGONE&QLBINTXT,Y ;  and text  
0846 D0 0D       93           bne >4  
0848             94  ;  
0848 C8          95           iny  
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0849 D0 F6       96           bne <3  
084B             97  ;  
084B A5 2B       98           lda SRCPTR+1        ; get slot memory address  
084D 8D 68 08    99           sta QLBINADR+1      ; save to vector  
0850            100  ;  
0850 2C FF CF   101           bit CLRROM          ; detach expansion ROM memory  
0853            102  ;  
0853 18         103           clc                 ; quikLoader found  
0854            104  ;  
0854 60         105           rts  
0855            106  ;  
0855 C6 2B      107  ^4       dec SRCPTR+1        ; next slot memory  
0857 C6 2F      108           dec DSTPTR+1        ; next EOS slot  
0859            109  ;  
0859 CE 66 08   110           dec QLSLOT          ; next slot  
085C D0 C1      111           bne <1  
085E            112  ;  
085E 2C FF CF   113           bit CLRROM          ; detach expansion ROM memory  
0861            114  ;  
0861 38         115           sec                 ; no quikLoader  
0862            116  ;  
0862 60         117           rts  
0863            118  ;  
0863            119  ;  
0863 6C 67 08   120  QLBINJMP jmp (QLBINADR)  
0866            121  ; 
0866            122  ; 
0866            123  QLSLOT   dfs 1,ZERO 
0867            124  ;  
0867 E0 C0      125  QLBINADR adr QLBINEOS 
0869            126  ; 
0869 D1 CC C2   127  QLTEXT   asc "QLBINEOS"  
086C C9 CE C5  
086F CF D3  
0871            128  ;  
0871            129  ;  
0871            130  EOSDCBL  equ * 
0871            131  ; 
0871 01         132  DCBLCMD  hex 01              ; Load command 
0872 07         133  DCBLEP   hex 70              ; search all EPROMs 
0873 00 00      134  DCBLOAD  hex 0000            ; no alternate Load address 
0875 FF         135  DCBLSTAT hex FF              ; return status 
0876 0F         136  DCBLFLEN byt FILENDL-FILNAML ; filename length 
0877 79 08      137  DCBLFADR adr FILNAML         ; filename address 
0879            138  ; 
0879 C1 F0 F0   139  FILNAML  asc “Apple File List” 
087C EC E5 A0 
087F C6 E9 EC 
0882 E5 A0 CC 
0885 E9 F3 F4 
0888            140  FILENDL  equ * 
0888            141  ; 
0888            142  ; 
 
BSAVE QLBINEOS,A$0800,L$0088  
0888            143           usr QLBINEOS  
0888            144  ;  
0888            145  ; 
0888            146           end 000 
 
*** End of Assembly 
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LOAD file.  In order to load a file from an EPROM using BINEOS, the DCB is: 
 
 EOSDCBL equ *     ; Load file DCB 
 DCBCMDL hex 01     ; Load command 
 DCBEPNL hex 70     ; search all EPROMs 
 DCBFALTL hex 0000     ; no alternate Load address 
 DCBSTATL hex FF     ; return status 
 DCBFLENL byt FILENDL-FILNAML   ; filename length 
 DCBFADRL adr FILNAML    ; filename address 
 
 FILNAML asc “Applesoft File List” 
 FILENDL equ * 
 
 
RUN.  In order to run a file from an EPROM using BINEOS, the DCB is: 
 
 EOSDCBR equ *     ; Run file DCB 
 DCBCMDR hex 02     ; Run command 
 DCBEPNR hex 70     ; search all EPROMs 
 DCBFALTR hex 0000     ; no alternate Run address 
 DCBSTATR hex FF     ; return status 
 DCBFLENR byt FILENDR-FILNAMR   ; filename length 
 DCBFADRR adr FILNAMR    ; filename address 
 
 FILNAMR asc “Volume Copy” 
 FILENDR equ * 
 
 
CATALOG.  In order to catalog the EPROMs residing in a quikLoader using BINEOS, the DCB is: 
 
 EOSDCBC equ *     ; Catalog EPROMs DCB 
 DCBCMDC hex 03     ; Catalog command 
 DCBEPNC hex 70     ; Catalog all EPROMs 
 DCBCALT hex 0000     ; not used 
 DCBSTATC hex FF     ; return status 
 DCBCNUM hex 00     ; number of Catalog entries found 
 DCBCADR adr CATBUFR    ; address of Catalog buffer 
 
 CATBUFR dfs 32*n,ZERO    ; buffer with ‘n’ 32-byte entries 
 
 
 
The call to QLBINEOS will return one of the following Status values: 
 
 0x00 = no error 
 0x10 = unknown error 
 0x20 = filename length invalid 
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 0x30 = search range invalid 
 0x40 = file not found 
 
 
 
 

Offset Length Variable Description 
0 1 FILEPNUM EPROM number containing file 
1 1 FILETYPE File type 
2 2 SRCVAL EPROM source address (offset) 
4 2 LENVAL File length or size in bytes 
6 2 DSTVAL Destination memory address 
8 24 FILENAME Filename, space padded, upper ASCII 

 
Table IV.6.6.  BINEOS Catalog File Entry 

 
 
 
 
The EPROM search range and file types are the same in BINEOS as they are in ASEOS.  The Catalog 
buffer will contain the number of entries given by DCBCNUM, and each entry will be 32 bytes in size 
regardless of the length of the filename in bytes, and padded with the upper ASCII SPACE (i.e. 0xA0) 
character.  A BINEOS Catalog file entry is structured as shown in Table IV.6.6. 
 
EOS makes extensive use of the 6502-microprocessor stack page from 0x110 to 0x19F for QLJMP, 
QLCONFIG, QLMOVE, QLJSR, QLRTN, and QLEXEC.  When EOS is activated it initializes the 
stack pointer to 0xFF to ensure that these stack routines are safe.  And, it is extremely unlikely that the 
ASEOS interface will load these stack routines over a stack pointer in this memory region because 
Applesoft tightly controls this pointer.  The same argument can be made for software using the 
BINEOS interface as long as that software is mindful of the stack pointer location.  EOS also makes 
extensive use of the text input page from 0x0280 to 0x02EF.  It is extremely unlikely that a lengthy 
Applesoft DOS command will ever be issued during ASEOS or BINEOS processing.  EOS uses the 
stack and input pages so that Page 0x03 (i.e. 0x0300 to 0x03CF) is still available for program loaders.  
The loader for SOURCEROR (a Primary file) is one example of a very short binary program that uses 
Page 0x03 to load SOURCEROR (a System File) from EPROM to memory address 0x8900 using a 
DCB.  It also sets MAXFILES to 1.  The possibilities are virtually endless in how EOS can be utilized 
to obtain information and data from an EPROM or EPROMs residing in a quikLoader. 
 
To assemble the EOS source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive 
1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program in 
order to verify or set the “Start of Source Code” to 0x5000 and the “End of Source 
Code” to 0x7000.  Place the EOS Binaries volume “EOS.512.Binaries” in disk drive 1.  Place 
the EOS Source volume “EOS.512.Source” in disk drive 2, load the “EOS.L” file into memory, 
and start the assembler by entering either the “A” command-line command or the “Z” command-line 
command.  If a printed version of the screen output is desired simply preface the “A” or “Z” command 
with the “P1” command-line command.  Eight object code files will be created on the EOS Binaries 
volume:  “SEG01” to “SEG08”.  Place the EOS Image volume “EOS.512.Image” in disk drive 2, 
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load the “MOVE.L” file into memory from the EOS Binaries volume, and start the assembler using the 
“Z” command-line command.  The eight object code files will be copied from the EOS Binaries 
volume to the EOS Image volume.  The first four object code files on the EOS Image volume can be 
combined in memory sequentially starting at 0x1000 using the “ctrl-P” command.  The complete 
binary image can be saved to the EOS Image volume as “EOS1” as shown in Figure IV.14.5.  The last 
four object code files on the EOS Image volume can be combined in memory sequentially starting at 
0x1000 using the “ctrl-P” command.  The complete binary image can be saved to the EOS Image 
volume as “EOS2” as shown in Figure IV.14.6.  I also place a copy of the utility “BURNER” on the 
EOS Image volume before I transfer the volume to an Apple //e using A2V2 on the Mac and ADT on 
the Apple //e.  Now, the utility “BURNER” can easily burn a 27512 EPROM using the “EOS1” and 
“EOS2” binary images as binary source files.  “EOS1” must be burned to the first half of the EPROM 
and “EOS2” must be burned to the second half of the EPROM.  
 
To assemble the PGM1 source code with Lisa already running, place the PGM1 Binaries volume 
“PGM1.512.Binaries” in disk drive 1.  Place the PGM1 Source volume “PGM1.512.Source” 
in disk drive 2, load the “PGM.L” file into memory, and start the assembler using either the “A” 
command-line command or the “Z” command-line command.  If a printed version of the screen output 
is desired simply preface the “A” or “Z” command with the “P1” command-line command.  Eight 
object code files will be created on the PGM1 Source volume:  “SEG01” to “SEG08”.  Place the 
PGM1 Image volume “PGM1.512.Image” in disk drive 1, load the “MOVE.L” file into memory 
from the PGM1 Source volume, and start the assembler using the “Z” command-line command.  The 
eight object code files will be copied from the PGM1 Source volume to the PGM1 Image volume.  The 
first four object code files on the PGM1 Image volume can be combined in memory sequentially 
starting at 0x1000 using the “ctrl-P” command.  The complete binary image can be saved to the 
PGM1 Image volume as “PGM1”.  The last four object code files on the PGM1 Image volume can be 
combined in memory sequentially starting at 0x1000 using the “ctrl-P” command.  The complete 
binary image can be saved to the PGM1 Image volume as “PGM2”.  I also place a copy of the utility 
“BURNER” on the PGM1 Image volume before I transfer the volume to an Apple //e using A2V2 on 
the Mac and ADT on the Apple //e.  Now, the utility “BURNER” can easily burn a 27512 EPROM 
using the “PGM1” and “PGM2” binary images as binary source files.  “PGM1” must be burned to the 
first half of the EPROM and “PGM2” must be burned to the second half of the EPROM. 
 
To assemble the PGM2 source code with Lisa already running, place the PGM2 Source volume 
“PGM2.256.Source” in disk drive 2, load the “PGM.L” file in memory, and start the assembler 
using either the “A” command-line command or the “Z” command-line command.  If a printed version 
of the screen output is desired simply preface the “A” or “Z” command with the “P1” command-line 
command.  Four object code files will be created on the PGM2 Source volume:  “SEG01” to 
“SEG04”.  These four object code files can be combined in memory sequentially starting at 0x1000 
using the “ctrl-P” command.  The complete binary image can be saved to the PGM2 Source volume 
as “PGM1”.  I also place a copy of the utility “BURNER” on the PGM2 Source volume before I transfer 
the volume to an Apple //e using A2V2 on the Mac and ADT on the Apple //e.  Now, the utility 
“BURNER” can easily burn a 27256 or a 27512 EPROM using the “PGM1” binary image as the binary 
source file.  “PGM1” must be burned to the first half of a 27512 EPROM if that EPROM size is used. 
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7.  VTOC Manager (VMGR) 
The Volume Table of Contents (VTOC) Manager, or VMGR, is a utility I developed while I was 
designing the enhancements to the DOS 4.1 VTOC and Catalog.  VMGR provides the user the ability 
to display and change the contents of a volume’s VTOC for any given slot, drive, and volume number.  
Figure IV.7.1 displays the Option Menu for VMGR.  When the program first starts, it displays the 
current slot, drive, and volume number values.  You can change those values using Option 1.  Option 2 
reads the VTOC for the selected slot, drive, and volume number as shown in Figure IV.7.2.  Option 3 
displays the same VTOC contents as in Figure IV.7.2 except that you can edit, or change the 
information.  Great harm can easily be done to a volume, even making the volume unusable, if the 
VTOC information is changed inappropriately.  It is critical that you understand the effect of any 
change you make to the VTOC and accept the consequences.  Options 4 and 5 show and edit the sector 
bitmap, respectively.  Figure IV.7.3 displays the sector bitmap contents of the same volume. 
 
Each track of a DOS 4.1 volume may contain either 16 or 32 sectors depending on the hardware media.  
The VTOC can support up to 50 tracks.  Figure I.6.1 shows the complete sector bitmap that begins at 
byte 0x38 in the VTOC.  The sector bitmap allocates four bytes, or 32 bits, for every track to determine 
if a sector in that track is available or not.  If a sector is available its respective bit is set to 1.  Table 
I.6.2 shows the sector order from left to right:  sectors 0x0F to 0x00 for the left two bytes followed by 
sectors 0x1F to 0x10 for the right two bytes.  DOS 4.1 indirectly interacts with the VTOC bitmap by 
means of the variable NEXTSECR exclusively OR’d with the value 0x10.  Therefore, if a volume only 
supports 16 sectors per track, the right two bytes will be set to 0x00.  In Figure IV.7.3, for example, 
track 24 contains five free sectors and track 28 contains twelve free sectors. 
 
 
 
 

 
 

Figure IV.7.1.  VMGR Option Menu 
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Figure IV.7.2.  VTOC Contents 
 
 
 
 

 
 

Figure IV.7.3.  VTOC Sector Bitmap Contents 
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To assemble the VMGR source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the VMGR Source volume “VMGR.Source” in disk drive 2, load the 
“VMGR.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  Four object code 
files will be created on the Big Mac Source volume:  “SEG01” to “SEG04”.  The four object code 
files can be combined in memory sequentially starting at 0x1000 using the “ctrl-P” command.  The 
complete binary image can be saved to the VMGR Source volume, or any other volume, as “VMGR”. 
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8.  Asynchronous Data Transfer (ADT) 
I have done a serious amount of software development for the Apple ][ using a MacBook Pro running 
the Virtual ][ emulation program by Gerard Putter.  Virtual ][ can launch a utility called A2V2 that can 
transfer a 140 KB diskette image to and from an Apple ][ that is concurrently running a program called 
Asynchronous Data Transfer, or ADT by Paul Guertin and enhanced by Gerard Putter.  My Apple //e 
uses a Super Serial slot card connected to a Keyspan serial to USB adapter that is connected to the 
MacBook Pro using a USB cable.  Only 140 KB disk images are currently permitted.  Because the 
RamDisk 320 supports up to 40 tracks and I typically use it to receive disk images, I would like to see 
the 140 KB restriction removed from A2V2 and ADT.  I would even like to have Virtual ][ support 48 
track diskettes, too, but Mr. Putter rejected that request.  Regardless, I did source ADT so I could add 
an Update command to its repertoire as shown in Figure IV.8.1.  After configuring ADT, Update will 
save ADT with its new configuration set as its default.  The ADT Configuration screen is shown in 
Figure IV.8.2, which uses lowercase characters to assist in making the Apple screen text easier for me 
to read in my opinion.  If and when 160 KB and 200 KB disk images are supported I will be ready.  
But let’s not stop there!  My RanaSystems EliteThree drive can support 40 tracks with each track 
having 32 sectors, so 320 KB disk images are possible, too.  In order to process 320 KB disk images 
ADT may need to utilize the 80-column display.  Finally, a CFFA volume having 48 32-sector tracks 
would require a 400 KB disk image.  Now, that would be a seriously fun project:  using an 80-colum 
display to show the transfer of volumes having up to 48 32-sector tracks. 
 
The “?” command displays credits to Paul Guertin, Gerard Putter, and myself for adding enhancements 
to ADT as shown in Figure IV.8.3. 
 
 
 
 

 
 

Figure IV.8.1.  ADT Window 
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Figure IV.8.2.  ADT Configuration 
 
 
 
 

 
 

Figure IV.8.3.  ADT Software Credits 
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To assemble the ADT source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive 
1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program in 
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the ADT Source volume “ADT.Source” in disk drive 2, load the “ADT.L” 
file into memory, and start the assembler by entering either the “A” command-line command or the “Z” 
command-line command.  If a printed version of the screen output is desired simply preface the “A” or 
“Z” command with the “P1” command-line command.  The complete binary image will be saved to 
the ADT Source volume as “ADT2”. 
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9.  Big Mac 
I first started using Big Mac by Glen E. Bredon on my Apple ][+ as soon as I took an interest in 
writing assembly language programs.  Also, Sourceror was designed as a subsidiary tool to Big Mac 
that created Big Mac source files from assembly language code.  The main menu for Big Mac is shown 
in Figure IV.9.1 and this is another example where I have used lowercase characters to assist in 
making the Apple ][ screen text easier for me to read.  When I started working at Sierra On-Line the 
programmers there only used Lisa, not Big Mac.  But whenever I used Sourceror I was still dependent 
on Big Mac to edit Sourceror’s output source files into files resembling Lisa source files using the 
ED/ASM mode, and then saving those files as TEXT files.  Lisa was able to EXEC the Big Mac TEXT 
files into its format quickly.  And this is precisely the procedure I still use today. 
 
 
 
 

 
 

Figure IV.9.1.  Big Mac Main Menu 
 
 
 
 
Big Mac made frequent use of DOS 3.3 internal routines so it was not at all compatible with DOS 4.1.  
I needed to know every instance where Big Mac utilized DOS 3.3 internals, and then modify those 
dependencies to use the DOS 4.1 interface.  Big Mac was certainly a challenge because it packed a 
huge wallop of a program into the limited space of the Language Card.  Creating source code for Big 
Mac that could be modified required a huge effort.  It is one thing to have source code that assembles 
to object code which compares perfectly to the original object code.  It is quite another thing to turn 
that source code into routines whose addresses may change as some code is modified, deleted, and 
added, and still assemble into a working program.  I did remove the “ASSEM” re-entry command 
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because DOS 4.1 provides no visibility into its commands, their handler addresses, and the companion 
keyword table.  (A seasoned Big Mac user may wish to add the “ASSEM” command to DOS 4.1 in lieu 
of one of the other DOS commands, assemble this unique version of DOS 4.1, and create a bootable 
Big Mac volume having that version of DOS 4.1.)  DOS 4.1 does provide access to structures for drive 
number, start address, and file length, though.  I am satisfied that my sourced and modified version of 
Big Mac is fully DOS 4.1L compliant and, as a utility, is still providing me with a terrific interface 
between Sourceror and Lisa. 
 
Sourceror is able to source object files that use 6502, 65C02, and Sweet 16 instructions.  Unfortunately 
Big Mac is only able to assemble source files having just 6502 and Sweet 16 instructions.  Big Mac 
cannot assemble the new 65C02 instructions.  Furthermore, Big Mac’s Monitor can only display 6502 
instructions and not 65C02 instructions.  The task to update Big Mac’s Monitor was easy compared to 
updating its ability to parse, process, and assemble the new 65C02 instructions.  The Big Mac tables 
from 0xF339 to 0xF4DD contained the addresses and rules for parsing 6502 instructions, and the 
support code using these tables was exceedingly dense.  I slowly began to understand how Mr. Bredon 
designed his Instruction Set processor and I began adding in the remaining 65C02 instructions.  
Recognizing the instructions was one thing; checking the addressing mode for the added instructions 
was difficult and tedious.  Eventually I was able to fit the additional logic I required within the limited 
space.  However, in order to add the STZ, TRB, and TSB instruction to the end of the table data 
starting at 0xF481, I had to move two ASCII tables.  One table was at 0xF4E8 and the other was at 
0xF4EF.  Combined they were 15 bytes and I needed 12 bytes for the three new instructions.  
Fortunately, I had an 18-byte gap in the code at 0xE407 and this where I moved those two ASCII 
tables.  The 10-byte table at 0xF4DE simply moved down to 0xF4EA. 
 
To the best of my ability I have verified that Big Mac can assemble all 65C02 instructions and 
increment its program counter correctly for all addressing modes.  Furthermore, the Big Mac Monitor 
can display all 65C02 instructions correctly with opcode, value, address, and displacement. 
 
To assemble the Big Mac source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x5800.  Place the Big Mac Source volume “BIGMAC.Source” in disk drive 2, load the 
“BIGMAC.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  Six object code files 
will be created on the Big Mac Source volume:  “SEG01” to “SEG06”.  The six object code files can 
be combined in memory sequentially starting at 0x1000 using the “ctrl-P” command.  The complete 
binary image can be saved to the Big Mac Source volume, or any other volume, as “BIGMAC”. 
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10.  PROmGRAMER 
The SCRG quikLoader is of little value without a means to easily burn (i.e. program) EPROMs.  So 
SCRG also marketed the PROmGRAMER, designed by Bob Brice, which could burn EPROMs for the 
quikLoader, the character generator ROM, and the Apple firmware ROMs, for example.  The 
PROmGRAMER is designed to be configurable using DIP switches in order to access 2716, 2716A, 
2732, 2732A, 2764, 27128, 27128A, 27256, and 27512 type EPROMs.  The PROmGRAMER 
software by Bob Sander-Cederlof resides in memory beginning at 0x0803, and the program cannot 
extend beyond 0x0FFF because the desired EPROM image start address is set to 0x1000.  This is 
necessary particularly in order to burn a 27256 or a 27512 EPROM.  For a 27256 EPROM its entire 
0x8000 byte image must reside in memory for convenience, and if 0x1000 is its start address, then 
0x8FFF will be its end address, and that is very close to the beginning of the third DOS file buffer.  
When MAXFILES is 3, HIMEM is set to 0x9625.  To program a 27512 EPROM a 0x10000 byte 
image must be divided into two or more parts, and the EPROM must be burned in two or more 
sessions.  It is for this reason that I highly recommend finding the midpoint for the contents of a 27512 
EPROM so it can be programmed in only two burn sessions where each session programs 0x8000 
bytes.   
 
In my discussion of EOS as shown in Table IV.6.3, the 27512 EPROM image needs to be split at the 
0x8000 byte halfway point.  The source code is designed to have the Lisa assembler do all the work of 
splitting the image at the correct place.  Therefore, only two burn sessions will be required.  The 
software Mr. Sander-Cederlof provided for the PROmGRAMER allowed the user to enter a command 
such as “F” (for Fast burn) and the default parameters would be entered and used to burn a 27256 or 
the first half of a 27512 EPROM image.  There was no command with default parameters to burn the 
second half of a 27512 EPROM image, so the parameters had to be entered manually.  I found this to 
be unfortunate after I ruined one too many 27512 EPROM burn sessions when I mistakenly entered the 
wrong parameters when I attempted to burn the second half.  So I sourced the PROmGRAMER 
software and I added all the additional commands that I thought would support a 27512 EPROM. 
 
Figure IV.10.1 shows the PROmGRAMER software being configured and Figure IV.10.2 shows the 
available commands to the user that fully support the 27512 EPROM with the added commands “S”, 
“T”, “G”, and “A”.  I had to heavily modify the original code in order for it and the additional code 
that supports the new commands to fit within the required space.  It works.  I’m happy. 
 
To assemble the BURNER source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the BURNER Source volume “BURNER.Source” in disk drive 2, load the 
“BURNER.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  The complete binary 
image will be saved to the BURNER Source volume as “BURNER”. 
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Figure IV.10.1.  PROmGRAMER Configuration 
 
 
 
 

 
 

Figure IV.10.2.  PROmGRAMER Command Menu 
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11.  CFFA Card 
The CompactFlash For Apple, or CFFA card is an Apple II peripheral slot card that is able to read 
from and write to a CompactFlash memory card seated in an on-board CF card socket or to a hard 
drive by means of a 40-pin IDE header socket. This slot card is able to present the onboard flash 
storage as either a hard drive or a stack of floppy disks when using Disk ][ emulation firmware.  
Richard Dreher of R&D Automation created the CFFA card, and the first production run was released 
in 2002.  I purchased my card in 2006, CFFA Version 2.0, revision B.  It is my understanding that the 
CFFA card was most likely designed to be more compatible with ProDOS.  Unfortunately I never 
participated in the ProDOS movement when my software interests became redirected to UNIX based 
high-end professional workstations manufactured by SGI (running IRIX) and SUN (running SunOS).  
In view of my recent development of DOS 4.1 I began working on my own Disk ][ emulation firmware 
for the CFFA card.  I simply want a means to archive my hundreds of 5.25-inch diskettes, and the 
CFFA card is the ideal platform. 
 
It is my understanding, however, that Mr. Dreher has enhanced the CFFA card in many ways since my 
purchase in 2006.  I have no idea if the hardware interface of the current version of the CFFA card 
resembles that of the past and whether or not my firmware will even function on the current version of 
hardware.  I strongly suspect my CFFA card firmware will function on the current hardware design 
just fine. 
 
Table IV11.1 shows the entry points of the firmware interface I developed for the CFFA card that is 
mapped to the peripheral-card ROM address space of the CFFA card. 
 
 
 
 

Offset Name Description 
0x00 CFBOOT Entry point for DOS PR# command to boot selected DOS 
0x10 ROMHOOK Entry point to connect the CFFA to DOS 3.3 or DOS 4.1 
0x18 ROMUHOOK Entry point to disconnect the CFFA from DOS 3.3 or DOS 4.1 
0x20 USRBOOT Boot selected DOS image 
0x30 VOLBOOT Boot selected volume DOS image 
0x3B DISKRWTS DOS 3.3 RWTS entry if DOS 3.3 is active 
0x4B CFRWTS DOS 4.1 RWTS entry if DOS 4.1 is active 
0x5C VOLBOOT2 Simulate Disk ][ entry point for boot stage 1 code at 0x0801 
0x64 CFRWTS2 Convert DVTS to LBA to seek, read, write, and format CF volumes 
0xF3 MODOS3 Entry point to modify DOS 3.3 during boot stage 2 for CFFA use 

0xFE/FF VERSION Version number for CF firmware (0x14), that is, Version 1, Build 4 
 

Table IV.11.1.  CFFA Card Firmware Entry Points 
 
 
 
 
The CFFA firmware interface allows access to each of the 512-byte blocks on a CompactFlash 
memory card up to eight GBs in size.  Each block has a Logical Block Address (LBA) that is 24-bits in 
size, divided into three bytes, and saved to three of the sixteen peripheral-card I/O memory locations.  
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Even the Master Boot Record (MBR) can be read and saved.  Only three processing commands are 
necessary to utilize the CFFA:  ID, READ, and WRITE.  The ID command reads the IDENTIFY 
DEVICE block of the CompactFlash card.  That block provides the card’s serial number, model 
number, and capacity in LBA addressable blocks as well as other useful information.  I approached my 
design of the CFFA firmware interface as a way to communicate with a massive data storage device.  
In that end, I devised an equation to convert Drive/Volume/Track/Sector (DVTS) to LBA and an 
algorithm to perform the reverse conversion.  The range allowed for the variables Drive, Volume, 
Track, and Sector are: 
 
 
 Drive = 1:81  to support an 8 GB CompactFlash card 
 Volume = 0:255 already supported by the DOS 4.1 VTOC 
 Track = 0:47  already supported by the DOS 4.1 VTOC 
 Sector = 0:31  already supported by the DOS 4.1 VTOC 
 
 
The equation to convert DVTS to LBA is given by: 
 
 block = Sector & 0x0F 
 page = Sector & 0x10 
 offset1 = 0x100 
 
 LBA = ( ( Drive-1 ) * 0x30000 ) + ( Volume * 0x300 ) + ( Track * 0x10 ) + block + offset1 
 
 
 
This equation implies that each Drive contains 0x30000 LBA blocks and each Volume contains 0x300 
LBA blocks.  A Volume can consist of up to a maximum of 48 tracks and each track has 16 LBA 
blocks.  Since an LBA block contains 512 bytes, the block is partitioned by the page variable such that 
DOS sectors 0x00 to 0x0F reside on page 0 (the lower half of the LBA block) and DOS sectors 0x10 to 
0x1F reside on page 1 (the upper half of the LBA block).  I agree that forcing a Volume to be 768 LBA 
blocks (i.e. 1536 Disk ][ sectors) in size rather than 560 Disk ][ sectors in size is wasting a lot of space 
on the CompactFlash card.  DOS 4.1 has the potential to utilize a volume having up to 50 tracks in 
size, but I considered 48 to be the better upper limit for mathematical reasons and for ease of 
calculation.  Because the VTOC can support 32 sectors per track and an LBA block is 512 bytes in 
size, it makes sense to me to split an LBA block into a lower 256-byte Disk ][ sector and an upper 256-
byte Disk ][ sector.  The algorithm to calculate an LBA for a given DVTS using the above equation is 
very fast because all the multiplication is done by using the addition of values obtained from three 
lookup tables.  The complete firmware interface fits comfortably in the peripheral-card ROM memory 
and expansion ROM address space of the CFFA card.  The peripheral-card ROM memory has the 
normal slot boot entry at byte 0x00, a CFFA unique byte, my standard DOS 3.3 and DOS 4.1 
connection on/off at bytes 0x10 and 0x18, respectively, a user boot entry at byte 0x20, and a volume 
boot entry at byte 0x30.  The user can boot one of six versions of DOS where 32 LBA blocks are 
provided for each DOS image.  The first three DOS images include DOS 3.3, DOS 4.1L, and DOS 
4.1H.  Thus, there is room for three User Defined DOS images that may be installed.  Additionally, the 
CFFA firmware can boot any bootable volume on any drive within the CF whether the boot tracks 
contain DOS 3.3 or DOS 4.1. 
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Connecting the CFFA to DOS 4.1 is trivial because DOS 4.1 contains a reserved address location for 
each slot that contains a peripheral slot card that is a Disk ][-like I/O device that has an RWTS 
interface address.  When the CFFA is booted with an installed default DOS, DOS 4.1L for example, 
boot stage 1 is monitored for ROMSECTR to become 0x00 and BOOTPGS to become negative.  
Unlike DOS 3.3, boot stage 1 in DOS 4.1 reads sectors 0x06 to 0x00 on track 0x00 in descending order 
into memory from 0xB900 to 0xBF00 in ascending order.  After sector 0x00 is read into memory at 
0xBF00, all of DOS 4.1 RWTS is now available to read into memory the remaining pages of DOS 4.1.  
Normally a Disk ][-like I/O device only boots from drive 1 of two possible drives (or four in the case 
of the Rana Interface card) regardless of the volume’s volume number.  However the CFFA must be 
able to boot from any of its volumes and from any of its drives, so this puts a special burden on 
monitoring the boot stage 1 process.  In addition to the boot variables BOOTADR and BOOTPGS 
common to all varieties of DOS, and the DOS 4.1 disk address table shown in Table I.8.1, there is a 
variable called BCFGNDX that is an index on page 0xBF00.  This index points to the BOOTCFG table 
of variables that is used to initialize the RWTS IOCB and used by the routine RWPAGES which is 
called during boot stage 2.  It is at this time when boot stage 1 completes, but before boot stage 2 
begins, that the BOOTCFG table must be updated with the current CF drive and volume that is 
currently booting.  The values for DNUM and VOLEXPT will be utilized by boot stage 2 and pushed 
onto the CFRWTS interface using the RWTS IOCB so that the correct LBA will be calculated from 
the booting DVTS.  Unfortunately, the situation for a booting DOS 3.3 volume is a horrible mess for 
any firmware, and the CFFA firmware is no exception, but certainly not impossible to monitor and to 
manage. 
 
Boot stage 1 for DOS 3.3 reads sectors 0x09 to 0x00 on track 0x00 in descending order to memory 
from 0xBF00 to 0xB600 in descending order.  After sector 0x00 is read into memory at 0xB600, all of 
DOS 3.3 RWTS is now available to read into memory the remaining pages of DOS 3.3.  During boot 
stage 2 DOS 3.3 initializes the RWTS IOCB with DNUM=1 and VOLEXPT=0x00, which allows any 
volume to boot in disk drive 1.  These values must be overwritten in order for the CF firmware to 
calculate the correct LBA from the booting DVTS.  Once the routine RWPAGES has read in the 
remaining pages of DOS from the correct drive and volume, the DOS 3.3 code must be patched yet 
again in order for it to function properly within the CF environment.  The prime issue with DOS 3.3 is 
how DOS 3.3 manages (or mismanages in my opinion) volume number.  In the CF environment 
volume number cannot be ascertained from a sector header because there are no sector headers to read.  
Therefore, a DOS 3.3 routine such as CATHNDLR that handles the DOS CATALOG command must 
not presuppose any value for volume number.  Similarly, the SETDFLTS routine must not initialize or 
change the current value for volume number so that other DOS 3.3 commands will work properly 
when the V keyword is not included with a DOS 3.3 command.  In order for DOS 3.3 to read into 
memory any DOS 4.1 file, the filename length must be adjusted to 24.  Before any CF volume is 
initialized with DOS 3.3 all patches like the ones just described probably should be removed.  A 
simple tool can do this, of course, but in order for DOS 3.3 to communicate with the CF firmware and 
perform volume initialization, its CALLRWTS routine must remain patched.  I believe a better 
solution is to leave DOS 3.3 patched and totally useable in the CF environment, initialize a CF volume 
as desired, and overwrite the DOS image on tracks 0x00, 0x01, and 0x02 with whatever “pure” DOS 
3.3 image you wish knowing full well that it may not boot or function properly in the CF environment.  
There may be other equally viable solutions.  Table IV.11.2 documents all the patches that are applied 
to DOS 3.3 before and after boot stage 2 by the CF firmware. 
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Address Old New Boot Stage 2 Description 
0xB707 0x01 drive before update for DNUM 
0xB7EB 0x00 volume before update of VOLEXPT 
0xB748 0x84 #modos3 before replace address of DOSSTRT with 

MODOS3 at 0xB748/0xB749 0xB749 0x9D cfpage before 
0xAA66 VOLVAL volume after update for VOLVAL 
0xB7EB VOLEXPT volume after update of VOLEXPT 
0xA0DA 0x66 0x65 after bypass initialization of VOLVAL 
0xA95B 0x02 cfmaxdrv after update KWRANGE for DRIVE 
0xAD9E 0xF9 0xFE after bypass setting VOLNUMBR to 

0xFF in CATHNDLR 
0xB203 0x1E 0x18 after compare 24 character filenames 
0xB707 drive 0x01 after restore original value 
0xB748 #modos3 0x84 after restore address of DOSSTRT at 

0xB748/0xB749 0xB749 cfpage 0x9D after 
 

Table IV.11.2.  DOS 3.3 Patches for CFFA 
 
 
 
 
Referring to Table IV.11.2 all variables listed that are in lowercase reside in CF firmware.  The 
uppercase variables reside in DOS 3.3 source code.  The first four substitutions are made just after boot 
stage 1 completes.  The address for the entry point MODOS3 shown in Table IV.11.1 is used to 
replace the address for DOSSTRT, or 0x9D84, at 0xB748/0xB749.  Once boot stage 2 completes DOS 
3.3 will enter the CF firmware to install the remaining patches and code replacements for DOS 3.3.  
After the patches have been made the CF firmware simply jumps to the intended DOSSTRT address at 
this time.  I fondly recall meeting many software engineers, particularly at Sierra Online, who I refer to 
as “DOS 3.3 Purists.”  “Thou shalt not modify DOS 3.3.”  Only when it was demonstrated to Ken 
Williams that we were able to make DOS 3.3 smarter, faster, and safer did Ken remove the DOS 3.3 
Purity Shield.  Now, from my current vantage point, I see that DOS 3.3 contained a lot of crappy code 
based on some very silly ideas, like how volume number was handled, and mishandled, and 
complimented, and substituted.  Hopefully, DOS 4.1 will demonstrate how simple and powerful using 
volume number in the CF environment can be; that is, using volume number like any other number 
including slot number, drive number, track number, and sector number. 
 
To assemble the CFFA Firmware source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” 
in disk drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” 
program in order to verify or set the “Start of Source Code” to 0x2100 and the “End of 
Source Code” to 0x6000.  Place the CFFA Firmware volume “CFFA.Firmware” in disk drive 2, 
load the “CFFA.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  The binary images 
will be saved to the CFFA Firmware volume as “CFFA_SLOT_BUILD14” and 
“CFFA_ROM_BUILD14”.  The utility “COPYCFFA” can be used to copy these two binary files to the 
CFFA Programs volume “CFFA.Programs”.  Simply follow the directions on the screen and press 
any key to begin the copy. 
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The CFFA Tools volume “CFFA.Tools” contains the utilities “DOS3.3_TOOLS” and 
“DOS4.1_TOOLS” to process the DOS binary files DOS3.3, DOS4.1.46L, and DOS4.1.46H.  Using 
the DOS3.3 binary file, “DOS3.3_TOOLS” creates the binary files DOS3.3-4.1 and DOS3.3 IMAGE.  
Using the DOS4.1.46L and the DOS4.1.46H binary files, “DOS4.1_TOOLS” creates the binary files 
DOS4.1L IMAGE and DOS4.1H IMAGE.  The utility “INSTALL33” can install DOS3.3 (a pure 
DOS 3.3 image), DOS3.3-4.1 (a patched image of DOS 3.3 suitable to work with DOS 4.1 files), or 
DOS3.3 IMAGE (a patched image of DOS 3.3 suitable to work with the CFFA firmware), onto tracks 
0x00, 0x01, and 0x02 of a volume in disk drive 1.  The utility “INSTALL46L” can install 
DOS4.1.46L (a pure DOS 4.1L image) or DOS4.1L IMAGE (a patched image of DOS 4.1L suitable to 
work with the CFFA firmware) onto tracks 0x00 and 0x01 of a volume in disk drive 1.  Similarly, the 
utility “INSTALL46H” can install DOS4.1.46H (a pure DOS 4.1H image) or DOS4.1H IMAGE (a 
patched image of DOS 4.1H suitable to work with the CFFA firmware) onto tracks 0x00, 0x01, and 
0x02 of a volume in disk drive 1. 
 
To assemble the CFFA Tools source code with Lisa already running, place the CFFA Tools volume 
“CFFA.Tools” in disk drive 2.  Load each Lisa file into memory, and start the assembler using either 
the “A” command-line command or the “Z” command-line command.  If a printed version of the 
screen output is desired simply preface the “A” or “Z” command with the “P1” command-line 
command.  The complete binary image for each Lisa file will be saved to the CFFA Tools volume.  
The utility “COPYTOOLS” can be used to copy all the utilities and DOS images from the CFFA Tools 
volume “CFFA.Tools” to the CFFA Programs volume “CFFA.Programs”.  Simply follow the 
directions on the screen and press any key to begin the copy. 
 
Along with the CFFA Firmware object code files and the CFFA Tools utilities and DOS images, the 
CFFA Programs volume “CFFA.Programs” contains the executable object code for VOLMGR, 
BOOTVOL, and BOOTDOS.  The next section discusses these programs.  It is the CFFA Programs 
volume that I transfer from my MacBook Pro to a diskette in an Apple //e Disk ][ using A2V2 on the 
Mac and ADT on the Apple //e since the CFFA card in resident in the Apple //e, not in the Mac.  Now, 
VOLMGR can easily install the new CFFA firmware image and all three DOS images.  There is 
sufficient disk space remaining on the CFFA Programs volume for additional DOS images. 
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12.  Volume Manager (VOLMGR) 
The Volume Manager is a utility I have developed to manage the CFFA firmware interface, manage 
the CFFA CompactFlash card utilization and identity, manage the CF Drives, manage the CF Volumes 
of a CF Drive, and manage the CF User DOS Images.  The following eight figures show a few menu 
screens from VOLMGR as well as an example display of the Device Identity contents of a 
CompactFlash card.  Additionally, the utilities BOOTDOS and BOOTVOL can be used to boot any of 
the six DOS images on the CF card or boot any bootable volume on any of the CF volumes and drives. 
 
Boot stage 1 and boot stage 2 cannot be monitored when loading any of the six selectable DOS images.  
Therefore, the DOS image must be modified before it is saved to CF DOS Image memory in at least 
two locations:  CMDVAL (a boot initialization value) and SNUM16 (located in the IOCB for RWTS).  
I prefer to use the CLOSE command (i.e. 0x10) in place of the RUN command for CMDVAL and 
0x50 in place of 0x60 for SNUM16 since my CFFA card typically resides in slot 5.  These 
modifications are simply for convenience for my particular installation.  In the previous section the 
utilities “DOS3.3_TOOLS” and “DOS4.1_TOOLS” performed this function. 
 
VOLMGR will detect a previously unmodified CFFA card by inspecting the first eight firmware bytes 
known as the signature bytes, and continue processing.  This will allow the user to save the new CFFA 
firmware to the CFFA card.  After VOLMGR installs the new CFFA firmware these signature bytes 
will be changed to those listed for the CFFA card in Table II.7.2. 
 
 
 
 

 
 

Figure IV.12.1.  VOLMGR Product Warning Screen 
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Figure IV.12.2.  VOLMGR Command Menu 
 
 
 
 

 
 

Figure IV.12.3.  VOLMGR Manage Firmware Menu 
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Figure IV.12.4.  VOLMGR Manage CompactFlash Menu 
 
 
 
 

 
 

Figure IV.12.5.  VOLMGR Device Identity Contents 
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Figure IV.12.6.  VOLMGR Manage Drives Menu 
 
 
 
 

 
 

Figure IV.12.7.  VOLMGR Manage Volumes Menu 
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Figure IV.12.8.  VOLMGR Manage User DOS Images Menu 
 
 
 
 
To assemble the VOLMGR source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the VOLMGR Source volume “VOLMGR.Source” in disk drive 2, load the 
“VOLMGR.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  Five object code 
files will be created on the VOLMGR Source volume:  “SEG01” to “SEG05”.  The five object code 
files can be combined in memory sequentially starting at 0x0900 using the “ctrl-P” command.  The 
complete binary image can be saved to the VOLMGR Source volume, or any other volume, as 
“VOLMGR”. 
 
To assemble the BOOTVOL and the BOOTDOS source code with Lisa already running, load each 
Lisa file into memory, and start the assembler using either the “A” command-line command or the “Z” 
command-line command.  If a printed version of the screen output is desired simply preface the “A” or 
“Z” command with the “P1” command-line command.  The complete binary image for each Lisa file 
will be saved to the VOLMGR Source volume.  The utility “COPYVOLMGR” can be used to copy 
VOLMGR, BOOTVOL, and BOOTDOS from the VOLMGR Source volume to the CFFA Programs 
volume “CFFA.Programs”.  Simply follow the directions on the screen and press any key to begin 
the copy. 
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13.  File Developer (FID) 
File Developer (FID) was an original Apple ][ assembly language utility found on the DOS 3.3 System 
Master diskette I received with my Apple ][+.  I suspect it was the most widely used DOS utility of all 
time.  Instead of writing my own similar utility for DOS 4.1 having Volume number included as an 
input parameter, I decided to source FID and add what I needed to that software.  Anytime I start 
tearing into someone else’s software I find it to be a real, sometimes rare educational experience.  FID 
utilizes RWTS and the File Manager interfaces as noted elsewhere in this manual, which gave me a 
good insight in how the “Apple Experts” made use of those interfaces.  I received the most grief from 
FID’s hardcoded insistence that track 0x00 could never be used for data storage, that it was a track 
never to be utilized except for booting DOS.  There were several locations in the FID software where I 
had to insert the parameter TRKZERO (i.e. 0x40) so that FID would accommodate track 0x00 
properly, as a data track, as it is accommodated in DOS 4.1. 
 
 
 
 

 
 

Figure IV.13.1.  FID Main Menu 
 
 
 
 
The most essential task was to implant the use of Volume number because I wanted FID to work with 
the CFFA hardware whose Disk ][ emulation firmware can access up to 81 Drives (for an 8 GB 
CompactFlash card) each having 256 Volumes.  Actually, I derived this dependency on Volume 
number from the Sider firmware that utilized Volume number to calculate the sector number for the 
start of each DOS 3.3 volume on its hard drive.  And, of course, I wanted FID to include my new DOS 
URM command in order to undelete files because that capability exists in DOS 4.1 by means of the 
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File Manager.  FID also makes use of the Catalog command’s SUBCODE to display the current list of 
files on a volume with or without listing the deleted files as well.  Finally, FID had to use the free 
sector bitmap in the VTOC properly, as it is used properly in DOS 4.1, and not how it is used 
improperly in DOS 3.3.  The main menu for FID modified for DOS 4.1 is shown in Figure IV.13.1. 
 
Because FID uses the File Manager to copy files from one volume to another, there are certain 
limitations that one needs to be aware of.  Whatever sectors that are associated with a file that are listed 
in a file’s TSL are copied from the source volume to the destination volume.  The File Manager has no 
idea whether all or some of those sectors are actually being used by that file.  For example, if a Binary 
file is created with the DOS “BSAVE TEST1,A$1000,L$6000” command, a file having 98 sectors 
will be created, 97 sectors for the data sectors and 1 sector for the TSL sector.  Then, if the DOS 
“BSAVE TEST1,A$1000,L$1000” command is issued, the DOS catalog will still show 98 sectors 
and FID will blindly copy all 97 data sectors even though only the first 17 data sectors have valid data.  
This same situation can occur with Applesoft files as well.  If the original Applesoft file utilizes 41 
sectors, then edited to nearly half its size and saved, the Applesoft file will continue to utilize 41 
sectors and not, say, 25 sectors unless the file is saved with a new name.  There is no way for FID to 
know whether a file uses all or some of the sectors listed in its TSL.  If disk space is a premium then 
FID should not be used to copy files; the files should be copied manually. 
 
Why does DOS potentially waste valuable disk space when one is saving less data to a file that already 
exists?  There are probably many reasons, some of which are valid and some are merely cosmetic.  I 
believe the most valid reason is safety.  In order to guarantee that a file only uses the disk space it truly 
requires when that file already exists would be to first delete the existing file, create a new file with the 
same name, and finally save the requested data to the new file.  But would this procedure be entirely 
safe?  What if something causes an error after the file was deleted but before the new file was created 
or before the requested data could be saved?  Is having a DOS URM command enough insurance if 
such a problem like this should ever occur?  Perhaps the requested data should be saved to a 
“XXTEMPXX” file first, then the original file could be safely deleted before the “XXTEMPXX” file is 
renamed?  There may not be enough disk space to have two copies of the file or there may not be 
enough room in the Catalog for an additional file entry.  This procedure would also rearrange the order 
of files in the Catalog which may not be appealing to some.  I believe the best alternative is to save the 
requested data to an existing file using that file’s TSL entries, and if there are more entries in the TSL 
than needed, those entries should be marked as unused sectors in the volume’s VTOC.  Of course I 
would only use this algorithm for the DOS SAVE, BSAVE, LSAVE, and TSAVE commands.  It 
would be a moderately interesting exercise to implement this algorithm, and certainly cause for the 
release of yet another DOS 4.1 build. 
 
To assemble the FID source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive 
1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program in 
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the FID Source volume “FID.Source” in disk drive 2, load the “FID.L” 
file into memory, and start the assembler by entering either the “A” command-line command or the “Z” 
command-line command.  If a printed version of the screen output is desired simply preface the “A” or 
“Z” command with the “P1” command-line command.  The complete binary image will be saved to 
the FID Source volume as “FID”. 
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14.  Lazer’s Interactive Symbolic Assembler (Lisa) 
I have to say that I have spent a considerable amount of time adjusting and fine tuning Lazer’s 
Interactive Symbolic Assembler (Lisa) to my every whim and need.  It truly has been a joy.  First and 
foremost my task was to modify Lisa to use the DOS 4.1 interface in order for Lisa to obtain various 
parameters it required for some of its special functions.  Next, I wanted to eliminate the need for Lisa 
to save the first file of a multiple-file program as “.TEMP” before it completed its Pass 1 processing.  
That task required adding a new directive.  I wanted the sort algorithm used to build and optionally 
print the Symbol Table to be part of Lisa.  I wanted to add an additional new directive to define the text 
for a Symbol Table title. I wanted LED to be an integral part of Lisa and always be included whenever 
Lisa was activated.  I wanted an easier way to enter a PR# and a ctrl-D command.  I wanted an 
additional command-line command besides “A” to assemble source code that forces the “PRNTFLAG” 
to be OFF as if the “NLS” directive was the first directive in the source code.  I wanted Lisa to obtain 
the date and time from DOS 4.1.  And I wanted to fix some of the quirkiness Lisa sometimes 
displayed.  I also found a few coding errors in Lisa. 
 
 
 
 

 
 

Figure IV.14.1.  Lisa Startup Screen 
 
 
 
 
As in the case for Big Mac, Lisa fills the entire Language Card memory (both banks, actually) and 
LED, written by Bob Rosen of RSQ Software Products, occupies the address space below DOS from 
0x91E0 to 0x9AB0.  Lisa uses only one DOS buffer.  The momentous task of sourcing Lisa took many 
hours, not just for the conversion of the assembly language object to source code, but the laborious 
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task of understanding the idiosyncrasies of how Randall Hyde designs and writes software.  The 
optimal desire is to understand the newly generated source code so that 1) it assembles and perfectly 
matches the original, and 2) it can be modified and all structures and tables and their lengths and sizes 
will remain unaffected.  Quite frequently an author may pass the address of a structure or data table in 
a register or two, or as an index into a table of addresses, and initially the source code appears like that 
address or that table of addresses is hardcoded.  What needs to be done is to assign a variable to the 
structure or data table so that if the structure or table shifts up or down in memory, the registers will 
always contain the variable’s correct address location.  It is necessary to find all such occurrences in 
order to reach that optimal state of perfectly sourced code.  Sourceror can only do so much!  Figure 
IV.14.1 shows the Lisa initial startup screen. 
 
 
 
 

Command Context Description 
USR after OBJ $$ uses OBJ address to save start address for BSAVE 

USR FN end of code will BSAVE current code to file FN; follow with another USR 
USR .FN BLOAD file will BLOAD the file FN to the current object code pointer 

 
Table IV.14.1.  Lisa USR Command 

 
 
 
 

 
 

Figure IV.14.2.  Lisa Setup Utility 
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I give full credit to Robert Heitman who I met at Sierra On-Line for the USR and ctrl-P routines 
contained in both User (0xDF00) pages of Lisa.  I may have adjusted them slightly for my own 
particular needs, but essentially the USR functionality are Heitman’s.  The USR directive has a number 
of important uses depending on how it is utilized and which arguments are used with the directive.  Its 
syntax is shown in Table IV.14.1.  The combination of “ORG $$/OBJ $$/USR/some code/USR FN” is 
a very powerful set of directives.  The first use of USR, alone, at the top of a program after the ORG 
and OBJ directives, saves the current address of the object code pointer set by the OBJ $$ directive, 
where $$ is some hexadecimal address.  After some source code has been assembled, the generated 
object code can be saved to some Filename using the “USR FN” directive.  “USR FN” uses the 
beginning address saved by the first USR, calculates the length of the code segment knowing the 
current address in the object code pointer, and constructs a DOS BSAVE command.  The “USR .FN” 
(that is, ‘period’ + FN) directive is useful in order to read a Binary file into memory at the current 
address in the object code pointer.  The object code pointer then needs to be incremented using the 
DFS directive, for example, knowing the size of the included file.  I use the “USR .FN” directive 
chiefly when I build an EPROM image in order to BLOAD into memory every object file that is to be 
contained in that image. 
 
Source code for programs such as Big Mac or Lisa or DOS 4.1 cannot possibly fit in the Apple ][ 
memory along with its generated object code, its symbol table, DOS, and the assembler.  Large 
software programs need to be segmented into manageable sizes and their assembled outputs saved to 
multiple object files that will be ultimately linked to form the complete executable program.  Lisa, 
DOS, and some program source code with its complete symbol table must reside in memory at a 
minimum.  Therefore, judicious values must be chosen for the beginning address of the symbol table 
memory area so that it is large enough to hold all the variable names and parameters along with their 
values, the beginning address of the source code memory area, and the beginning address of the object 
code memory area.  It is amazing what can be accomplished in such a small amount of memory as 
found in the Apple computer.  Lisa utilizes a utility called Setup that can be used to set these memory 
area addresses as shown in Figure IV.14.2.  The settings shown provide about 63 pages or disk sectors 
for source code, room for about 1060 variables and parameters, and about 25 pages or disk sectors for 
object code.  Of course, not every source code segment will require this much memory. 
 
The source code files that comprise DOS 4.1H are shown in Figure IV.14.3.  Several source files are 
processed before their collective object code is saved to a file.  The convention used to name these 
object code files is to begin the filename with a “SEG” prefix and end the filename with a two digit 
number suffix beginning with “01”.  The reason will become apparent shortly.  It makes no difference 
how many “SEG” files are created; remembering, of course, that each file created also requires an 
additional disk sector for its TSL.  In the case of DOS 4.1H there are only two volume sectors 
remaining, so there is little volume space left to make any substantial changes to this source code.  
When all the “SEG” files are sequentially read into memory the entire image for DOS 4.1H will be 
created.  I have the convention, if not the habit, to begin the load of an object code file at address 
0x1000.  Loading the first “SEG” file is easy, as in “BLOAD SEG01,A$1000”.  To what address is 
“SEG02” loaded next?  If the R keyword is used with the BLOAD command the length of “SEG01” 
will be given, and one can simply “BLOAD SEG02” at “0x1000 + length” and so forth.  There is an 
easier method built into Lisa:  a ctrl-P user function that will sequentially load “SEG” files. 
 
Lisa provides software hooks to the two 0xDF00 pages where a user can add any routine(s) of their 
choosing.  The USR function mentioned earlier is found at 0xDF00 when Bank 2 is selected using BIT 
0xC080.  The ctrl-P user function is also found at 0xDF00 when Bank 1 is selected using BIT 0xC088. 
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Figure IV.14.3.  DOS 4.1H Source Code Volume 
 
 
 
 

 
 

Figure IV.14.4.  EOS Image Segment Files 
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Figure IV.14.5.  EOS1 Image Creation 
 
 
 
 

 
 

Figure IV.14.6.  EOS2 Image Creation 
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The ctrl-P function allows the user to enter the number of segments to be loaded, the segment start 
number, the object code start address, and optionally the filename to save the composite image 
comprised of all the object code segments.  If the filename is not entered, the length of the image and 
its final memory address are displayed.  Figure IV.14.4 shows all the “SEG” files that were created 
when the EOS source code was assembled.  These “SEG” files need to be linked into two 0x8000 byte 
files that will be used to burn a 27512 EPROM.  In order to do that most efficiently “SEG” files 1 to 4 
are linked into one file and “SEG” files 5 to 8 are linked into the second file.  The ctrl-P user function 
is the perfect way to perform the linking function.  Figure IV.14.5 shows how “SEG” files 1 to 4 are 
linked into the first EOS image, EOS1, and Figure IV.14.6 shows how “SEG” files 5 to 8 are linked 
into the second EOS image, EOS2.  Now, the two binary image files “EOS1” and “EOS2” are ready to 
be burned into a blank 27512 EPROM.  In fact, the utility “BURNER” is conveniently located on the 
same volume as these two image files.  This makes the process of preparing and burning an EPROM 
very simple, very reliable, and very accurate. 
 
Lisa makes three passes through all source code files for its input in order to create object code for its 
output.  The first pass can be terminated using the “ENZ” directive, or “ENd of page-Zero” parameter 
definitions.  Pass 2 and Pass 3 must process all source code.  In order to return to the first, or initial file 
when an “ICL”, or include “filename”, directive is encountered, Lisa has always saved the initial 
file as an additional file named “.TEMP” so that processing can begin with a known first file for the 
next pass.  Certainly this method is the easiest to implement but comes with an unfortunate price:  it 
wastes some valuable disk space.  In the example above for the volume containing the DOS 4.1H 
source code, Figure IV.14.3, there is no disk space for a “.TEMP” file having the same contents, thus 
the same size as the file “DOS4.1H.L”.  Lisa had a few unused opcodes available, so I added the 
“SRC” directive that requires a filename.  The complete syntax is “SRC ‘filename’”.  I gave LED 
some additional memory at its beginning, where I moved the “.TEMP” filename, and that is where the 
“SRC” directive copies its filename.  Naturally if the “SRC” directive is not used and there is at least 
one use of the ICL directive, Lisa will create a “.TEMP” file as usual.  The filename specified in the 
“SRC” directive should be the filename of the file the directive is found in, but this does not 
necessarily have to be the case.  Referring to Figure IV.14.3, if the “SRC” directive in the 
“DOS4.1H.L” file was “SRC ‘INCL.L’”, the file “DOS4.1H.L” would not be processed during 
Pass 2 and Pass 3, thus saving some processing time, but at the expense of not including the 
“DOS4.1H.L” file as part of the complete print listing, if such a listing is desired.  Personally, I like to 
place the “SRC” directive on line 2, right after the “TTL” directive, in the very first file when there are 
several source code files comprising a program.  Even if all the source code resides in a single file, 
using the “SRC” directive will do no harm. 
 
I challenged myself to make room in Lisa to include the sort algorithm and the code used in the 
program called “SYMBOLS”.  If “SYMBOLS” were activated immediately after Lisa processes some 
source code, it would print out the complete symbol table alphabetized, and then again with the 
symbols ordered by value.  I liked what “SYMBOLS” did but not well enough to fumble around 
locating a copy of it, even if I did have it in EPROM, especially after processing a huge project like 
DOS4.1H.  Fortunately, “SYMBOLS” is a little program and it did not take much effort to source.  Now 
I had some idea how much room I needed within Lisa.  Of course, I could always make LED larger, 
thus rob memory from the symbol table, source, and object code memory areas.  I know Randall Hyde 
used good sense when he developed his routines for each opcode for the Pass 2 implementation and 
separately for the Pass 3 implementation.  Regardless of good sense, I studied those routines and found 
a number of ways to compact a rather large amount of code giving me more than enough code space 
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for “SYMBOLS”.  Now that Lisa was headed down this path I thought it would be exemplary to provide 
a means to give the symbol table listing a name in the page titles.  I replaced the “CSP” directive with 
the “STT” directive (Symbol Table Title) whose syntax is “STT ‘title’”.  This directive copies 
the string “title” to the buffer currently used by the “TTL” directive during Pass 3.  If the symbol table 
is printed its pages contain the new title.  If this directive is not used the symbol table pages are printed 
with the same title from the “TTL” directive. 
 
To complete this challenge required one further modification, and that was to the “END” directive.  
This directive provided the perfect location to control which of three symbol tables to print after the 
assembled code listing:  no symbol tables, unsorted symbols, alphabetically sorted symbols, and 
numerically sorted symbols.  Regardless of which or all listings are desired, if at least one is selected 
the listing includes the memory address where the symbol table begins and where the symbol table 
ends.  From Figure IV.14.2 the absolute physical end of the symbol table is set at 0x91D0.  If there is 
substantial memory not used from the End of Symbol Table as reported in the assembled code listing 
and 0x91D0, the End of Source Code in Figure IV.14.2 could be adjusted to allow for larger source 
code files.  It’s always good to have visibility in how effectively Lisa is configured particularly when 
problems due to source code file size begin to generate errors during assembly.  Therefore, to sum up 
this discussion, the “END” directive now allows a three-digit binary parameter to control which of the 
three symbol tables to list in the order stated above.  The syntax for the directive is “END nnn” where 
“n” can be a “0” or a “1” for OFF and ON, respectively. 
 
I prefer to keep the default setting of the “PRNTFLAG” variable ON during Pass 3 in order to obtain a 
printed listing of the assembly, particularly when I am using Virtual ][.  Rarely do I use the “LST” and 
“NLS” directives anymore.  However, when I am debugging software using real Apple ][ hardware and 
the RamDisk 320, leaving the “PRNTFLAG” variable ON greatly impacts assembly throughput, even 
with the ZipChip enabled.  And it is a nuisance having to insert and then delete the “NLS” directive in 
the source code during the debugging process.  So I added the “Z” command-line command to Lisa 
that functions like the “A” command-line command to start the assembly process, except the “Z” 
command sets the “PRNTFLAG” variable to OFF instead of to ON as if a “NLS” directive is the first 
directive in the source code. 
 
Many times it is necessary to enter a DOS command directly on the Lisa command line.  In order to do 
so a CTRL-D must precede the command so that Lisa will know to send the command to DOS rather 
than parsing the command for itself.  I found it cumbersome for me to enter a CTRL-D before a DOS 
command every time I needed some information from DOS.  So I added another Lisa command-line 
command, “/”, which is so much easier for me to enter before a DOS command.  For example, to 
display the contents of the VTOC sector, the following can be entered on the Lisa command line: 
 
 !/TS A17 
 
In Figure IV.14.2 the ‘E’, ‘F’, and ‘G’ options select the clock slot number, its 0xCs05 value, and its 
0xCs07 value, respectively, where “s” is the clock slot number.  However, when Virtual ][ is running 
Lisa, Lisa obtains the date and time information similarly in how DOS 4.1 obtains that information, so 
Lisa also requires a value for the current year because the Thunderclock lacks a year register.  Instead 
of having a duplicate date and time algorithm and a duplicate “YEARVAL” variable to manage in Lisa, 
I removed the date and time algorithm and “YEARVAL” variable from Lisa and utilized the DOS 4.1 
“RDCLKADR” vector at 0x3E8.  I placed the “CLKBUFF” buffer conveniently at 0x3C8.  Whenever 
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Lisa requires the current date and time it requests that information from DOS 4.1.  The utility Setup no 
longer configures the clock slot, its 0xCs05 value, or its 0xCs07 value since Lisa no longer requires 
that information. 
 
It is always an unspoken goal whenever sourcing someone else’s software to never introduce new and 
unwanted problems.  On the other hand there is always a very good chance of finding and repairing 
someone else’s mistakes because of the intensity of concentration required to understand every single 
line of code.  I suspect there might be some mistakes in Lisa that I have yet to uncover, but for the 
moment Lisa is rock solid stable and it is providing me with object code output files true to their 
source code input files.  Whether the source code input files are necessarily perfect is quite another 
question. 
 
To assemble the Lisa source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive 
1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program in 
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the Lisa Source volume “LISA.Source” in disk drive 2, load the 
“LISA.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  Three “SEG” object 
code files will be created on the Lisa Source volume:  “SEG01” to “SEG03” along with the 
“LISA.2” and “LED” object code files.  The three “SEG” object code files can be combined in 
memory sequentially starting at 0x1000 using the “ctrl-P” command.  The complete binary image 
can be saved to the DOS 4.1 Tools volume, or any other volume, as “LISA.1”.  The “LISA.2” and 
“LED” object code files need to be copied the DOS 4.1 Tools volume as well.  The utility 
“LISA1TO2” can be used to copy the three object code files “LISA.1”, “LISA.2”, and “LED” to 
another volume in disk drive 2. 
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15.  Program Global Editor (PGE) 
When I received my Apple ][+ in the early 1980’s I spent my first few months writing Applesoft 
programs.  I was fortunate to obtain the Program Global Editor (PGE) written by C. A. Greathouse and 
Garry Reinhardt.  PGE certainly made programming Applesoft much easier when one has excellent 
tools at their disposal.  I have to say that there is one particular problem when writing Applesoft 
programs, and that is dealing with program line numbers.  So many commands depend on program line 
numbers making them essentially a highly critical part of any Applesoft program.  There are not many 
ways to partition an Applesoft program into functions and subroutines except by using large, 
incrementing sections of program line numbers or by using many “REM ***” statements, but they 
consume program line numbers as well as memory, which impacts program execution.  Here is where 
PGE’s forte provided me the most assistance:  PGE had a program line renumbering capability.  Upon 
initialization PGE remaps the ampersand vector to its “READY [“ prompt.  The renumber command 
“R” requires four parameters for start number, end number, new start number, and increment.  PGE 
scours the entire Applesoft program and changes every occurrence of every program line number 
within the specified range to the new program line number based on the new start number and some 
program line number increment, say 5 or 10 or 100.  To say the results were marvelous would be an 
understatement.  As one’s Applesoft programming capabilities mature, better choices for line numbers 
are usually made, and it becomes easier to create sections of code that resemble a function or a 
subroutine.  In these instances being able to renumber a small section of code is quite powerful. 
 
PGE requires the ability to modify the “WARMADR” and “RESETADR” vectors, and to obtain the value 
found at “ADRVAL” within DOS.  PGE simply modified those vectors and read the “ADRVAL” 
parameter directly knowing the location of these vectors and parameter within DOS 3.3.  DOS 4.1 has 
these vectors and parameter, of course, and a set procedure to read and write them.  As shown in Table 
I.8.1 the address of “INITDOS” is 0xBFF8.  The address at 0xBFF8 points to the table of address 
vectors shown in Table I.8.7.  “KEYVLADR”, at offset 0x07, points to the table of “KEYVALS” shown 
in Table I.10.3 where “ADRVAL” is found at offset 0x06.  In the same table where “KEYVLADR” is 
found, Table I.8.1, the vectors “WARMADR” at offset 0x0F and “RESETADR” at offset 0x13 are also 
found.  This procedure of finding vectors and parameters is the same in both DOS 4.1L and DOS 4.1H.  
Naturally the vector addresses are different in each of these versions of DOS, but their offsets and 
contents and the procedure to locate their values are the same.  As long as a program like PGE does not 
utilize the Language Card for any purpose it may safely employ these procedures under DOS 4.1H.  
After I adjusted the PGE software to locate the vectors and parameters it needed from DOS 4.1 using 
the procedures just outlined, PGE executes its commands flawlessly under both DOS 4.1L and DOS 
4.1H. 
 
To assemble the PGE source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive 
1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program in 
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the PGE Source volume “PGE.Source” in disk drive 2, load the “PGE.L” 
file into memory, and start the assembler by entering either the “A” command-line command or the “Z” 
command-line command.  If a printed version of the screen output is desired simply preface the “A” or 
“Z” command with the “P1” command-line command.  The complete binary image will be saved to 
the PGE Source volume as “PGE”.  Also, the LOADPGE source code is assembled using the same 
procedure. 
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16.  Global Program Line Editor (GPLE) 
Another invaluable Applesoft editing tool that I was fortunate enough to obtain was Global Program 
Line Editor (GPLE).  Neil Konzen published GPLE in 1982, and I obtained version V3.4.  GPLE uses 
the entire Bank 1 of the Language Card beginning at 0xD000, so it is obviously not compatible with 
DOS 4.1H.  GPLE does not utilize any vectors or parameters within DOS so I did not have to adjust 
GPLE whatsoever in order for it to execute under DOS 4.1L.  What I liked about GPLE was that it 
worked very much like a word processor for Applesoft programming.  It had the ability to globally 
search and replace any variable, word, or character with any other variable, word, or character within 
an Applesoft program.  And GPLE does its work extremely fast. 
 
The GPLE loader first verified that the Apple ][ computer contains 48 KB of memory and that a 
Language Card is available.  Then the loader write-enables Bank 1 of the Language Card and issues a 
DOS BLOAD command to load GPLE to memory address 0xD000.  Finally, the GPLE loader copies a 
set of routines comprised of the ctrl-Y entry location, the ampersand entry location, the KSWL entry 
location, and the CSWL entry location to 0xB6B3, a small, unused area within DOS 3.3, up to 
0xB6F9.  These routines also control the bank switching of the Language Card as well as providing the 
entry location for a modifiable ‘jsr’ instruction used in GPLE processing.  Of course, DOS 4.1 does 
not have 70 bytes free at 0xB6B3, or 70 bytes free at any other address, for these routines.  I chose to 
leave these routines where they were on Page 0x03, just after the upper ASCII data of the GPLE 
loader, and just before the DOS vectors at 0x3D0.  I modified the GPLE code to utilize the Page 0x03 
location for these routines instead of using the Page 0xB6 location.  There was a total of six addresses 
comprising the Page 0xB6 routines that I needed to change to Page 0x03.  As long as GPLE is used to 
edit an Applesoft program, using Page 0x03 for GPLE processing possess no problems whatsoever.  
However, if the Applesoft program is tested using the RUN command and if the program loads a small 
routine into Page 0x03, the KSWL/CSWL handlers for GPLE will be destroyed.  This is the only 
downside in using GPLE with DOS 4.1L. 
 
To assemble the GPLE source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the GPLE Source volume “GPLE.Source” in disk drive 2, load the 
“GPLE.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  The complete binary 
image will be saved to the GPLE Source volume as “GPLE”.  Also, the LOADGPLE source code is 
assembled using the same procedure. 
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17.  RamDisk 320 
I first became aware of the Axlon RamDisk 320 when I was self-employed and working under contract 
for Sierra On-Line around 1985.  Living in Oakhurst, California, was really fabulous, and being able to 
work at home was even better.  Except when the thunderstorms came and electrical power was 
temporarily interrupted, otherwise it was heavenly to live and work in Oakhurst.  Uninterrupted Power 
Supplies, or UPS battery backups were not easy to obtain and were not very affordable at that time.  
But when I was in the middle of a massive software development session and the power went out, and 
I lost hours of work, the cost of a UPS seemed trivial.  That was the time when I decided to purchase a 
RamDisk.  Actually, I purchased two because a friend of mine wanted a RamDisk, too.  The RamDisk 
emulates two 40-track disk drives using DRAM memory, and it has its own built-in power supply and 
backup lead-acid battery.  As long as a power outage did not last more than four hours, all my files 
were safe on the RamDisk.  My software development pace vastly improved as well because files were 
assembled from RAM, not diskette.  And when the RamDisk was mated with the ZipChip, large 
projects could be assembled and linked in seconds rather than in many, many minutes. 
 
Axlon provided excellent software utilities with the RamDisk.  Their RamDisk initialization software 
could transfer an entire diskette to one of the RAM drives in the time it took the Disk ][ (revolving at 
300 rpm) to make 35 revolutions, 1 revolution per track, in 35 * ( 60 / 300 ) = 7 seconds.  That is 
impressive.  From their software and from the design of their peripheral slot card I truly learned the 
importance of reading the “CLRROM” address in order to detach expansion ROM memory.  Whenever 
the 6502-microprocessor fetches an instruction in the peripheral-card ROM memory, 0xCs00 to 
0xCsFF, where “s” is the slot number of the peripheral slot card, the peripheral slot card typically 
enables its peripheral-card expansion ROM address space, 0xC800 to 0xCFFF.  And that is true for the 
RamDisk peripheral slot card only in the address range 0xCs00 to 0xCs7F.  Interesting.  Software 
residing in the upper half of its peripheral-card ROM memory can read the “CLRROM” address without 
re-enabling its expansion ROM address space.  That was indeed a very, very impressive design.  I 
made good use of that hardware design in all my versions of RamDisk firmware while I employed 
DOS 3.3.  Another interesting design of the RamDisk peripheral slot card was their use of a static 
RAM chip, a 6116, for their firmware.  The static RAM chip had to be initialized only once when 
power was first turned on, and regardless how many times the Apple ][ was powered off and back on, 
the static RAM chip retained its data because it derived its operating power from the RamDisk, not the 
Apple ][.  One of the static RAM chip pages was mapped to the peripheral-card ROM memory address 
space (0xCs00 to 0xCsFF), the 0xC800 page was mapped to the selected page of RamDisk DRAM, 
and the remaining static RAM chip pages were mapped to the peripheral-card expansion ROM address 
range, 0xC900 to 0xCFFF.  I made use of the idea of utilizing a static RAM chip instead of an EPROM 
when I was testing my new firmware for the Sider peripheral slot card.  It was amazing how much 
easier it was to test different software algorithms for the Sider without having to burn yet another, and 
another EPROM. 
 
I no longer remember when and where I became an owner of a 128K RAM peripheral slot card, or 
RamCard.  It may have been left inside a used Apple ][e I purchased at a garage sale.  Regardless, I 
have no idea who manufactured this RamCard.  This RamCard is designed to operate like a Language 
Card in any peripheral slot card slot in an Apple ][+ or in an Apple ][e, and it can be easily configured 
as one of eight Language Card blocks.  Since Address Bit A02 is ignored when configuring the 
Language Card using its soft switches, the RamCard utilizes Address Bit A02 to select a Language 
Card block.  Table IV.17.1 shows the memory management soft switches used by the RamCard.  
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Simply reading address 0xC084 selects RamCard block 1 or reading address 0xC08D selects RamCard 
block 6. 
 
 
 
 

Address Access Name Description 
0xC080 R RAM2WP Select Bank 2; write protect RAM 
0xC081 R || RR ROM2WE Deselect Bank 2; enable ROM || write enable RAM 
0xC082 R ROM2WP Deselect Bank 2; enable ROM; write protect RAM 
0xC083 R || RR RAM2WE Select Bank 2 || write enable RAM 
0xC084 R RCBLK1 Select RamCard block 1 
0xC085 R RCBLK2 Select RamCard block 2 
0xC086 R RCBLK3 Select RamCard block 3 
0xC087 R RCBLK4 Select RamCard block 4 
0xC088 R RAM1WP Select Bank 1; write protect RAM 
0xC089 R || RR ROM1WE Deselect Bank 1; enable ROM || write enable RAM 
0xC08A R ROM1WP Deselect Bank 1; enable ROM; write protect RAM 
0xC08B R || RR RAM1WE Select Bank 1 || write enable RAM 
0xC08C R RCBLK5 Select RamCard block 5 
0xC08D R RCBLK6 Select RamCard block 6 
0xC08E R RCBLK7 Select RamCard block 7 
0xC08F R RCBLK8 Select RamCard block 8 

 
Table IV.17.1.  RamCard Memory Configuration Soft Switches 

 
 
 
The hardware circuit of the RamCard is shown in Figure IV.17.1.  The circuit utilizes an Intel 3242 
address multiplexer and refresh counter in order to periodically refresh the sixteen dynamic RAM 
chips on board.  This address multiplexer is designed to refresh 16K dynamic RAMs, not 64K dynamic 
RAMs like those found on this RAM card.  Therefore, the RamCard circuit derives Row Address 7 
from the selected RamCard block number.  Data that is read from or written to the RamCard is latched 
in the 0xD000 to 0xFFFF memory address range so the RamCard must pull the INH line low in order 
to disable the Apple ROMs appropriately according to the memory configuration soft switches shown 
in Table IV.17.1.  In order to utilize the RamCard for anything useful software must be specifically 
designed to access the RamCard as eight individual Language Cards, or an interface driver must reside 
somewhere else in memory to provide RamCard memory access.  Neither of these ideas appealed to 
me, and I wanted to use the 128K memory of the RamCard in a more generic fashion. 
 
The hardware of the RamDisk responds only to the first two of the sixteen peripheral-card I/O address 
space locations dedicated to the RamDisk’s slot in order to select sector and track, so Address Bit A02 
will always be low.  The RamCard is designed to latch Address Bits A00, A01, and A03 when Address 
Bit A02 of its sixteen peripheral-card I/O address space locations is high.  Thus, the active peripheral-
card I/O address space locations for the RamDisk and the RamCard are mutually exclusive in selecting 
RamDisk sector and track versus RamCard block number.  For example, if the RamDisk resides in slot 
7, sector number is saved to 0xC0F0 and track number is saved to 0xC0F1.  If the RamCard resides in 
slot 7, block number is selected by reading 0xC0F4 to 0xC0F7 or 0xC0FC to 0xC0FF.  Once I 
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understood the hardware circuit of the RamCard in view of its software utilization I thought perhaps 
the circuit could be easily re-engineered.  I also had plenty of room for additional software within the 
RamDisk peripheral-card expansion ROM address space and some room left within the RamDisk 
peripheral-card ROM memory address space.  From within the RamDisk peripheral-card ROM 
memory address space, I knew I could turn off the RamDisk peripheral-card expansion ROM address 
space and use that address space to possibly access eight continuous pages of the RamCard.  Therefore, 
instead of accessing RamCard data in the 0xD000 to 0xFFFF memory address range, RamCard data 
would be accessed in the peripheral-card expansion ROM address space from 0xC800 to 0xCFFF. 
 
 
 
 

 
 

Figure IV.17.1.  Original RamCard Hardware Circuit Diagram 
 
 
 
 
It was around 1992 when I worked out a way to physically modify the RamCard in order to allow the 
firmware of the RamDisk to control it, and to access it as if it was a RAM disk drive having 32 tracks.  
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This modification required me to connect the RamCard to the RamDisk using a single wire, however.  
I found that Slot 3 was the perfect slot for the RamCard because the RamCard no longer needed to 
respond to its own “DEVICE SELECT” signal, but rather responded to the simulated “DEVICE 
SELECT” signal generated by the RamDisk.  When the RamDisk connects to DOS 4.1 it puts the 
address of its disk handlers in the disk address table “DISKADRS”, one for the RamDisk and one for 
the RamCard.  To be sure, the RamDisk firmware is handling all the RWTS IOCB traffic to and from 
the RamDisk as well as the traffic for the RamCard.  Regardless which slot the RamCard occupies, the 
RamDisk saves the track and sector from the RWTS IOCB to the 0xC0s4 (where “s” is equal to eight 
plus the slot number of the RamDisk) peripheral-card I/O memory location on behalf of the RamCard.  
Formatting either the RamDisk drives for 40 tracks or the RamCard for 32 tracks is easy in DOS 4.1 
because the DOS INIT command can set the “ENDTRK” variable to those specific values using the A-
keyword. 
 
 
 
 

 
 

Figure IV.17.2.  Modified RamCard Hardware Circuit Diagram 
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Figure IV.17.2 shows the modified RamCard hardware circuit diagram.  The 74LS175 quad D flip-
flops latch the data bus bits except for Data Bit D6.  Data Bits D0 to D5 hold the desired sector/track 
number and Data Bit D7 is used to enable the RamCard.  The desired 6-bit sector/track number is 
calculated as follows: 
 
  N = ( track number * 2 ) + ( sector number / 8 ) 
  P = sector number ^ 7 
 
The selected page “P” within the RamCard peripheral-card expansion ROM address space is 
determined from the first three bits of the sector number.  The modified RamCard circuit does not 
bring the INH line low because it is now unnecessary to disable the Apple ROMs.  Figure IV.17.3 
shows the actual modifications made to Figure IV.17.1 to obtain Figure IV.17.2.  One 74LS00 gate 
was available to use in order to clock the 74LS175 control registers. 
 
 
 

 
 

Figure IV.17.3.  RamCard Hardware Modifications 
 
 
 
 
In Figure IV.17.3 the Control Byte is latched into the two control registers on the RamCard only when 
Address Bit A02 is high as in “STA 0xC084,X” where register X contains the slot number of the 
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RamDisk times 16.  The RamDisk hardware does not respond to any value saved to its peripheral-card 
I/O memory location when Address Bit A02 is high, but it generates a suitable “DEVICE SELECT” 
signal for the RamCard.  Before the RamCard is enabled the “CLRROM” address is read in order to 
disable the peripheral-card expansion ROM address range 0xC800 to 0xCFFF.  The moment the 
RamCard is enabled the peripheral-card expansion ROM address range is instantly mapped to eight 
selected pages of RamCard memory.  Bit 0x0 of the Control Byte contains bit 0x3 of the desired sector 
number.  Therefore, the peripheral-card expansion ROM memory will display sectors 0x0 to 0x7 when 
Control Byte bit 0x0 is zero and sectors 0x8 to 0xF when Control Byte bit 0x0 is one.  Bits 0x1 to 0x5 
of the Control Byte contain the desired track number.  Bit 0x6 of the Control Byte is not used and bit 
0x7 is used to enable or disable the RamCard.  The RamCard can no longer function as a Language 
Card after having had these hardware modifications. 
 
Table IV.17.2 shows the firmware entry points for the RamDisk and for the RamCard for the firmware 
that is mapped to the peripheral-card ROM address space of the RamDisk. 
 
 
 
 

Offset Name Description 
0x00 RDBOOT Entry point for PR# DOS command to boot DOS in drive 1 
0x10 ROMHOOK Entry point to connect the RamDisk and RamCard to DOS 
0x18 ROMUHOOK Entry point to disconnect the RamDisk and RamCard from DOS 
0x20 RDENTRY Entry for DOS 4.1 RamDisk RWTS processing 
0x2B RDBOOT2 Continuation of RDBOOT 
0x30 RDRWTS3 Entry for DOS 3.3 RamDisk RWTS processing 
0x50 RCENTRY Entry for RamCard RWTS processing 
0x5C ROMBOOT Simulate Disk ][ entry point for boot stage 1 code at 0x0801 
0x66 TOGGLE Connect/disconnect continuation code 
0x70 MODOS3 Patch DOS 3.3 after boot stage 2 
0x80 BOOTEXIT Issue CLRROM, jump to 0x0801 
0x87 RCEXIT Turn RamCard off, fall into RDEXIT 
0x90 RDEXIT Update RWTS error code, issue CLRROM, return to caller 
0x97 HOOKEXIT Exit for ROMHOOK and ROMUHOOK 
0xA1 EXIT3 Exit for MODOS3 
0xA7 RCRDWRT Turn on RamCard, read/write RamCard, branch to RCEXIT 
0xCD RCFORMT Issue CLRROM, turn on RamCard, clear all sectors, branch to 

RCEXIT 
 

Table IV.17.2.  RamDisk 320 Firmware Entry Points 
 
 
 
 
To assemble the RamDisk source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the Big Mac Source volume “BIGMAC.Source” in disk drive 2, load the 
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“RD.L” file into memory, and start the assembler by entering either the “A” command-line command 
or the “Z” command-line command.  If a printed version of the screen output is desired simply preface 
the “A” or “Z” command with the “P1” command-line command.  Five object code files will be 
created on the Big Mac Source volume:  “SEG01” to “SEG05”.  The five object code files can be 
combined in memory sequentially starting at 0x4000 using the “ctrl-P” command.  The complete 
binary image can be saved to the RamDisk Source volume, or any other volume, as “RD”. 
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18.  RanaSystems EliteThree 
I met a very knowledgeable engineer at Hughes Aircraft Company a year or so after I was hired in 
1986.  She provided consulting services to small companies for the design of proprietary databases.  In 
order to keep track of her services, she used a database system of her own design hosted on an Apple ][ 
using a regular Disk ][ disk drive and a RanaSystems Elite Three disk drive as a massive database data 
storage container.  She preferred the large storage capacity of the Rana and she thought the access time 
was a bit faster than the Disk ][.  When she sold her consulting business she offered to sell me the Rana 
drive for pennies what it originally cost her.  Obviously, the Rana was used, but certainly not dead.  Of 
course, I jumped at the offer.  My first investigations into the Rana and its installation software 
revealed how tightly coupled it was to DOS 3.3.  I didn’t much care for all the modifications the 
installation software had to make to DOS 3.3 in order to provide the various configurations the 
hardware was capable of supporting.  These modifications were provided by Rana Enhancement 
Utilities and were specifically designed to modify DOS and FID on a Master DOS diskette.  I basically 
left it at that, and put the Rana away for another time to explore its capabilities:  read and write either 
side of a diskette, create tracks half the size of Disk ][ tracks, that is, 80 tracks on each side of a 
diskette, and capable of supporting up to four disk drives of any manufacture. 
 
Well, that time is now to have another look at the RanaSystems EliteThree vis-à-vis DOS 4.1.  Any 
configuration utilizing the hardware capabilities of the Rana needs to address the current VTOC 
structure, and how it can be possibly expanded to provide for more than 50 tracks for a disk volume.  
The Rana can seek up to 80 tracks on a double-sided, double-density diskette.  The Rana can also 
access both sides of a diskette without having to flip the diskette over to access the backside, thereby 
providing direct access to 160 tracks.  The Rana peripheral slot card can control up to four disk drives 
of any manufacture, that is, Rana or Disk ][ or any other manufacture. 
 
I recall fondly the time in 1968 when I sat in the Audio Music Library in Schoenberg Hall at UCLA 
listening to magnetic tape recordings for my class on Johann Sebastian Bach.  The library used an 
array of Viking 80 magnetic tape recorders to playback audio assignments for music students.  I 
happened to own a Viking 880.  The only difference is that the 880 came installed in a suitcase with 
two 2x6 inch speakers and a small stereo audio amplifier.  This recorder had the ability to physically 
adjust the erase, record, and playback heads in order to playback magnetic tapes recorded in half-track 
mode as well as magnetic tapes recorded in quarter-track mode.  The signal-to-noise ratio for half-track 
tapes was obviously far superior to quarter-track tapes because twice as much magnetic material was 
used to contain the recorded signal.  Even though the Viking was using a quarter-track playback head 
to read a half-track recording, the increased signal-to-noise ratio was still apparent.  Why I mention 
half-track and quarter-track magnetic audio recording is that the concepts are quite similar when 
applied to magnetic disk recording using a Disk ][ recorder versus a Rana recorder.  The recording 
head gap, or track size in the Rana is half the width of the recording head gap in the Disk ][, so 
recordings made by the Rana would have a smaller signal-to-noise ratio than those made by the Disk 
][; that is, half as much magnetic material is used to contain the recorded signal in the Rana.  Pure 
havoc would occur if the Disk ][ tried to read a Rana disk recorded in 80 track mode. 
 
It is possible to differentiate between diskettes recorded using the standard prologue to the Address 
Field header and the Data Field header of a sector and those diskettes using other address and data 
marks for the prologue bytes.  This simply makes this diskette readable by one computer and not 
another.  The Rana could certainly use such a protocol but I believe there is simply not enough code 
space in the peripheral-card expansion memory to make this work for more than one or two 
configurations regarding number of tracks, number of sectors per track, and VTOC expansion of its 
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bitmap data.  Whatever is decided on how to use the full capabilities of the Rana is most likely not 
going to be compatible with the Disk ][.  The only place to use the compatibility argument for the Rana 
and the Disk ][ must be derived from the DOS 4.1 VTOC structure.  Whatever can fit in that VTOC is 
what should be used to decide how best to utilize the Rana.  Considering the lessons learned from half-
track and quarter-track magnetic audio recording, and in view of the rather limited availability of 
double-sided, double-density magnetic media, I chose to implement full-track stepping for the Rana, 
thus providing 40 tracks on each side of the diskette knowing full well that the physical width of the 
recording head gap in the Rana is half that of the Disk ][.  I also chose to implement recording sectors 
0x00 to 0x0F on the notched side of the diskette and recording sectors 0x10 to 0x1F on the un-notched 
side of the diskette.  The VTOC can fully accommodate this configuration.  The Rana EPROM can 
also accommodate this configuration within its available code space and implement all the RWTS 
commands for both DOS 4.1L and DOS 4.1H.  This configuration will provide 40 tracks, each track 
having 32 sectors, for a total of 1280 sectors.  If the VTOC and Catalog use 8 of those sectors, a Data 
disk would have 1272 sectors for storage, a rather massive amount of disk space accessible on a single 
diskette.  This is precisely the configuration I chose to implement.  Table IV.18.1 shows the firmware 
entry points of the firmware that is mapped to the peripheral-card ROM address space of the Rana 
peripheral slot card. 
 
The signal-to-noise ratio for the Rana drive is still very much a concern because the Rana RWTS 
FORMAT algorithm rejects many of the double-sided/double-density diskettes I recently purchased as 
not safely recordable, but they are perfectly useable on the Disk ][.  Diskettes having previously been 
recorded by a Disk ][ will still contain residual and problematic magnetic information even after the 
Rana overwrites such a diskette using FORMAT due to its smaller head gap size.  It was the successful 
formatting of several virgin diskettes that allowed me to test the Rana firmware I designed when I 
started to learn more about how DOS was originally designed to use a free sector bitmap for a volume 
that consisted of tracks having 32 sectors.  These bitmap findings are thoroughly discussed in Section 
I.14 of this manual.  Needless to say, a CFFA volume having 48 tracks where each track can have 32 
sectors is just a minor extension to what I designed and implemented for a Rana volume.  Truth be 
said, the education I received from exploring the Rana and its capabilities proved to be absolutely 
invaluable in the design of DOS 4.1.  Perhaps a future enhancement to DOS 4.1 would be an extension 
to the VTOC bitmap area. 
 
 
 
 

Offset Name Description 
0x00 RDBOOT Entry point for PR# DOS command to boot DOS in drive 1 
0x10 ROMHOOK Entry point to connect the Rana to DOS 
0x18 ROMUHOOK Entry point to disconnect the Rana from DOS 
0x20 RANARWTS Issue CLRROM, enter RWTS processing 
0x5C BOOTFW Simulate Disk ][ entry point for boot stage 1 code at 0x0801 
0x5D BOOTFW2 Locate address or data header prologue 
0x83 FNDADR Read address field header for volume, track, and sector 
0xA6 FNDDATA Read 342 disk nibbles and post nibblize to memory on a page 

boundary, jump to 0x0801 
 

Table IV.18.1.  Rana Disk Firmware Entry Points 
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To assemble the Rana source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive 
1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program in 
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the Rana Source volume “RANA.Source” in disk drive 2, load the 
“RANA.L” file into memory, and start the assembler by entering either the “A” command-line 
command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  The complete binary 
image will be saved to the Rana Source volume as “RANA”. 
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19.  The Sider 
Around the year 1985 my mother asked me to build her a computer system to store her genealogy 
records and data.  She was becoming overwhelmed with ancestry information, and knew and 
understood how invaluable a computer would be to store and link all this information.  I knew of a 
product called Family Roots by Stephen C. Vorenberg and marketed by Quinsept, Inc., that would give 
my mother the power and flexibility she needed to contain and organize her ancestry data information.  
Her Family Roots database initially filled four data diskettes besides the three program diskettes when 
she asked me if there was a better alternative than swapping diskettes in order to generate a family 
member’s report.  In its documentation Family Roots suggested using the Sider from First Class 
Peripherals, a fixed disk drive subsystem featuring 10 MB of hard drive disk storage partitioned mostly 
as DOS 3.3 volumes.  And, to tell the truth, I had been very interested in the Sider when I first heard 
about it but I just didn’t have the reason or the bankroll to afford such a luxury.  Mom had both.  When 
I inherited my mother’s Apple //e computer system she had filled more than 16 DOS 3.3 volumes with 
genealogy data.  The Sider proved to be the perfect data storage system for that era. 
 
The Sider consists of a peripheral slot card connected to an external housing by means of an IDE cable.  
The housing contains a Xebec 1410A controller board and a 10 MB Winchester hard drive.  The 
peripheral slot card contains a 2716 EPROM and uses only two of its sixteen peripheral-card I/O 
memory locations to communicate with the Xebec controller.  Essentially the firmware transfers an 8-
byte Data Context Block, or DCB to the controller.  The DCB contains the command, a 24-bit Logical 
Block Address (LBA), a block count, a step option, and a buffer address to write 256 bytes of data 
from computer memory or read 256 bytes of data into computer memory.  Therefore, an LBA address 
specifies one 256-byte page of data, and a complete DOS 3.3 volume would require 560 of those 
pages.  Even though a Sider may be configured not to use CP/M or ProDOS or Pascal formatted 
sectors, some sectors are still set aside for those partitions.  The Sider is partitioned only once to 
establish the sizes of the DOS 3.3, CP/M, ProDOS, and Pascal partitions.  In the case of my mother’s 
Sider, we partitioned it for the maximum number of DOS 3.3 partitions and the minimum number of 
CP/M, ProDOS, and Pascal partitions.  Her 10 MB Sider contained 69 DOS 3.3 volumes beginning 
with Volume 0.  Family Roots utilizes volume number to locate all system programs and all genealogy 
data.  Of course, I was fascinated to learn how the Sider modified DOS 3.3 to “tame” volume number 
such that programs like Family Roots could utilize this valuable parameter. 
 
Table IV.19.1 shows the logical structure of the Sider based on LBA number.  The Xebec controller 
determines how this LBA number, or sector number is mapped to the physical hard drive.  It is 
important to note that a volume is a contiguous group of sectors where each volume follows the 
previous volume, or group of sectors.  Table IV.19.2 show the modifications I made to the Sider 
Logical Structure to support DOS 4.1.  The new Sider peripheral-card ROM firmware I designed boots 
the DOS 4.1L image starting at sector 264.  Alternately, the DOS 4.1H image can be booted by 
entering 0xCs20, where “s” is the slot number of the Sider’s peripheral slot card, typically slot 7.  
Either image will insert the Sider’s RWTS handler address, 0xCs70, into the DOS 4.1 disk address 
table.  Table IV17.3 shows all the other firmware entry points of the firmware that is mapped to the 
peripheral-card ROM address space for the Sider. 
 
There is a mathematical relationship between LBA and volume, track, and sector found in the RWTS 
IOCB.  The first volume is Volume 0 and it begins at LBA address 464, or 0x01D0.  There are 35 
tracks in a Sider volume and 16 sectors in a track.  Each volume is 560 sectors, or 0x0230 sectors. 
 

LBA = ( volume * 0x230 ) + ( track * 0x10 ) + sector + 0x01D0 
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LBA Range Description 
Start End 

0 0 Sider boot block 
1 1 Sider  parameter block 
2 36 DOS 3.3 boot image 

37 84 RAM card image (DOS) 
85 135 CP/M boot image point #1 
136 255 Reserved for future use 
256 258 CP/M boot image point #2 
259 463 Free area for any application 
464 1023 DOS 3.3 volume 0xFD (BU volume) 

1024 ???? User data area 
???? ???? 12 alternate tracks 

 
Table IV.19.1.  Sider Logical Structure 

 
 
 
 

LBA Range Description 
Start End 

0 0 Sider boot block 
1 1 Sider  parameter block 
2 36 DOS 3.3 boot image 

37 84 RAM card image (DOS) 
85 135 CP/M boot image point #1 
136 255 Reserved for future use 
256 258 CP/M boot image point #2 
259 263 Free sectors 
264 295 DOS 4.1L boot image 
296 299 Free sectors 
300 341 DOS 4.1H boot image 
342 463 Remaining Free area for any application 
464 1023 Volume 0 

1024 39103 Volumes 1 to 68 
39136 39136 Park heads address 

 
Table IV.19.2.  Modified Sider Logical Structure 

 
 
 
 
In order to calculate the LBA efficiently and with great speed, lookup tables are used that essentially 
do all the multiplication by using simple addition.  There is sufficient room in the 2716 EPROM for 
these tables.  The RWTS IOCB volume, track, and sector values are range-checked before the track 
and volume are used as indexes into the track and volume tables, and the extracted values are added to 
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the sector value.  The offset 0x1D0 is already incorporated within the data of the volume tables.  I put 
the address of the DOS 4.1L image at index 69 and the address of the DOS 4.1H image at index 70 in 
the volume tables.  Either of these DOS images or a selected DOS image using the BOOTVOL entry 
point from Table IV.19.3 at 0xCs30 can be used to boot the Sider.  The track and sector values are set 
to 0x00 and the regular boot sequence is initiated.  If the boot image is a DOS 3.3 image, the 
SDRWTS3 address is used to replace the RWTS address found at 0xB7B8 and 0xB7B9.  Otherwise, if 
the boot image is a DOS 4.1 image, the SDRWTS address is copied into the DOS disk address table. 
 
 
 
 

Offset Name Description 
0x00 BOOTLR Entry point for PR# DOS command to boot DOS 4.1L 
0x10 ROMHOOK Entry point to connect the Sider to DOS 
0x18 ROMUHOOK Entry point to disconnect the Sider from DOS 
0x20 BOOTHR Entry point to boot DOS 4.1H 
0x30 BOOTVOL Entry point to boot DOS from requested volume on Sider 
0x40 PARK Entry point to call ROMUHOOK and park the disk heads 
0x5C ROMBOOT Simulate Disk ][ entry point for boot stage 1 code at 0x0801 
0x70 SDRWTS RWTS handler in DOS 4.1 disk address table 
0x80 SDRWTS3 RWTS handler for DOS 3.3 
0xA0 SDRIVER Read/write a Sider LBA using an 8-byte DCB in regs Y,A 
0xCO GETSTAT Get Sider status in C-flag 
0xD0 READSTAT Read Sider status into a 4-byte buffer 
0xF0 MODOS3 Patch DOS 3.3 after boot stage 2 

 
Table IV.19.3.  Sider Firmware Entry Points 

 
 
 
 
Family Roots utilizes Diversi-DOS in order to speed up the loading of its humungous Applesoft 
programs, and it also utilizes Diversi-DOS’s DDMOVER to relocate most of DOS 3.3 to the Language 
Card.  Still, Family Roots requires four file buffers, and in Diversi-DOS’s implementation these 
buffers remain in lower memory.  Family Roots chains from program to program keeping all of its 
global values in memory.  This technique certainly makes Family Roots appear to seamlessly transfer 
control from one program to the next particularly with the disk speedup routines in Diversi-DOS.  I 
have to say that I derived my inspiration from Diversi-DOS to incorporate speedup routines native to 
DOS 4.1, and to move an early version of DOS 4.1, perhaps Build 32 or Build 33, to the Language 
Card.  Diversi-DOS moves pieces and parts of DOS 3.3 to the Language Card and it has to modify the 
addresses of all ‘jmp’ and ‘jsr’ instructions.  Diversi-DOS has to create a software interface between 
the routines it leaves in lower memory and the routines it moves to the Language Card in order to 
perform all necessary Language Card bank switching.  Designing DDMOVER was a momentous effort 
to be sure, and having most of DOS 3.3 in the Language Card certainly gives Family Roots the 
“breathing room” it needs in view of the size of its Applesoft programs and the size of its variable and 
ASCII data arrays.  And yet the Language Card was less than fully utilized. 
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I certainly understood how Diversi-DOS by Bill Basham at Diversified Soft Research was able to 
speed up the File Manager’s I/O routines, as well as understanding how SPEEDOS from Applied 
Engineering worked for its RamWorks products.  I also looked at David DOS by David Weston and 
TurboDOS used for Lisa.  I’m sure there were others who had forsaken the DOS INIT command and 
utilized that software space for their particular ingenious speedup algorithm.  Even Don Worth and 
Pieter Lechner went so far as to suggest modifying the sector interleave table to speed up the reading 
of large Applesoft and Binary program.  None of these algorithms seemed to be the very best solution 
for managing disk I/O in DOS 3.3.  At Sierra On-Line a software engineer colleague of mine  (a 
gentleman from the United Kingdom, actually) did provide an additional BLOAD keyword that 
provided a Page parameter.  This keyword provided a parameter to an additional and new “read pages” 
subcode for the File Manager.  It certainly was fast and, if I recall correctly, was used on the first 
version of King’s Quest.  I decided that my goal was not to rewrite the File Manager, but to add the 
idea of reading pages of a file when I could.  For example, the first two bytes of an Applesoft file must 
be read in order to calculate the end of its program address before the rest of the file is read into 
memory.  The remaining 0xFE bytes in its file buffer are copied to memory, 1 byte at a time.  
However, the remaining sectors of the file, except for the last sector most likely, can be read into 
memory 1 page at a time.  If there is a last sector that contains some bytes, the sector can be read into 
its file buffer and the remaining bytes copied to memory 1 byte at a time.  Binary files are handled in 
the same way except the first four bytes are copied into the DOS parameter space from its file buffer; 
that is, the file’s target memory address and the file’s size in bytes.  The remaining 0xFC bytes in its 
file buffer are copied to memory, 1 byte at a time. 
 
I am quite sure that if DSR, Inc., had access to Apple’s source code for DOS 3.3, it could have 
generated a native Language Card version of DOS 3.3 that did not require software like DDMOVER.  
My vision of having DOS 4.1 in the Language Card was that it must boot directly into the Language 
Card, therefore be wholly resident in the Language Card for the most part.  It is one thing to cobble 
together a system from pieces of a previous system, but quite another thing when a complete system is 
fully designed from the ground up.  I designed DOS 4.1H to occupy the Language Card natively.  It 
has all of the functionality of DOS 4.1L and more.  All file buffers, up to five, are fully contained in 
the Language Card, too.  There is even code space to provide a DOS HELP command that provides the 
syntax for all DOS commands.  Regardless of the number of file buffers, HIMEM is set at 0xBE00, the 
highest possible address perfect for an Applesoft environment for monster programs like those found 
in Family Roots.  Furthermore, DOS 4.1H contains the same CHAIN algorithm found in DOS 4.1L.  
Preliminary tests have shown that DOS 4.1H and CHAIN function beautifully with Family Roots.  
There are empty volumes on the Sider that could be used to conduct further tests with DOS 4.1H and 
Family Roots.  Or, the programs and data for Family Roots could be moved to a drive on the CFFA 
and tested there with DOS 4.1H.  Either location would certainly verify the migration of Family Roots 
to DOS 4.1H.  I believe my mother would have certainly been very impressed, and she would have 
certainly provided me with hours of hands-on testing. 
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20.  Sourceror 
I first “sourced” Sourceror so I could modify its source code in order to create a more pleasing display 
of its available commands using uppercase and lowercase ASCII before processing object code files.  
Sourceror, like Big Mac, was written by Glen Bredon, and is a Binary program that executes at 0x8900 
after MAXFILES is set to 1.  I found only one error in Sourceror, a missing ‘clc’ instruction where the 
software handles 65C02 instructions.  Occasionally, not always, the program counter came up 1 byte 
too large because a software routine assumed that the C-flag would always be clear on the return from 
a call to GETNUM at 0xFFA7.  Obviously, the C-flag was not always clear. 
 
Sourceror already had a number of built-in equates it would refer to in order to build an equate listing 
at the end of the source code it generated as per Big Mac convention.  I added a number of equates to 
its list that includes CLRROM, RAM2WP, ROM2WE, ROM2WP, RAM2WE, RAM1WP, ROM1WE, 
ROM1WP, RAM1WE, STROBE, LATCH, DATAIN, and DATAOUT.  Figure IV.20.1 shows the 
initialization screen after LOADSRCRR has launched SOURCEROR.  Figure IV.20.2 shows the 
startup, or Help screen Sourceror displays with its command-line prompt “$”.  Figure IV.20.3 shows 
the Monitor source listing of code after the first ‘L’ instruction is issued to Sourceror. 
 
I have used Sourceror to provide visibility and complete insight into DOS 3.3 first, and recently, 
insight into the CFFA firmware, and everything that came in between those two projects in the last 35 
years.  Because of Sourceror I understand a fair amount of what there is to know about Apple ][ 
hardware architecture and Apple ][ software that is used to manage that hardware architecture. 
 
 
 
 

 
 

Figure IV.20.1.  Sourceror Initialization 
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Figure IV.20.2.  Sourceror Startup/Help Screen 
 
 
 
 

 
 

Figure IV.20.3.  Sourceror Monitor Source Listing 
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To assemble the Sourcerror source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk 
drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” program 
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source 
Code” to 0x6000.  Place the Sourceror Source volume “SOURCEROR.Source” in disk drive 2, load 
the “SOURCEROR.L” file into memory, and start the assembler by entering either the “A” command-
line command or the “Z” command-line command.  If a printed version of the screen output is desired 
simply preface the “A” or “Z” command with the “P1” command-line command.  The complete binary 
image will be saved to the Sourceror Source volume as “SOURCEROR”.  Also, the LOADSRCRR 
source code is assembled using the same procedure. 
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21.  Parallel Printer Buffer 
When I saw the advertisement in one of my 1985 Apple magazines for the JFD Parallel Printer Buffer I 
just had to have one.  As I recall there were two, perhaps more Buffer configurations one could choose:  
one set of parallel input/outputs or two sets of parallel input/outputs or perhaps a combination of these 
two configurations.  Always budget minded I chose the Buffer with one set of parallel input/outputs.  If 
I had more than one computer or more than one printer I may have chosen differently.  The Buffer 
came with 256 KB of dynamic RAM, and once an ASCII listing or a page of graphics had printed, the 
Buffer had a Copy pushbutton to select the number of additional copies (up to 255) to print if desired.  
I had spent so much time waiting for my computer and printer to print hundreds of pages of code that I 
was more than ready to put this Buffer to work:  I could work on the computer while the Buffer was 
supplying the printer with data, especially data from large graphic files.  The Buffer connected to the 
Grappler+ Printer Interface slot card in the computer and to my Epson MX100 printer.  A large wall 
transformer supplying 9 volts DC powered the Buffer.  Besides the Copy pushbutton there was a Reset 
pushbutton.  The Reset pushbutton caused the Buffer software to initialize and force the input of the 
next new listing to the beginning of Buffer memory if I needed multiple copies of only that listing, for 
example.  Otherwise, if I used the Copy pushbutton after printing multiple items the Buffer would print 
everything in its memory again. 
 
The manual that came with the Buffer did not discuss what happened when input data overflowed 
memory.  I had already seen some bizarre behavior like not printing some paragraphs when I used the 
Buffer to print many listings, and I did not press the Reset pushbutton prior to printing each listing.  
Momentarily pressing the Copy pushbutton put the Buffer into Pause Mode such that the Buffer could 
still accept input data; it just did not send that data to the printer.  Momentarily pressing the Copy 
pushbutton again took the Buffer out of Pause Mode and data, once again, was output to the printer.  I 
took advantage of Pause Mode and input a known, and very large amount of data to the Buffer.  Then I 
took the Buffer out of Pause Mode and sent another known, and very large amount of data to the 
Buffer.  When Buffer memory was filled it appeared to me the Buffer was accepting 256 byte chunks 
of data after it printed approximately 256 bytes of data for a period of time.  Then the Buffer started to 
drop chunks of data, perhaps 256 bytes in size, but I wasn’t absolutely sure.  I could force this bizarre 
behavior every time I forced the Buffer memory to overflow.  It appeared to me the firmware had some 
sort of software bug.  I saw a challenge waiting to happen. 
 
I opened the Buffer and found a voltage regulator, an 8035-microprocessor, a 2716 EPROM, eight 
1257-15 NMOS dynamic RAM chips, and an assortment of eight-bit latches and logic chips.  There 
were PCB locations for an additional input parallel connector and for an additional output parallel 
connector.  The Ready LED was inconveniently located on the rear apron of the Buffer.  I moved this 
LED to the front apron since there was only one input parallel connector and plenty of space next to it.  
Ideally, I would have liked to have moved that input parallel connector to the rear apron alongside the 
output parallel connector.  At that time I worked at Hughes Aircraft and I had access to virtually any 
data book available, and I was able to obtain data sheets on the microprocessor and the RAM. 
 
Being able to source and compile the MCS-8048 Instruction Set was certainly going to be a challenge, 
but I had already had some experience doing that very thing for an external keyboard that used a 6802 
microprocessor on its interface board.  My technique was to set up a series of equates within Lisa, one 
equate for each MCS-8048 instruction.  I had to keep in mind which instructions required additional 
parameters.  Actual coding within Lisa simply required the “BYT” directive followed by the MCS-
8048 instruction equate, followed by any required parameter.  I put a comment on each line 
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documenting what the “BYT” directive and instruction equate were actually doing.  The next step was 
to reverse engineer the code contained in the Buffer’s EPROM. 
 
Dumping the data contained in the 2716 Buffer EPROM was easy using the PROmGRAMER.  
Sourcing that data was also made easy using an Applesoft program I wrote that translated the MCS-
8048 instructions into a Text file using the “BYT” directive Lisa could easily Exec into its memory.  
Analyzing that sourced code took the most time and effort because I had to fully understand the 
architecture of the 8035-microprocessor, the operation of the 1257-15 dynamic RAM for data access 
and RAM refresh requirements, and the hardware function of the eight-bit latches and supporting logic 
chips.  The Grappler+ and the Epson printer also had handshake and data acknowledgement 
requirements as well.  Slowly I plowed my way through the code finding all the necessary logic to 
access RAM data, refresh RAM, read Input data, and write Output data as well as perform system 
initialization, print diagnostic status information, read the Reset and Copy pushbuttons, and control the 
LED.  Unfortunately, I could not locate an error in the software logic that would cause the bizarre 
behavior I could manufacture.  I did locate the general logic where the Buffer would wait for a free 
page (256 bytes) of memory should the write pointer address approach the read pointer address.  
Dropping or skipping a page of memory was occurring somewhere in this logic when the data pointers 
were near the end of memory, but I could not find the wrong logic.  I’m sure it was some silly addition 
error, probably involving a carry bit, when transitioning from the 0x3FFxx page to the 0x000xx page 
of the 256 KB buffer. 
 
I decided to scrape the original code and write my own version of this firmware.  Of course, I had to 
borrow the logic to access and refresh RAM, but I thought I could do a better job at controlling the 
data pointers and handling the memory overflow situation.  I set up hardware to emulate a 2716 
EPROM so I could compile and test my software without having to burn an EPROM.  This hardware 
setup made it extremely easy to develop MCS-8048 software for the 8035-microprocessor.  In May, 
1989, I was successful in developing firmware for the Buffer that did not fail any of my previous 
Buffer overflow tests.  This firmware also behaved exactly like the original firmware for Pause Mode 
and the Copy function.  The Reset function also behaved exactly like the original firmware.  I burned a 
2716 EPROM, installed it, and used the Buffer with this firmware thereafter. 
 
I performed timing tests and documented the results for the original firmware and for my new Buffer 
firmware.  The initialization routine did not take as long to complete for the original firmware, but that 
time did not agree with what I had calculated the time should be if all 256 KB was tested with a 
minimum of a write followed by a read and a compare.  My initialization routine actually took 
precisely the time to complete I had predicted.  I also timed how long each firmware took to fill 
memory with Pause Mode enabled and disabled.  With Pause Mode enabled the original firmware took 
about 2.5 times longer to fill memory:  2.91 KB/sec versus 7.28 KB/sec for my firmware.  With Pause 
Mode disabled the results were 2.91 KB/sec versus 6.90 KB/sec for my firmware.  I sent a letter to JFD 
explaining what I had observed when memory overflow occurred, my timing test predictions and 
results, and a printed copy of my firmware.  I did not receive even an acknowledgement to my letter 
from JFD.  I was terribly disappointed. 
 
Recently I took some time to look over and review the Buffer firmware I wrote back in 1989.  I’ve had 
a lot of time to add to and mature my programming skills vis-à-vis hardware architecture.  I noticed 
that I used the built-in 8035-microprocessor Interval Timer for timing events such as pushbutton 
debounce, for example, as in the original Buffer firmware.  What a waste of a perfectly good Interval 
Timer I thought.  What became especially clear to me was how to use the Interval Timer to provide the 
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basic timing for dynamic RAM refresh without having to guess and hope that the RAM refresh routine 
was called often enough.  In my original firmware as well as the JFD firmware the MAIN loop called 
the REFRESH routine, the CHECKT0 routine, and, if the printer was ready to accept another data 
character, the SENDMEM routine in that order in an infinite loop.  The CHECKT0 routine checked if 
the Copy pushbutton was pressed, and if so, would flash the LED on and off at a 0.5 Hz rate in order to 
set the number of desired copies.  CHECKT0 could take huge amounts of time away from the 
REFRESH routine leaving me pondering why memory never became corrupted.  I wonder if this was 
the actual cause of the bizarre behavior I observed so many years ago?  Or, did this Buffer RAM have 
built-in refresh capability?  If I followed the 1257-15 dynamic RAM data sheet requirement to perform 
a RAS-only refresh every 4.0 milliseconds or less I could use the Interval Timer.  The Interval Timer 
could also serve as the base for all other timing requirements like pushbutton debounce and LED flash 
rate.  Central to the 8035-microprocessor are the RESET interrupt, the EXTIRQ interrupt, and the 
TIMRIRQ interrupt.  The Reset pushbutton is connected to the RESET Interrupt pin, the Input 
connector from the computer is connected to the External Interrupt pin, and the Interval Timer is 
connected to the Timer Interrupt pin of the 8035-microprocessor.  Each of these events is handled by a 
unique vector to a handler routine at a hard-wired address in page-zero of EPROM memory.  There are 
also 32 bytes of indexed User RAM in internal microprocessor memory that is only slightly clumsy to 
access, but nevertheless available for use to store program variables and data. 
 
The 8035-microprocessor is clocked using a 6.0 MHz external crystal.  This frequency is divided by 15 
internal to the microprocessor, so the cycle time (i.e. Tcy for instructions) is 2.5 microseconds.  Most 
instructions require one cycle, and all other instructions require two cycles.  The Interval Timer 
prescaler divides Tcy by 32 making it 80 microseconds in duration.  Thus, loading the timer counter 
with a value of 0xFF will cause a TIMRIRQ interrupt in 80 microseconds when the timer counter 
overflows to 0x00.  Loading the timer with a value of 0xCF will cause a TIMRIRQ interrupt in 3.920 
milliseconds.  However, the instructions to reset the Interval Timer require 8 cycles, so the total timer 
interval is 3.940 milliseconds.  This time is certainly within specifications to refresh the 1257-15 
dynamic RAM.  Part of the Interval Timer handler routine is to increment a 2-byte counter.  Whatever 
value is pre-loaded into this counter is incremented every 3.94 milliseconds.  Naturally, a number 
representing the negative of a number would be ideal to use in this application such that when the most 
significant byte becomes 0x00, the desired time has been reached.  For example, if a 63-millisecond 
debounce time is desired, then -16 must be pre-loaded into the 2-byte counter, or 0xFFF0.  Also, an 
approximate 1.0 second wait time period can be achieved by loading 0xFF00 into the 2-byte counter; 
that is, 3.940 msec. * 256 = 1.00864 seconds. 
 
Using the Interval Timer as the primary method to refresh the Buffer dynamic RAM changed the code 
only for the MAIN routine.  Now, MAIN simply calls the CHECKT0 routine and the SENDMEM 
routine if the printer is ready to accept another data character, in an infinite loop.  The CHECKT0 can 
take all the time it needs in order to count the number of LED flashes representing the desired number 
of copies.  I added another bit-flag to the System Flag Bits byte called the Overflow State Flag.  If the 
write pointer should ever reach 0x00000 and overflow memory, the Overflow State Flag will be turned 
ON.  If that flag is ON the Buffer software will bypass the copy counting logic in the CHECKT0 
routine and, as protection, not allow whatever there is in memory to be sent to the printer as another 
copy.  Of course, pressing the Reset pushbutton will reset all the State Flag bits including the Overflow 
State Flag bit, and re-enable the ability to make copies of whatever there is in memory.  If copies are 
selected using the Copy pushbutton immediately after pressing the Reset pushbutton nothing should be 
printed as expected.  I burned a 2716 EPROM with this version of the firmware, installed it, and will 
be using the Buffer with this firmware thereafter. 
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To assemble the Printer Buffer source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in 
disk drive 1, boot, and start Lisa.  Enter the “SE” command-line command to select the “SETUP” 
program in order to verify or set the “Start of Source Code” to 0x2100 and the “End of 
Source Code” to 0x6000.  Place the Printer Buffer Source volume “PRINTBUFFER.Source” in 
disk drive 2, load the “PPB.L” file into memory, and start the assembler by entering either the “A” 
command-line command or the “Z” command-line command.  If a printed version of the screen output 
is desired simply preface the “A” or “Z” command with the “P1” command-line command.  The 
complete binary image will be saved to the Printer Buffer Source volume as “PPB”.  A 2716 EPROM 
can be burned with the “PPB” file. 
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22.  Last Concluding Thoughts 
There have been many books and articles published telling the story about the history, evolution, and 
people, some of whom are definitely characters, who have been involved in the Computer Revolution.  
I must say that I was part of that revolution, though perhaps more realistically on the periphery of that 
revolution.  Ken Williams did attract a host of other entrepreneurs to Oakhurst, California, where 
Sierra Online was located.  Like others, he was involved with developing programs targeted for the 
soon-to-be-released Apple ][c.  It was fascinating to be there in that period of time witnessing those 
events personally and to know that Wozniak and Jobs were among those who occasionally visited 
Williams.  I know there are many others like me who look back on those years with a high degree of 
nostalgia.  It was a glorious time to be writing software for the Apple ][ family of computers! 
 
Even today I must admit that the Apple ][ computer holds a unique charm for me that continuously 
draws me into its technical and software environment.  People like Gerard Putter and Richard Dreher 
certainly must also experience this Apple ][ charm as well, for they have created invaluable tools, one 
software and the other hardware, that keep Apple ][ enthusiasts like me motivated and excited about 
creating more and more useful software and hardware products for this computer today.  I believe that 
in creating DOS 4.1 is my way of acknowledging and demonstrating the level of understanding I have 
for the Apple ][ computer solely in terms of its hardware.  It was fortunate that I studied Electrical 
Engineering at University rather than Computer Science.  I certainly absorbed enough Computer 
Science during my professional career writing software. 
 
Also, DOS 4.1 is the culmination of all the ideas from my DOS “Wish List” and from the DOS 
“Parameter Needs” of a large number of commercial software programs.  Understanding those 
commercial software programs was vital to focus my attention in providing an interface between DOS 
4.1 internals and DOS 4.1 users.  I suppose that studying Control Systems in terms of a “black box” 
having inputs, outputs, and feedback loops all contributed to how I wanted to design DOS 4.1 as the 
proverbial “black box” not to have its internals recklessly poked and prodded.  At least for the most 
part I believe I have succeeded in designing an Apple ][ operating system that fulfills all of my needs.  
I certainly think that it might fulfill the needs of others, particularly the owners of the CFFA card and 
the users of commercial programs like Family Roots who do not use ProDOS.  This has been an 
incredible journey for me and I have enjoyed solving every problem and issue that has come my way 
while I was developing DOS 4.1 
 
I still believe there is a huge potential use for the 6502-microprocesser IRQ and NMI interrupts in 
some sort of hardware/software product.  What that product is, is yet another mystery to me.  But I still 
keep thinking about it in view of how much fun I had implementing those interrupts on my clock card.  
And that is part of the charm the Apple ][ generates because of its open architecture.  It allows people 
to build their own interface slot cards and plug them into a slot in a real computer.  I was so fortunate 
to have the opportunity to experiment and design and tryout my ideas that significantly increased my 
knowledge and understanding of digital hardware and software design.  There is no better classroom 
than an engineer’s laboratory, which happened to be my garage.  Others may have a basement or a 
spare room for their laboratory.  The point is, book knowledge is essential for understanding theory, 
but the real learning happens when you apply that theory and build something that is your own design, 
be it something intellectual or something tangible.  At least that is the case for me especially when I 
recall that the original Apple 1 was first built in a garage. 
 
I have yet to explore integrating my love for the Apple ][ hardware and software and my love for 
model railroading, specifically S-gauge used by the American Flyer model trains.  I have boxes and 
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boxes of those trains and many accessories stored in the garage.  Perhaps it is time I introduce Mr. 
American Flyer to Mr. Apple.  The relationship could be rather exciting if not downright explosive.  
Oh, not in the sense of Addams Family explosive, but in the sense of opening up a whole new world of 
awesome challenges and a whole lot of downright fun. 
 
Today’s generation of young engineers have the opportunity to explore computer-assisted or computer-
associated projects with the Raspberry Pi computer.  The Raspberry Pi is the size of a credit card 
having four USB ports, an Ethernet port, HDMI, raw video, and stereo sound outputs, and it only 
requires 5 volts at 2.4 amps for full operation and control.  The computer uses a micro SD card that 
hosts its UNIX operating system and its C language compiler and linker.  It provides around 26 
Peripheral Input/Output (i.e. PIO) connections to the outside world.  The PIOs are software 
configurable to be an input or an output for 3.3-volt signals. 
 
I designed my Sunrise/Sunset controller around the Raspberry Pi to control all my outside decorative 
lightening.  My software considers my location on planet Earth in terms of longitude, latitude, and 
azimuth to calculate precisely sunrise and sunset.  The software refers to an input configuration file for 
selectable offsets in order to adjust timing so that my decorative lights turn ON 30 minutes after sunset 
and they turn OFF 45 minutes before sunrise.  One PIO port is used as a 3.3-volt output port to 
illuminate the LED of a TRIAC controller.  When the TRIAC is turned ON, AC voltage is gated to a 
moderate-duty AC relay.  This relay can control a load up to 15 amps at 240 volts AC.  The AC 
transformer that provides the 12 volts AC to the decorative lights draws no more than 8 amps at 120 
volts AC through the relay.  As the days become longer and the nights shorter my decorative lights 
turn ON and OFF according to sunset and sunrise, respectively.  And, as the days become shorter and 
the nights longer my decorative lights are appropriately turned ON and OFF. 
 
This Raspberry Pi computer/controller is totally maintenance free because it receives its time of day 
from the Internet by means of a USB wireless adapter that communicates with my wireless Internet 
Router.  There must be an interesting project or two that could tie Mr. Apple to Mr. Raspberry Pi.  I 
already use a Keyspan serial to USB adapter with my Apple //e and my Apple G4 dual processor 
tower.  And I already have the programming tools on the Raspberry Pi to write some serious C 
language programs.  The best part is that the Raspberry Pi only costs about $40.00:  massive 
programming power and agility for pennies. 
 
Would I trade those early years learning to program on an Apple ][ for present day years to program on 
the Raspberry Pi or another “little” computer?  I am very fond of all those past memories, and software 
in those years did not change very often.  It is surprising how many years DOS 3.3 lived.  Today, my 
iPad or my iPhone receives a new iOS update every other month.  Software development occurs at a 
frenzy pace now, and considerations for size of application and available memory are totally 
unimportant.  Of course I could not last ten minutes in today’s aerospace industry because I don’t have 
the experience or the tools young engineers have today nor do I have their intellectual growth 
processes.  So I am satisfied with my memories and the fascinating experiences I had and the 
interesting characters I met along the way.  It is comforting to know that I may have touched someone 
else’s curiosity. 
 


