

Disk Operating System

For the Apple][Computer

DOS 4.1

January 18, 2019

Designed, Written, and Programmed by

Walland Philip Vrbancic, Jr.

DOS 4.1 and this Manual
are the Confidential and

Proprietary Intellectual Properties of

Walland Philip Vrbancic, Jr.

Copyright © 2019 by Walland Philip Vrbancic, Jr.

All Rights Reserved

 ii

This manual may be reproduced,
distributed, or transmitted in any form or
by any means, including photocopying,

recording, or other electronic or mechanical
means, without the prior written permission

of

Walland Philip Vrbancic, Jr.

However, full credit to the author and
disclosure of copyright notice must be

included with all copies.

Comments and questions may be directed
to the author at the following address.

W. Philip Vrbancic, Jr.
6223 East Peabody Street

 Long Beach, California 90808
United States of America

www.applecored.net

 iii

Table of Contents

I. Designing a New DOS .. 1	
1. Introduction .. 1	
2. General Software Design Strategy .. 3	
3. DOS Wish List ... 4	
4. DOS 4.1 Software Development ... 5	
5. Page-Zero Utilization .. 8	
6. VTOC Structure .. 14	
7. DOS 4.1 Catalog ... 18	
8. Booting DOS 4.1 .. 21	
9. DOS 4.1 Initialization ... 27	
10. DOS 4.1 Data Structures ... 41	
11. DOS 4.1 Clock Access .. 47	
12. DOS 4.1 Error Processing ... 49	
13. DOS 4.1 Chain Command ... 50	
14. The VTOC Bitmap Definition ... 55	
15. ProDOS Disk I/O Algorithm ... 57	
16. Building and Installing DOS 4.1 Images ... 60	
17. Using DOS 4.1 Commands ... 61	

II. Apple ROM Modifications ... 63	
1. Apple ROM Modification for Correct HLIN Drawing Algorithm ... 63	
2. Apple ROM Modification for Delete Key Utilization .. 66	
3. Apple //e 80 Column Text Card and ROM Monitor... 67	
4. Sweet 16 Metaprocessor ... 84	
5. Applesoft Garbage Collector ... 90	
6. Apple Character Generator ROM .. 95	
7. Peripheral Slot Card Signature Bytes .. 98	

III. DOS 4.1 Commands ... 101	
1. File System Commands ...106	
2. System Commands ..128	
3. Applesoft File Commands..131	
4. Binary File Commands ..135	
5. Sequential Text File Commands ..139	
6. Random-Access Data File Commands ...148	

 iv

IV. DOS 4.1 Operational Environment ... 155	
1. Applesoft Formatter ...156	
2. Binary File Installation (BFI) ...158	
3. Apple][+ Memory Upgrade ...161	
4. Real Time Clock Card ...165	
5. Disk Window ...171	
6. EPROM Operating System (EOS) for quikLoader ...176	
7. VTOC Manager (VMGR) ..191	
8. Asynchronous Data Transfer (ADT) ..194	
9. Big Mac ...197	
10. PROmGRAMER ...199	
11. CFFA Card ..201	
12. Volume Manager (VOLMGR) ...206	
13. File Developer (FID)..211	
14. Lazer’s Interactive Symbolic Assembler (Lisa) ..213	
15. Program Global Editor (PGE) ..221	
16. Global Program Line Editor (GPLE) ..222	
17. RamDisk 320 ...223	
18. RanaSystems EliteThree ..230	
19. The Sider ...233	
20. Sourceror ...237	
21. Parallel Printer Buffer ..240	
22. Last Concluding Thoughts ...244	

 v

List of Figures

Figure I.5.1. Page-Zero Memory Usage .. 13	
Figure I.6.1. DOS 4.1L Data Disk Volume VTOC .. 14	
Figure I.7.1. DOS 4.1 First Volume Catalog Sector .. 17	
Figure I.7.2. DOS 4.1L TSL Sector... 20	
Figure I.8.1. Attaching a Slot Card Handler to DOS 4.1 .. 23	
Figure I.9.1. Using USERADR and CMDVAL in DOS 4.1 .. 28	
Figure I.9.2. Reading the DOS Version in DOS 4.1 .. 30	
Figure I.9.3. Reading the Date and Time in DOS 4.1 .. 30	
Figure I.9.4. Big Mac Printing a File Manager Error in DOS 4.1 .. 31	
Figure I.9.5. Using the File Manager Context Block in DOS 4.1 ... 37	
Figure I.9.6. File Manager Command Parameter List .. 39	
Figure I.10.1. Lisa Using LOADLEN from KEYVALS in DOS 4.1 ... 44	
Figure I.13.1. Example Applesoft Program Layout in Memory ... 51	
Figure II.1.1. Applesoft HLIN Demonstration Program .. 64	
Figure II.1.2. Original ROM HLIN Routine Display ... 65	
Figure II.1.3. Modified ROM HLIN Routine Display ... 65	
Figure II.3.1. Notes for Tables II.3.1 to II.3.5 ... 71	
Figure II.6.1. International XML File.. 96	
Figure II.6.2. New Character Set TIFF Bitmap File... 96	
Figure II.6.3. Icon TIFF Bitmap File ... 97	
Figure II.6.4. Binary Character Set LORES Editor .. 97	
Figure III.1.1. CATALOG and CAT Command Display ..107	
Figure III.1.2. LS R Command Display ...108	
Figure III.1.3. CD Command Display ..109	
Figure III.1.4. DATE Command for Thunderclock Card Display ...110	
Figure III.1.5. DELETE Command Display ...111	
Figure III.1.6. DIFF Command Display ...112	
Figure III.1.7. GREP Command Display ..113	
Figure III.1.8. HELP HELP Command Display 1 ..114	
Figure III.1.9. HELP HELP Command Display 2 ..115	
Figure III.1.10. HELP HELP Command Display 3 ..115	
Figure III.1.11. HELP HELP Command Display 4 ..116	
Figure III.1.12. HELP INIT Command Display ...116	
Figure III.1.13. INIT Command Display 1 ...118	
Figure III.1.14. INIT Command Display 2 ...118	
Figure III.1.15. LIST Command Display ...121	
Figure III.1.16. LOCK Command Display ...122	
Figure III.1.17. RENAME Command Display ...122	
Figure III.1.18. SV Command Display ...124	
Figure III.1.19. TS Command of a Data Disk VTOC Display ..124	
Figure III.1.20. UNLOCK Command Display ...126	

 vi

Figure III.1.21. URM Command Display ...126	
Figure III.1.22. VERIFY Command Display ..127	
Figure III.2.1. MAXFILES, MON, and NOMON Command Display ..129	
Figure III.3.1. Listing of START and PROGRAM2 Programs Display ..132	
Figure III.3.2. Output of Programs START and PROGRAM2 Display ..132	
Figure III.3.3. LOAD and SAVE Commands Display ..133	
Figure III.4.1. BLOAD and BSAVE Commands Display ...136	
Figure III.4.2. BRUN Command Display ...136	
Figure III.4.3. LLOAD and LSAVE Commands Display ...138	
Figure III.5.1. OPEN, WRITE, and CLOSE Commands Display ...140	
Figure III.5.2. APPEND Command Display ..141	
Figure III.5.3. EXEC Command Display ...142	
Figure III.5.4. EXEC,Rr Command Display ...142	
Figure III.5.5. POSITION and READ Commands Display ..144	
Figure III.5.6. READ,Bb Command Display..144	
Figure III.5.7. TLOAD and TSAVE Command Display...146	
Figure III.5.8. TW Display ..146	
Figure III.6.1. OPEN, WRITE, and CLOSE Commands Display ...149	
Figure III.6.2. Contents of RTEST.T Display...150	
Figure III.6.3. READ and RUN Command Display ...151	
Figure III.6.4. Example Random-Access Data File CREATE ..152	
Figure IV.1.1. Applesoft Program Listing ..156	
Figure IV.1.2. Applesoft Program Programmatically Formatted ..157	
Figure IV.2.1. BFI Main Menu ..159	
Figure IV.2.2. BFI Peripheral Selection ...159	
Figure IV.2.3. BFI Installation Report on BFI ..160	
Figure IV.3.1. Apple][+ Satellite Circuit Diagram ..161	
Figure IV.4.1. Real Time Clock Circuit Diagram ...166	
Figure IV.5.1. Disk Window Startup Screen ..172	
Figure IV.5.2. Select T/S Mode ...172	
Figure IV.5.3. Edit Data Screen ...173	
Figure IV.5.4. Write Sector Data Screen ..173	
Figure IV.5.5. Print Sector Data Screen ...174	
Figure IV.5.6. Disk Window Error Message Display ...174	
Figure IV.6.1 quikLoader Circuit Diagram with Modifications ..177	
Figure IV.6.2. EOS Commands at RESET ...181	
Figure IV.6.3. EOS Catalog for EPROM 0, Part 1 ...181	
Figure IV.6.4. EOS Catalog for EPROM 0, Part 2 ...182	
Figure IV.7.1. VMGR Option Menu ..191	
Figure IV.7.2. VTOC Contents ..192	
Figure IV.7.3. VTOC Sector Bitmap Contents ...192	
Figure IV.8.1. ADT Window ...194	
Figure IV.8.2. ADT Configuration ...195	
Figure IV.8.3. ADT Software Credits ..195	
Figure IV.9.1. Big Mac Main Menu ...197	
Figure IV.10.1. PROmGRAMER Configuration ..200	
Figure IV.10.2. PROmGRAMER Command Menu ...200	
Figure IV.12.1. VOLMGR Product Warning Screen ..206	
Figure IV.12.2. VOLMGR Command Menu ..207	

 vii

Figure IV.12.3. VOLMGR Manage Firmware Menu ...207	
Figure IV.12.4. VOLMGR Manage CompactFlash Menu ..208	
Figure IV.12.5. VOLMGR Device Identity Contents ...208	
Figure IV.12.6. VOLMGR Manage Drives Menu ..209	
Figure IV.12.7. VOLMGR Manage Volumes Menu ..209	
Figure IV.12.8. VOLMGR Manage User DOS Images Menu ..210	
Figure IV.13.1. FID Main Menu ..211	
Figure IV.14.1. Lisa Startup Screen ...213	
Figure IV.14.2. Lisa Setup Utility ..214	
Figure IV.14.3. DOS 4.1H Source Code Volume ...216	
Figure IV.14.4. EOS Image Segment Files...216	
Figure IV.14.5. EOS1 Image Creation ...217	
Figure IV.14.6. EOS2 Image Creation ...217	
Figure IV.17.1. Original RamCard Hardware Circuit Diagram...225	
Figure IV.17.2. Modified RamCard Hardware Circuit Diagram ...226	
Figure IV.17.3. RamCard Hardware Modifications ..227	
Figure IV.20.1. Sourceror Initialization ...237	
Figure IV.20.2. Sourceror Startup/Help Screen ..238	
Figure IV.20.3. Sourceror Monitor Source Listing ...238	

 viii

 ix

List of Tables

Table I.4.1. Apple][Memory Utilization .. 7	
Table I.5.1. Page-Zero Memory Locations 0x00-0x3F .. 9	
Table I.5.2. Page-Zero Memory Locations 0x40-0x7F .. 10	
Table I.5.3. Page-Zero Memory Locations 0x80-0xBF ... 11	
Table I.5.4. Page-Zero Memory Locations 0xC0-0xFF ... 12	
Table I.6.1. DOS 4.1 VTOC Structure Block Definition ... 15	
Table I.6.2. Free Sector Bitmap for Each Track .. 16	
Table I.6.3. DOS 4.1 Date and Time Definition and Variable Order ... 16	
Table I.7.1. DOS 4.1 Volume Catalog Entry ... 18	
Table I.7.2. DOS 4.1 Catalog Sector Data Offsets for File Entries .. 19	
Table I.7.3. DOS 4.1 File Type Byte Description .. 19	
Table I.7.4. DOS 4.1 TSL Structure Block Definition ... 20	
Table I.8.1. DOS 4.1 RWTS Slot Interface Structure Definition ... 21	
Table I.8.2. DOS 4.1L Boot Configuration Table .. 22	
Table I.8.3. DOS 4.1L Disk Track/Sector Mapping to Memory Address ... 23	
Table I.8.4. DOS 4.1H Disk Track/Sector Mapping to Memory Address .. 24	
Table I.8.5. DOS 4.1L File Image Mapping to Memory Address .. 24	
Table I.8.6. DOS 4.1H File Image Mapping to Memory Address .. 25	
Table I.8.7. DOS 4.1 Initial Address Table Definition... 26	
Table I.9.1. DOS 4.1 Page 0x03 Interface Routines .. 29	
Table I.9.2. RWTS I/O Context Block Definition ... 32	
Table I.9.3. RWTS Command Codes .. 32	
Table I.9.4. RWTS Error Codes .. 33	
Table I.9.5. File Manager Context Block Definition.. 33	
Table I.9.6. File Manager Command Codes .. 34	
Table I.9.7. File Manager Read and Write Command Subcodes .. 34	
Table I.9.8. DOS 4.1 Error Messages and Sources .. 35	
Table I.9.9. File Manager INIT DOS Flags (SUBCODE) ... 36	
Table I.9.10. File Manager Initialization Data, VTOCVALS .. 36	
Table I.10.1. File Manager File Buffer Definition ... 40	
Table I.10.2. CMDVALS Data Structure Definition ... 42	
Table I.10.3. KEYVALS Data Structure Definition .. 43	
Table I.10.4. File Manager Workarea Structure Definition .. 45	
Table I.11.1. Supported Clock Cards in DOS 4.1 .. 47	
Table I.13.1. Applesoft Simple Variable Descriptor Definition ... 52	
Table I.13.2. Applesoft Array Variable Descriptor Definition ... 52	
Table I.14.1. Free Sector Bitmap for 32 Sector Tracks in DOS 3.3.. 55	
Table I.15.1. DOS 4.1 and ProDOS RWTS Routines, Tables, and Buffers .. 57	
Table II.3.1. New Memory Management and Video Soft Switches ... 68	
Table II.3.2. New Soft Switch Status Flags ... 68	
Table II.3.3. Original Input/Output Control Soft Switches .. 69	

 x

Table II.3.4. Original Memory Management Soft Switches ... 70	
Table II.3.5. Original Disk][Control Soft Switches ... 70	
Table II.3.6. Zip Chip Control Soft Switches .. 71	
Table II.3.7. CFFA Control Soft Switches .. 72	
Table II.3.8. quikLoader Control Soft Switches .. 72	
Table II.3.9. Sider, RamDisk, RamCard, and Rana Control Soft Switches .. 72	
Table II.3.10. Disabled Applesoft Commands ... 83	
Table II.4.1. Sweet 16 Register Descriptions... 85	
Table II.4.2. Sweet 16 Non-Register Opcodes ... 85	
Table II.4.3. Sweet 16 Register Opcodes... 86	
Table II.5.1. Simple Variable Descriptor Processing in Pass 1 .. 91	
Table II.5.2. Array Variable Element Processing in Pass 1 .. 91	
Table II.5.3. Garbage Collector Timing Results .. 94	
Table II.7.1. Peripheral Slot Card Signature Bytes .. 99	
Table II.7.2. Revised Disk Drive Peripheral Slot Card Signature Bytes ..100	
Table III.0.1. DOS 4.1 Command Valid Keyword Table ..101	
Table III.0.2. DOS 4.1 Command Table ..102	
Table III.0.3. DOS 4.1 Keyword Name and Range Table ...104	
Table III.0.4. DOS 4.1 Keywords and Keyword Value Items ...104	
Table III.1.1. DOS 4.1 File System Commands ...106	
Table III.1.2. Initialized Catalog Size for 35 Tracks, 16 Sectors/Track ...119	
Table III.1.3. Initialized Catalog Size for 35 Tracks, 32 Sectors/Track ...119	
Table III.1.4. Total Sectors for Volumes ..120	
Table III.2.1. DOS 4.1 System Commands ..128	
Table III.2.2. MAXFILES Memory Locations ...130	
Table III.3.1. DOS 4.1 Applesoft File Commands ..131	
Table III.4.1. DOS 4.1 Binary File Commands ..135	
Table III.5.1. DOS 4.1 Sequential Text File Commands...139	
Table III.6.1. DOS 4.1 Random-Access Data File Commands ...148	
Table IV.3.1. Apple][+ Satellite Circuit Board Connections..162	
Table IV.3.2. Apple][+ Satellite Circuit Board Operation Part 1 ...163	
Table IV.3.3. Apple][+ Satellite Circuit Board Operation Part 2 ...164	
Table IV.4.1. Real Time Clock Peripheral-Card I/O Addresses ..166	
Table IV.4.2. Real Time Clock Configuration Register ..167	
Table IV.4.3. Interrupt Rate Selection ..167	
Table IV.4.4. Real Time Clock Registers ...168	
Table IV.4.5. Clock Firmware Entry Points ...169	
Table IV.6.1. quikLoader Bank Switching ...178	
Table IV.6.2. quikLoader Firmware Entry Points ...179	
Table IV.6.3. EPROM 0 Containing EOS and Programs ..179	
Table IV.6.4. EOS File Types Used in Optional Parameter Array ..184	
Table IV.6.5. EOS Catalog File Entry Structure ...185	
Table IV.6.6. BINEOS Catalog File Entry ...189	
Table IV.11.1. CFFA Card Firmware Entry Points ..201	
Table IV.11.2. DOS 3.3 Patches for CFFA ..204	
Table IV.14.1. Lisa USR Command ..214	
Table IV.17.1. RamCard Memory Configuration Soft Switches ...224	
Table IV.17.2. RamDisk 320 Firmware Entry Points ...228	
Table IV.18.1. Rana Disk Firmware Entry Points ..231	

 xi

Table IV.19.1. Sider Logical Structure ...234	
Table IV.19.2. Modified Sider Logical Structure ...234	
Table IV.19.3. Sider Firmware Entry Points ..235	

 xii

 xiii

I am ever so proud to dedicate this Manual
and all my past achievements

to my Parents
who continuously nourished

my intellectual curiosity.

I am ever so grateful to my partner
Carlton Wong

who delightfully pretends to understand
what the Hell I am talking about!

 xiv

 1

I. Designing a New DOS
This manual describes the process and products I created when I decided to design, write, and program
a new Disk Operating System (DOS) for my Apple //e. Wherever I am able I have included schematic
diagrams, code samples, equations, figures, tables, and representative screen shots to help explain what
I have created and the reasons why I did so. Today, this has been an incredible journey for me in re-
imagining that time when I mostly lived, breathed, and worked on Apple][computers, hardware, and
software development continuously for a good period of my life many, many years ago.

1. Introduction
I have been an avid Apple][computer enthusiast, hobbyist, and professional programmer since 1983
when I became the proud owner of an Apple][+ computer. My complete system initially included an
Apple][Language Card, a Disk][with an Apple][Disk Controller slot card, an Amdek color monitor,
and an Epson MX100 printer with a Grappler+ Printer Interface slot card. During those early years I
designed and built Apple][peripheral slot cards, made electrical and hardware modifications to my
Apple][+ motherboard and keyboard, and wrote a substantial number of software programs using
Applesoft BASIC (Applesoft hereafter) and 6502 assembly language. I soon acquired a Videx
UltraTerm video display slot card and a Microsoft Z80 slot card, and I began writing Fortran programs
that analyzed tomographic reconstructions of the human spinal column. A year or so later I added the
Southern California Research Group quikLoader and PROmGRAMER slot cards, a Johnathon
Freeman Designs (JFD) Parallel Printer Buffer, and an Axlon RamDisk 320 and its interface slot card
to my system.

Now that I am retired from the aerospace industry where I used C language for the software
development of ultra-high speed data collection systems for tactical radar and sensor development, I
have always wanted to dig into, tear apart, and learn the intricacies of the last available Apple][DOS
for the Apple][+, that is, DOS 3.3, published on August 25, 1980. Then I came across another version
of DOS 3.3 published on January 1, 1983, which contains even more patches for the DOS APPEND
command and an Apple //e initialization patch. What I learned from the 1980 publication
flabbergasted me: the code is exciting in its originality and concept vis-à-vis it was released just after
the publication of Integer BASIC, but I found it somewhat juvenile in structure and implementation.
Apparently very little attention was paid to code design and review because it appeared to me Apple
made a strong push to release “something or anything” to consumers and third-party vendors in order
to market software products on diskettes.

And history does reveal that Apple Computer did outsource DOS and contracted for it to be delivered
within 35 days for $13,000 in April 1978. Paul Laughton at Shepardson Microsystems wrote Apple’s
initial disk operating system using Hollerith cards, a card reader, and a minicomputer. Now I have the
time and the continuing curiosity to delve into Apple][DOS, and I have the opportunity to create my
own version of DOS that contains the power and the flexibility I always thought DOS ought to and
could have. I call my version of Apple][DOS, DOS 4.1. And this is my 46th build of DOS 4.1.
What a ride I have been on! Why? To see what I could do for this wonderful machine and its
magnificent architecture!

 2

I know there are a great many ProDOS users in the Apple][community, but I never became interested
in ProDOS. The work I did at Hughes Aircraft in the mid 1980’s consisted of using assembly
language for programming an operating system executive and interface driver routines for Gould SEL
2780, 6780, and 9780 mainframe computers. These computers hosted a proprietary operating system
that allowed our team to simulate a radar processor traveling above the earth’s surface in virtually real
time. In order to accomplish that goal and simulate real time navigation the computer’s file system
was flat: each user had their own directory, and these user directories contained no subdirectories. So
I was very comfortable with the idea of a flat file system, very much like that of Apple’s DOS 3.3. I
was simply not comfortable with a slew of subdirectories exemplified by Apple’s ProDOS. My
thought was always “How does one remember the path to follow to find anything?” With the advent
of the Macintosh computer and later when I became familiar with the UNIX file system, my
subdirectory fears vanished and I cannot imagine a modern computer directory system without
subdirectories. However, I still remain passionate about Apple][DOS and I leave ProDOS to those
who are comfortable with that operating system architecture. Though what I have seen of ProDOS
recently, I believe it could definitely use a facelift, seriously.

I am sure many are curious and want to know what is new and different in Build 46, and what makes
this build so special. Looking back over my previous build manuals I realized that I should have
included this vital build enhancement information with every build, if only for historical reasons. Like,
which build did I solve the Track 0x00 utilization quest? Which build did I start labeling volumes?
Which build did I solve the “Disk Full” logic error? Taken all together, I have done an incredible
amount of research, writing, and software development to reach Build 46. And, to say the least, I have
done an incredible amount of testing for every function under normal and abnormal (i.e. error)
conditions. However small the list of items unique to Build 46 may seem, I have spent countless hours
developing and testing those items alone and in concert with the entire DOS package.

Build 45 did introduce another File Manager opcode to be used only by the DOS TS command. Build
46 adds the TSSAV 16-bit variable to the operation of this File Manager opcode so that the TS handler
does not interfere with the DIRTS 16-bit variable as in previous builds. It must be emphasized that the
File Manager FMTSCD opcode is not for external use. It is simply a means to utilize the error
handling capabilities of the File Manager on behalf of the DOS TS command. In Build 46 both the
Boot and Volume Init functions now utilize the BOOTCFG table. This ensures total consistency
between what the Init function creates and how the created volume actually boots. Build 46 allows the
creation of the volume Catalog with a minimum of one sector, or any number up to 15 sectors.
Previously, the minimum number of volume Catalog sectors was seven. Build 46 sets the default
volume Catalog to five sectors, or enough room to support 35 files. New to Build 46 are two new
variables FIRSTCAT and LASTRACK found at the end of the CMDVALS data structure. These
variables hold the default number of volume Catalog sectors and the default number of
Tracks/Volume, respectively. Currently, these variables contain 0x05 for FIRSTCAT and 0x23 for
LASTRACK. These variables are provided so that DOS 4.1 does not need to be reassembled in order
to change these default values. Build 46 adds a new keyword, the B keyword, to the DOS SAVE,
BSAVE, LSAVE, and TSAVE commands in order to implement the “File Delete/File Save” strategy.
Many times when a highly edited file is saved, some of the T/S entries in the file’s TSL are not
utilized, and disk space is wasted. When a file is deleted, then saved, those unused data sectors are
retrieved and made available for other files to use. Using the B-keyword with these DOS commands
will automatically delete the file, then save the file as intended. Finally, the DOS CATALOG
command output can be terminated by pressing the ESC key.

 3

2. General Software Design Strategy
My career in designing software, building software systems, and constructing data conversion and data
manipulation algorithms required me to understand the hardware capabilities of the computers chosen
for those tasks, down to the last detail. How else was I to construct a real time digital “time frame” on
a computer having a given operating system and processor throughput, fixed addressable memory, and
unique peripheral interfaces (e.g. the support of direct I/O) unless I understood the complete machine
architecture. I believe this design approach is fully applicable to the Apple][computer: either code or
data occupies fixed addressable memory where some defined memory locations are reserved for text,
graphics, control, and peripheral slot cards, and code is further restricted by the rather limited 6502-
microprocessor Instruction Set. My obvious goal strategy is to design software in such a way as to
create the most functionality with the least amount of code and data space. I believe this methodology
will yield the highest degree of code effectiveness.

So I began my DOS design first with a “wish list” of some of the DOS capabilities and enhancements I
wanted most in my DOS. In parallel with my software design of DOS 4.1 I wanted to create enough
documentation for someone else to “come up to speed” and be able to create their “wish list” items for
their version of an Apple DOS if that is their goal, too. I have no doubt that what I think is a worthy
enhancement may not be so worthy to someone else. Someone else may rather use the code space for
a different utility or functionality, and that would make their DOS XYZ just as powerful for their
software environment and applications. Another one of my DOS design goals centered on how best to
display information from many of the command-line commands. I realize there are only 24 lines on an
Apple][display, but I found that spacing commands and their output information provides a far better
visual presentation. In all of the software programs I developed for users at Hughes Aircraft Company
I put “Consistency in Design” at the top of my design goals list. I wanted users to be instantly
comfortable with all current and future versions of my programs once they had initially acclimated to
any one of my program menus. In the same fashion I want my design of Apple DOS to use
“Consistency in Design” for each group of related commands in how the commands gather, store,
retrieve, and display information.

 4

3. DOS Wish List
I can easily recall at least five DOS 3.3 enhancements aimed to speed up data input and output to a
Disk][, even going so far as modifying the soft sector skewing table. All the enhancements performed
well, but they were usually at the expense of losing one or more DOS capabilities such as the INIT
function, for example. In DOS 3.3 there was no support for file date and time stamping even though
many clock cards were already available in the early 1980’s. DOS included placeholders for the future
support of additional file types, but those features have never been implemented to my knowledge. A
diskette’s Volume Table of Contents, or VTOC, was actually designed to support media having up to
32 sectors per track, and up to 50 tracks per volume, but those features have never been implemented
with any supporting hardware I know of. There was no easy way to manipulate text files or create a
simple EXEC file from the Apple command line. For example, one needed sophisticated tools to even
display the contents of a volume sector.

Another missing native DOS capability was an Applesoft program chaining function where all
previous Applesoft variables would be available to the next chained Applesoft program, similar in
concept to the DOS chaining capability for Integer BASIC programs. An assembly language program
was available to provide Applesoft program chaining capability, but the program had to reside on each
and every application volume in order to support the chained applications across multiple volumes.
Even that software had a major design flaw that could wreak havoc with program variables. DOS did
not support lowercase command entry even though Applesoft did support lowercase entry on an
Enhanced Apple //e. And, DOS could not “undelete” a file once it was deleted without using special
software utilities along with a convoluted set of procedures.

Those early pioneers who wanted to write massive Applesoft applications were mostly out of luck
because DOS consumed at least 11 KB of the available 48 KB of memory below memory address
0xC000; only Diversi-DOS was able to relocate DOS to the Language Card, and that actually became
very useful to some software application publishers. Of course, it would be far better to have a version
of DOS that would boot directly into the Language Card and be totally resident and native in the
Language Card as well.

Apple DOS depends on a few ROM routines for initialization, keyboard input, and video output. I do
not believe a discussion about an Apple][DOS would be complete without considering the Monitor
firmware. The ROM, alone, would be a fascinating subject, but together, the DOS and the ROM
complete the Apple][hardware and software architecture. The ROM contains flawed code, functions
that should be excluded, and functions that should be included. So, I include exploring the ROM on
my DOS wish list, too.

Yes, the DOS wish list goes on and on, but it also needs to include solutions to all the flawed DOS
routines, and the DOS routines that were simply coded incorrectly. I believe DOS 4.1 not only meets
the demands of this wish list, but also exceeds it in all expectations as well.

 5

4. DOS 4.1 Software Development
In 1983 most everyone including me who wrote software for Ken Williams at Sierra On-Line used
Randall Hyde’s Lazer’s Interactive Symbolic Assembler, that is, Lisa V2.6, for the software
development of 6502 assembly language programs. I have taken the time to source Lisa in order to
add additional capabilities to its repertoire of commands and directives, and to modify and/or eliminate
its direct DOS 3.3 dependencies. Lisa now uses the variable table interfaces in DOS 4.1 in order to
access some necessary DOS 4.1 internal variables and structures. I do all my verification testing on an
Enhanced Apple //e having a Super Serial slot card, a clock slot card of my own design and fabrication,
a quikLoader slot card, a Rana Disk][Controller slot card, and an Axlon interface slot card connected
to a RamDisk 320. The Super Serial slot card is connected to my Apple G4 dual processor tower using
a Keyspan serial to USB adapter. I use Gerard Putter’s application Virtual][, Version 7.5.4 (my Apple
MacBook Pro uses Version 9.1.2) to create my software applications and perform the initial, though
simulated testing. Once I am satisfied with an application or program running under Virtual][, I
connect Virtual][‘s A2V2 application to the Super Serial card via the Keyspan, and run the mating
application ADT on the Apple //e. After I have transferred the volume image to a physical diskette or
to the RamDisk 320 connected to DOS 4.1, I am ready to test the application or program on real
hardware. If I make any software changes to modify or enhance the application under test, I can, of
course, transfer that modified volume image back to Virtual][and archive the volume image on the G4
or the MacBook Pro. It was absolutely necessary that I use the Disk][and a physical diskette when I
tested my version of the DOS RWTS read/write I/O routines, for example. It is unfortunate that
Virtual][only emulates the Thunderclock slot card. I designed and built my own clock slot card for
my Apple][+, and now use it in my Apple //e. I inherited my mother’s Applied Engineering’s
TimeMaster II clock slot card from her Apple //e. DOS 4.1 absolutely supports these three clock cards
and quite possibly others.

Because I entered the Apple][+ market when the computer had a full 48 KB of memory on its
motherboard and 16 KB of memory in the Language Card available then, I never made use of a Master
boot disk image: I only created and used Slave boot disk images, even when I was employed at Sierra.
Therefore, to my way of thinking, DOS loads to memory address 0x9D00, end of story. Also, DOS
3.3 loads several buffers (catalog, VTOC, and the primary nibble buffer) unnecessarily, and it ignores
two sectors on track 0x00 used by and reserved for the Master boot disk image. To my surprise and
delight I found that with some clever (okay, a little clever) organization I could fit all of DOS 4.1 onto
tracks 0x00 and 0x01, and not even utilize any of the five sectors DOS 3.3 uses on its reserved track
0x02. I cannot tell you all the time I spent in early 1984 designing programs that would modify the
VTOC on a diskette so that I could access those eleven unused sectors remaining on track 0x02. Now,
I have made all of track 0x02 available for data storage and, as a result, shortened the time for DOS to
boot into memory. In the early Apple][market there was initially Integer BASIC in ROM unless you
owned a Language Card into which the Applesoft Interpreter could be loaded when that language
became available. My Apple][+ contained the Applesoft autostart ROMs so my Language Card was
simply used to load Integer BASIC if I desired, or the Pascal or Fortran languages. Eventually, DOS
was enhanced to support both Integer BASIC and Applesoft, and it was able to switch between those
two languages. I suppose I used Integer BASIC all of one time in order to watch AppleVision by Bob
Bishop. This may not surprise anyone, Sierra did not ever carry one single product in its inventory that
required Integer BASIC. And I do not recall any other software-publishing house marketing an Integer
BASIC product in the early 1980’s. I chose to remove all traces of Integer BASIC support from DOS
4.1. ProDOS does not support Integer BASIC as well.

 6

Over the years a lot of fuss was made concerning the page-zero memory address location Apple chose
for the RWTS Input/Output Context Block (IOCB) pointer at 0x48/49. Unfortunately, the Apple
Monitor, which I believe takes priority, also uses page-zero memory bytes 0x48/49 to save the
processor and status registers after the processor receives an interrupt. Instead of fixing this problem
in DOS, Apple advised programmers to always store a 0x00 byte at memory address 0x48 after using
the 0x3D9 vector to call RWTS. Others suggested using the MOTORTIM (RWTS motor on time)
memory bytes 0x46/47 for the RWTS IOCB pointer and moving the MOTORTIM pointer elsewhere.
I chose to do a very careful and thorough study of the Monitor routines and their use of page-zero
memory. I modified the MSWAIT routine to use the page-zero memory bytes 0x3C/3D for the
MOTORTIM bytes. In view of no longer supporting Integer BASIC, DOS 4.1 uses the page-zero
bytes 0x4A/4B for the RWTS IOCB pointer which were previously used by Integer BASIC.
Therefore, the 0x45 to 0x49 page-zero bytes are now untouched by DOS 4.1 and exclusively for use by
the Monitor. In the little experience I gained in generating and handling interrupts with my clock card,
I realized that the interrupt handling of the Apple Monitor was totally under-realized, under-
appreciated, and under-utilized. The RTI instruction is certainly available, it works, and it could be
used for some awesome hardware design firmware coupled with the right DOS.

During my review of DOS 3.3 I found that it took less than a handful of instructions to give DOS 4.1
full lowercase support for all commands, and even fewer instructions to allow DOS 4.1 access to all of
track 0x00 for data storage. FID also required a few easy modifications in order for it to access track
0x00 for data retrieval and storage as well. I also found that to add date and time stamping to disk
volumes and files only required three slight modifications to the volume initialization routine, the
closing of files routine, and the routine that updates the disk VTOC. By the way, the VTOC also
includes enough unused space to hold the DOS Version, Build number, a 24-character Volume Name,
a Volume Type showing if it is a bootable or a data storage volume, a Volume Library number, and a
flag indicating which location in RAM that DOS 4.1 was occupying when the volume was initialized:
DOS 4.1L, “L” for Low RAM DOS, that is, DOS from 0x9D00 to 0xBFFF, or DOS 4.1H, “H” for
High RAM DOS, or DOS fully located (not relocated) natively in the Language Card.

Before beginning any discussion of a complicated subject like an operating system for the Apple][, it
is usually easier to understand each component part of such a system if they are shown as part of a Big
Picture. That Big Picture is shown in Table I.4.1. Though certainly not to scale, Table I.4.1 simply
shows the memory utilization for the Apple][and where the basic components are found in main
memory. I exclude any discussion of auxiliary memory as found in the Apple //e in this manual. The
basic components shown Table I.4.1 are the 6502 microprocessor requirements, the DOS vectors, text
pages, graphic pages, DOS file buffers, DOS code, soft switches, peripheral-card memory, Applesoft,
and the ROM Monitor. The following pages will discuss the Apple][memory utilization in great
detail so it may be helpful to refer to Table I.4.1 occasionally in order to fully understand how those
details relate to the entire software and hardware management of the Apple][computer. The Apple][
computer is a wonderful machine and it has a magnificent architecture. I hope you find my
presentation of DOS 4.1 vis-à-vis the Apple][computer interesting, enlightening, and useful in view
of your own hardware and software experiences with this machine.

 7

Page Memory Memory
0x00 Page-zero pointers, special addressing modes
0x01 Stack for 6502 microprocessor
0x02 Input buffer, Applesoft interpretation buffer
0x03 User buffer, DOS vectors

0x04-0x07 Text or LORES graphics page 1

0x08-0x0B Applesoft program start, Text or LORES graphics
page 2

0x0C-0x1F Free

0x20-0x3F HIRES graphics page 1 or free

0x40-0x5F HIRES graphics page 2 or free

0x60-0x95 Free

0x96-0x9C DOS 4.1L HIMEM, DOS 4.1L file buffers start

0x9D-0xBC DOS 4.1L file buffers end, DOS 4.1L start

0xBE-0xBF DOS 4.1H HIMEM, DOS 4.1H Language Card
interface, DOS 4.1L end

0xC0 Soft switches
0xC1-0xC7 Peripheral-card ROM memory for slots 1-7

0xC8-0xCF Peripheral-card expansion ROM memory

0xD0-0xDF Bank 2, Applesoft, DOS 4.1H start Bank 1, DOS 4.1H

RWTS and HELP
0xE0-0xEB Applesoft, DOS 4.1H end

0xEC-0xEF Applesoft, DOS 4.1H file buffers start

0xF0-0xF7 Applesoft, DOS 4.1H file buffers end

0xF8-0xFF ROM Monitor

Table I.4.1. Apple][Memory Utilization

 8

5. Page-Zero Utilization
The Instruction Set for the 6502-microprocessor (and the 65C02 processor as well) includes special
processor instructions that utilize variables located in the first 256 bytes, or page, of addressable
memory, that is, locations 0x0000 to 0x00FF. I designate this area of memory “page-zero.” When
Steve Wozniak designed the Apple Monitor he allocated a number of page-zero locations for its
variables and pointers. Similarly Applesoft, DOS, and virtually all other user assembly language
programs use page-zero locations in order to utilize those special instructions. The 6502-
microprocessor contains an accumulator, the A-register, and two index registers, the X-register and the
Y-register. Page-zero instructions using these registers include load and store instructions, indexed
load and store instructions, indexed indirect addressing instructions using the X-register, and indirect
indexed addressing instructions using the Y-register. Page-zero wraparound occurs with indexed
indirect addressing instructions but not with indirect indexed addressing instructions.

When developing a user assembly language program it is critical to select page-zero locations that do
not conflict with the Apple Monitor, Applesoft, or DOS depending on whether those applications are
important to the user program. Knowing which page-zero locations are used by or critical to resident
applications can greatly simplify the selection of unused or available page-zero locations. Because
DOS 3.3 supports Integer BASIC a few page-zero locations were used to process that file type. DOS
4.1 also uses those same page-zero locations for processing the Applesoft CHAIN command, for
example, and other command enhancements. There are definitely obvious page-zero locations that
cannot be used except for how they were intended, like the horizontal and vertical cursor locations CH
and CV, respectively. Then, there are less obvious, rather dubious page-zero locations that are used by
some Applesoft commands from 0x00 to 0x1F. These page-zero locations are fair game for user
programs that do not use the Applesoft interpreter or Steve Wozniak’s Sweet 16 interpreter. Tables
I.5.1 through I.5.4 list all page-zero locations and the applications that use those particular locations
according to my references and the best of my ability to decipher the code that uses those locations.
Figure I.5.1 summarizes the data in Tables I.5.1 through I.5.4 to show all used and unused page-zero
locations. The shaded locations in Figure I.5.1 are unused page-zero locations that probably are not
used by the Apple //e Monitor or Applesoft, so they are more than likely the better locations to select.
Indirect indexed addressing instructions using the Y-register do require a page-zero byte-pair, so it is
even more critical that neither address byte is clobbered by software external to the user program.

There are certainly common page-zero locations that all software routines can use as temporary
variables and pointers. The 6502-microprocessor is not time-shared and there is no context switching
between routines, so if a routine uses some common page-zero locations, it should complete all
processing using those locations and not expect to find its results sometime later. Examples of
common page-zero locations would be A1L/A1H, A2L/A2H, A3L/A3H, A4L/A4H, OPRND, and
DSCTMP (3 bytes). Using these page-zero locations to move or copy data would be safe and not
interfere with Monitor, Applesoft, or DOS processing. Actually some Monitor routines require that
some of these locations just mentioned contain your data before using those routines. The Monitor
routine MOVE at 0xFE2C is one such example. It is really up to the user to confirm and verify that the
selected page-zero memory locations do not interfere with other routines external to and required by
the user software.

 9

Addr Monitor MiniAsm C1 ROM Applesoft RWTS DOS 4.1 Description
0x00 LOC0 LOC0 LOC0 LOC0 AS JMP vector
0x01 LOC1 LOC1 LOC1
0x02 ZPG02 ZPG02
0x03 ZPG03 ZPG03 AS JMP vector
0x04 ZPG04 ZPG04
0x05 ZPG05
0x06 ** free **
0x07 ** free **
0x08 ** free **
0x09 ** free **
0x0A ZPG0A AS JMP vector
0x0B ZPG0B
0x0C ZPG0C
0x0D ZPG0D AS STRLT2 string utility
0x0E ZPG0E AS STRLT2 string utility
0x0F ZPG0F
0x10 ZPG10
0x11 ZPG11 AS flag for last FAC
0x12 ZPG12
0x13 ZPG13
0x14 ZPG14 AS subscript flag
0x15 ZPG15
0x16 ZPG16 AS FP comparison type
0x17 ZPG17
0x18 ZPG18
0x19 ZPG19
0x1A SHAPE
0x1B :
0x1C HCOLOR1
0x1D INDEX COUNTH
0x1E ADRCNTR ** free **
0x1F ZPG1F
0x20 WNDLFT WNDLFT WNDLFT Left column of scroll window
0x21 WNDWDTH WNDWDTH WNDWDTH Width of scroll window
0x22 WNDTOP WNDTOP WNDTOP Top line of scroll window
0x23 WNDBTM WNDBTM WNDBTM Bottom line of scroll window
0x24 CH CH CH CH Cursor horizontal, WNDLFT
0x25 CV CV CV Cursor vertical, WNDTOP
0x26 BASL BASL TEMPZ BUFRADRZ LORES plot left end point
0x27 BASH BASH TEMP2Z : HIRES plot base address
0x28 BASEZ BASEZ BASEZ BASEZ Memory address of text line
0x29 : : : :
0x2A BAS2L BAS2L BAS2L CURTRKZ ASPTRSAV Memory address for scrolling
0x2B BASEH BASEH BASEH SLOT16Z :
0x2C H2 H2 DATAFNDZ : Right end point for HLINE
0x2D V2 V2 SECFNDZ : Bottom point for VLINE
0x2E MASK MASK MASK MASK TRKFNDZ : LORES color mask
0x2F SIGN SIGN SIGN SIGN VOLFNDZ :
0x30 HMASK COLOR LORES color for PLOT
0x31 MODE MODE Monitor command processing
0x32 INVFLG INVFLG INVFLG Video format control
0x33 PROMPT PROMPT PROMPT PROMPT Prompt character
0x34 YSAV YSAV YSAV Monitor command processing
0x35 YSAV1 YSAV1 YSAV1 Y-register save for COUT1

(DOS 3.3 DRIVNO)
0x36 CSWL CSWL CSWL Monitor/DOS output
0x37 CSWH CSWH CSWH
0x38 KSWL KSWL KSWL Monitor/DOS input
0x39 KSWH KSWH KSWH
0x3A PCL PCL PCL Program counter
0x3B PCH PCH PCH
0x3C A1L A1L A1L A1L MOTORTIM MiniAsm trace work area
0x3D A1H A1H A1H A1H :
0x3E A2L A2L A2L A2L ODDBITSZ BUFADR2Z
0x3F A2H A2H A2H A2H SECTORZ :

 Table I.5.1. Page-Zero Memory Locations 0x00-0x3F

 10

Addr Monitor MiniAsm C1 ROM Applesoft RWTS DOS 4.1 Description
0x40 A3L TRACKZ FILEBUFZ
0x41 A3H VOLUMEZ :
0x42 A4L A4L A4L BUFADRZ
0x43 A4H A4H A4H :
0x44 OPRND OPRND OPRND DIRINDX
0x45 AREG (DOS 3.3 SYNCNT)
0x46 XREG (DOS 3.3 MONTIME)
0x47 YREG (:)
0x48 PREG (DOS 3.3 IOBADR)
0x49 SPNT (:)
0x4A IOBADR IOBADR (DOS 3.3 INTLOMEM)
0x4B : : (:)
0x4C DOSPTR (DOS 3.3 INTHIMEM)
0x4D : (:)
0x4E RNDL RNDL
0x4F RNDH RNDH
0x50 ACL ACL LINNUM
0x51 ACH ACH :
0x52 TEMPPT AS temporary string pointer
0x53 LASTPT AS last temp string pointer
0x54 EL HIRES error for HLIN
0x55 STRATCH AS string scratch name/length
0x56 AREG1 :
0x57 XREG1 :
0x58 YREG1 TEMPDSC AS temp save for DSCTMP
0x59 PREG1 :
0x5A : DOSTEMP1
0x5B DOSTEMP2
0x5C DOSBUFR
0x5D :
0x5E INDEX AS stack for moving strings
0x5F :
0x60 P2
0x61 :
0x62 LASTMUL
0x63 :
0x64 :
0x65 :
0x66 :
0x67 TEXTTAB ASPGMST AS program start
0x68 : :
0x69 VARTAB ASVARS AS simple variables pointer
0x6A : :
0x6B ARYTAB ASARYS AS array pointer
0x6C : :
0x6D STREND STREND ARYEND AS top of array pointer
0x6E : : :
0x6F FRETOP FRETOP ASSTRS AS end of strings pointer
0x70 : : :
0x71 FRESPC AS temp string storage
0x72 :
0x73 MEMSIZE MEMSIZE ASHIMEM AS HIMEM
0x74 : : :
0x75 CURLIN AS current line
0x76 : ASRUN
0x77 OLDLIN AS last line processed
0x78 :
0x79 TEXTPTR AS old text pointer
0x7A :
0x7B DATLIN AS line where data being read
0x7C :
0x7D DATPTR AS absolute read data address
0x7E :
0x7F SRCPTR AS current source of input

 Table I.5.2. Page-Zero Memory Locations 0x40-0x7F

 11

Addr Monitor MiniAsm C1 ROM Applesoft RWTS DOS 4.1 Description
0x80 :
0x81 LASTVBL AS last variable’s name
0x82 :
0x83 VARPNT AS last variable’s value
0x84 :
0x85 FORPNT AS general pointer
0x86 :
0x87 GENTEMP
0x88 :
0x89 :
0x8A TEMP3 AS FP register
0x8B :
0x8C GENTPTR
0x8D :
0x8E :
0x8F ZPG8F
0x90 ZPG90 JMP vector
0x91 ZPG91
0x92 ZPG92
0x93 TEMP1 AS FP register
0x94 HIGHDS HIGHDS Block transfer utility, dest
0x95 : :
0x96 HIGHTR Block transfer utility, end
0x97 :
0x98 TEMP2 AS FP register
0x99 :
0x9A :
0x9B LOWTR LOWTR AS general purpose register
0x9C : :
0x9D DSCTMP AS temp string descriptor
0x9E :
0x9F :
0xA0 FACMO AS middle order mantissa
0xA1 FACLO AS low order mantissa
0xA2 FACSIGN AS sign of FAC
0xA3 ZPGA3
0xA4 ZPGA4
0xA5 ARGEXP AS secondary FP accumulator
0xA6 ARGMANT AS 4 byte mantissa
0xA7 :
0xA8 :
0xA9 :
0xAA ARGSGN AS sign of ARG
0xAB STRNG1 AS MOVINS utility
0xAC :
0xAD STRNG2 AS STRLT2 utility
0xAE :
0xAF PRGEND ASPEND AS end of program
0xB0 : :
0xB1 CHRGET AS routine, TXTPTR++
0xB2 :
0xB3 :
0xB4 :
0xB5 :
0xB6 :
0xB7 CHRGOT AS routine, no TXTPTR++
0xB8 TXTPTR AS next program character
0xB9 :
0xBA :
0xBB :
0xBC :
0xBD :
0xBE :
0xBF :

 Table I.5.3. Page-Zero Memory Locations 0x80-0xBF

 12

Addr Monitor MiniAsm C1 ROM Applesoft RWTS DOS 4.1 Description
0xC0 :
0xC1 :
0xC2 :
0xC3 :
0xC4 :
0xC5 :
0xC6 :
0xC7 :
0xC8 PTREND
0xC9 FPRAND AS FP random number
0xCA :
0xCB :
0xCC :
0xCD :
0xCE ** free **
0xCF ** free **
0xD0 ZPGD0
0xD1 ZPGD1
0xD2 ZPGD2
0xD3 ZPGD3
0xD4 ZPGD4
0xD5 ZPGD5
0xD6 MYSTERY PROTECT All commands equal RUN
0xD7 ** free **
0xD8 ERRFLG ASONERR AS error flag
0xD9 RKEYWORD (DOS 3.3 INTRUN)
0xDA ERRLIN AS line where error occurred
0xDB :
0xDC ERRPOS AS TEXTPTR HNDLERR
0xDD :
0xDE ERRNUM AS error number or code
0xDF ERRSTK AS stack pointer before error
0xE0 HRXCOOR HIRES X-coordinate
0xE1 :
0xE2 HRYCOOR HIRES Y-coordinate
0xE3 ** free **
0xE4 HRCOLOR HIRES color byte
0xE5 HRHZNDX HIRES horizontal byte index
0xE6 HPAG HIRES page to plot on
0xE7 SCALE HIRES scale factor
0xE8 HRSHPTBL HRSHPTBL HIRES shape table address
0xE9 : :
0xEA HRCOLCNT HIRES collision counter
0xEB ** free **
0xEC ** free **
0xED ** free **
0xEE ** free **
0xEF ** free **
0xF0 FIRST AS first dest of LORES

PLOT
0xF1 SPDBYT Speed control, output/display
0xF2 ZPG92
0xF3 SIGN ORMASK Mask for output control
0xF4 X2 X2 Exponent
0xF5 M2 Mantissa, 3 bytes
0xF6 :
0xF7 :
0xF8 REMSTK AS stack pointer
0xF9 M1 FP accumulator for M1
0xFA ** free **
0xFB ** free **
0xFC ** free **
0xFD ** free **
0xFE ** free **
0xFF ZPGFF ZPGFF

 Table I.5.4. Page-Zero Memory Locations 0xC0-0xFF

 13

H
ex

00

10

20

30

40

50

60

70

80

90

A
0

B0

C
0

D
0

E0

F0

F 4 3 12
3

45
6

12
3

45
6

13

4 34
6 4 4 4 46

4 4 34

E 4 2 12
3

45
6

12
3

45
6

13

4 34
6 4 4 4 4 4 4

D

4 24

14
5 6 12
3

45

6 6 34
6 4 4 4 4 4 4 4

C

4 4 14
5 6 12
3

45

6 6 46

4 4 34

4 4 4 4

B 4 4 13
4

56

12
3

56

6 46

4 4 34

4 4 4 4

A

4 4 13
4

56

12
3

56

46

46

4 4 4 4 4 4 4 4

9 4 13
4 6 13
6 1 24

46

4 4 4 4 4 4 6 34

4

8 4 13
4 6 13
6 1 24

46

4 4 4 4 4 4 46

34

4

7 4 14
5 6 13
6 1 24

46

4 4 4 4 4 4 4 4

6 4 14
5 6 13
6 1 24

4 46

4 4 4 4 4 46

4 4

5 4 4 13
4

12
3 1 4 4 4 4 34

4 4 4 4 4 4

4 34

4 13
4 6 12
3

12
3 6 4 4 34
6 4 34

4 4 4 4 4 14

3 34

4 13
4

12
4 6 12
3 6 4 4 34
6 4 4 4 4 4 4 14

2 34

4 13
4

13
4

12
3 6 4 4 4 4 4 4 4 4 4 4 4

1 13
4 4 13
4

12

15
6

34
6 4 4 4 4 4 4 4 4 4 4

0 12
3 4 4 13
4

14

15
6

34
6 4 34
6 4 4 4 46

4 4 4 4

H
ex

00

10

20

30

40

50

60

70

80

90

A
0

B0

C
0

D
0

E0

F0

Figure I.5.1. Page-Zero Memory Usage

Key
1 – used by the Monitor 4 – used by Applesoft
2 – used by the Mini Assembler 5 – used by RWTS
3 – used by the C1-CF ROM 6 – used by DOS 4.1

 14

6. VTOC Structure
How I agonized over how to implement date and time stamping for files and disk volumes. Preferably
I only wanted to update a date and time stamp when either a file or the VTOC of a disk volume has
changed. I also wanted to date and time stamp a disk volume (or disk image) when the volume was
first created. However, creating or updating a date and time stamp is only half the task: the date and
time stamp need to be displayed appropriately. And, when the contents of a volume’s Catalog
directory are listed the file’s date and time stamp need to be displayed along with its filename. Since
the VTOC is basically the heart of the disk volume, it is best to begin there and show its organization
and content in DOS 4.1. The VTOC is defined to be located on track 0x11, in sector 0x00. The
volume Catalog sectors may be on any other track and sector, but typically they are defined to be on
track 0x11 for optimal access speed.

Figure I.6.1 shows the VTOC for a data disk having five sectors available for the volume Catalog, a
major change in Build 46. A data disk is defined as volume type “D” for Data disk. A bootable disk
having a DOS 4.1L image or a DOS 4.1H image is defined as volume type “B” for Boot disk. Table
I.6.1 defines each entry in the VTOC, Table I.6.2 defines the free sector bitmap for each track, and
Table I.6.3 defines the bytes of the six-byte date and time stamp and the order of those bytes. There is
more information in Section I.14 about the free sector bitmap definition as it is used by DOS 4.1.

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 11 05 41 46 CC 12 C4
10 Volume Name – 24 characters
20 Date and Time Volume was created 7A Library # Date and Time VTOC last changed
30 11 01 23 10 00 01 FF FF 00 00 FF FF 00 00
40 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00
50 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00
60 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00
70 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF 00 00 00
80 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00
90 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00
A0 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00
B0 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00
C0 FF FF 00 00
D0
E0
F0

Figure I.6.1. DOS 4.1L Data Disk Volume VTOC

In DOS 3.3 much code and valuable data space was dedicated to the manipulation of Volume number
beginning with the Command Manager, through the File Manager, and on to RWTS, and then back to
the File Manager. Since all positional parameters such as Slot, Drive, and Volume are initialized to

 15

0x00 by the Command Manager after a DOS 4.1 command has been parsed, the default VOLVAL for
the Volume number keyword is always 0x00. DOS 4.1 passes Volume number through the File
Manager and to RWTS unchanged. Therefore, the default Volume number that is displayed by DOS
4.1 is “000” and not “254” (0xFE) as it is by DOS 3.3. The Volume number at byte 0x06 in the VTOC
is the official Volume number for the volume, not the one RWTS finds encoded in the Address Field
header of a diskette sector. Bytes 0x01 and 0x02 of the VTOC are the track and sector number,
respectively, for the first Catalog sector. As in DOS 3.3, DOS 4.1 uses byte 0x03 of the VTOC for
DOS Version, and uses the unused byte at 0x04 for the DOS Build Number. Byte 0x05 is used to
designate which RAM DOS, “L” (0xCC) or “H” (0xC8), was in memory (i.e. DOS 4.1L or DOS 4.1H)
when the volume was created, and byte 0x07 is used for the Disk Volume Type, “B” (0xC2) or “D”
(0xC4). Bytes 0x08 through 0x1F are used for the 24-character Disk Volume Name or title, bytes
0x20 through 0x25 are used for the Disk Volume Date and Time stamp when the volume was created,
and bytes 0x2A through 0x2F are used for the VTOC Date and Time stamp, and this time stamp is
updated whenever DOS 4.1 changes the VTOC for any reason. Bytes 0x28 and 0x29 are used for a
16-bit (low/high byte order) Disk Library value. All other VTOC variables are still at their original,
DOS 3.3 location. All these new variables are displayed by the DOS 4.1 CATALOG command.

Byte Name Value Description
0x00 VTOCSB 0x00 VTOC Structure Block
0x01 FRSTTRK 0x11 Track number of first catalog sector
0x02 FRSTSEC 0x05 Sector number of first catalog sector
0x03 DOSVRSN 0x41 DOS Version number used to INIT this VTOC
0x04 DOSBUILD 0x46 Build number used to INIT this VTOC
0x05 DOSRAM 0xCC RAM DOS that initialized this volume (“L” or “H”)
0x06 DISKVOL 0x12 Volume number (0x00-0xFF)
0x07 DISKTYPE 0xC4 Volume type (“B” or “D”)

0x08-0x1F DISKNAME ~ Volume name (24 characters)
0x20-0x25 INITIME ~ Date and time when volume was initialized

0x26 0x00 unused
0x27 NUMTSENT 0x7A Maximum number of T/S pairs in one sector

0x28-0x29 DISKSUBJ ~ Volume Library (subject) (0x0000-0xFFFF) (Lo/Hi)
0x2A-0x2F VTOCTIME ~ Date and Time VTOC was last changed

0x30 NXTTOALC 0x11 Last track where sectors were allocated
0x31 ALLCDIR 0x01 Direction of track allocation (0x01 or 0xFF)

0x32-0x33 0x00 unused
0x34 NUMTRKS 0x23 Number of tracks in volume
0x35 NUMSECS 0x10 Number of sectors per track

0x36-0x37 BYTPRSEC 0x100 Number of bytes per sector (Lo/Hi)
0x38-0x3B BITMAP ~ Bitmap of free sectors for track 0
0x3C-0x3F ~ Bitmap of free sectors for track 1
0x40-0xC3 ~ Bitmap of free sectors for tracks 2-34
0xC4-0xFF 0x00 reserved for expansion

Table I.6.1. DOS 4.1 VTOC Structure Block Definition

 16

Byte Sector Bitmap Order
0 0F-08 FEDCBA98
1 07-00 76543210
2 1F-18 FEDCBA98
3 17-10 76543210

Table I.6.2. Free Sector Bitmap for Each Track

Byte Value Range Date and Time Values
0 0x00 – 0x59 second
1 0x00 – 0x59 minute
2 0x00 – 0x23 hour
3 0x00 – 0x99 year
4 0x01 – 0x31 day
5 0x01 – 0x12 month

Table I.6.3. DOS 4.1 Date and Time Definition and Variable Order

 17

F -

-

S
e
c

2

-

L
e
n
L

2

-

D
a
t
e

3
-
>

-

T
i
m
e

4
-
>

-

-

-

-

T
y
p
e

7

-

L
e
n
H

7

E

N
a
m
e

1
-
>

-

T
r
k

2

-

D
a
t
e

<
-
2

-

T
i
m
e

<
-
3

-

N
a
m
e

<
-
4

-

-

-

-

S
e
c

7

-

L
e
n
L

7

D

T
y
p
e

1

-

L
e
n
H

1

-

-

-

-

-

-

-

-

N
a
m
e

6
-
>

-

T
r
k

7

-

D
a
t
e

<
-
7

C

S
e
c

1

-

L
e
n
L

1

-

D
a
t
e

2
-
>

-

T
i
m
e

3
-
>

-

-

-

-

T
y
p
e

6

-

L
e
n
H

6

-

-

B T
r
k

1

-

D
a
t
e

<
-
1

-

T
i
m
e

<
-
2

-

N
a
m
e

<
-
3

-

-

-

-

S
e
c

6

-

L
e
n
L

6

-

D
a
t
e

7
-
>

A
 -

-

-

-

-

-

-

-

N
a
m
e

5
-
>

-

T
r
k

6

-

D
a
t
e

<
-
6

-

T
i
m
e

<
-
7

9 -

D
a
t
e

1
-
>

-

T
i
m
e

2
-
>

-

-

-

-

T
y
p
e

5

-

L
e
n
H

5

-

-

-

-

8 -

T
i
m
e

<
-
1

-

N
a
m
e

<
-
2

-

-

-

-

S
e
c

5

-

L
e
n
L

5

-

D
a
t
e

6
-
>

-

T
i
m
e

7
-
>

7 -

-

-

-

-

-

N
a
m
e

4
-
>

-

T
r
k

5

-

D
a
t
e

<
-
5

-

T
i
m
e

<
-
6

-

N
a
m
e

<
-
7

6 -

T
i
m
e

1
-
>

-

-

-

-

T
y
p
e

4

-

L
e
n
H

4

-

-

-

-

-

-

5 -

N
a
m
e

<
-
1

-

-

-

-

S
e
c

4

-

L
e
n
L

4

-

D
a
t
e

5
-
>

-

T
i
m
e

6
-
>

-

-

4 -

-

-

-

N
a
m
e

3
-
>

-

T
r
k

4

-

D
a
t
e

<
-
4

-

T
i
m
e

<
-
5

-

N
a
m
e

<
-
6

-

-

3 -

-

-

-

T
y
p
e

3

-

L
e
n
H

3

-

-

-

-

-

-

-

-

2 0
4

-

-

-

-

S
e
c

3

-

L
e
n
L

3

-

D
a
t
e

4
-
>

-

T
i
m
e

5
-
>

-

-

-

-

1 1
1

-

-

N
a
m
e

2
-
>

-

T
r
k

3

-

D
a
t
e

<
-
3

-

T
i
m
e

<
-
4

-

N
a
m
e

<
-
5

-

-

-

-

0 -

-

T
y
p
e

2

-

L
e
n
H

2

-

-

-

-

-

-

-

-

N
a
m
e

7
-
>

-

H
ex

00

10

20

30

40

50

60

70

80

90

A
0

B0

C
0

D
0

E0

F0

Figure I.7.1. DOS 4.1 First Volume Catalog Sector

 18

7. DOS 4.1 Catalog
The first volume Catalog sector for DOS 4.1 is shown in Figure I.7.1. Bytes 2 and 3 point to the next
catalog sector as they do in the VTOC sector. The last catalog sector, typically sector 0x01 on track
0x11, contains 0x00 for these bytes. Table I.7.1 shows a volume Catalog entry for a file. In this table
the track and sector values point to the file’s Track/Sector List (or TSL) that contains the track/sector
pairs for each sector comprising the contents of that file. The third byte of the catalog entry is the file
type and it is followed by the 24-character file name. The 3-byte time and 3-byte date stamp when the
file was created or last modified follow the file name. The last two bytes of a catalog entry is the size
of the file in sectors including all TSL sectors in low/high byte order. Table I.7.2 shows the volume
Catalog data locations for each of the seven files contained in a Catalog sector. Table I.7.3 lists each
file type byte, its disk Catalog representation, and its description. DOS 4.1 does not process file type
0x01 (i.e. Integer BASIC) files, and file type 0x40 is used by DOS 4.1 to process Lisa files natively
(DOS 3.3 referred to these as “B type” files). DOS 4.1 will process “A type” (i.e. 0x20) files as
Applesoft files. DOS 4.1 does not process “S type” or “R type” files natively until a suitable definition
for those files can be determined. In DOS 4.1 a file is marked “deleted” when the most significant bit
(i.e. MSB, or bit 7) of its TSL’s track is set, that is, in bytes 0x0B, 0x2E, 0x51, 0x74, 0x97, 0xBA, or
0xDD from Table I.7.2. Furthermore, DOS 4.1 stipulates there will always be less than 64 tracks (i.e.
0x3F or less) on a disk volume, so bit 7, the MSB of the TSL’s track is available to signify a file’s
delete status. That definition also leaves bit 6 of the TSL’s track available to signify track 0x00 as
0x40. Using bit 6 of the TSL’s track to represent physical track 0x00 allows all of the File Manager
logic testing for “last track/sector pair” in a TSL to remain unchanged. I have updated my version of
FID to include this representation of track 0x00 and how a deleted file is marked.

Item Offset Length Format Description
Track 0x00 0x01 %DZTT TTTT ‘D’elete bit, track ‘Z’ero bit, TSL ‘T’rack bits
Sector 0x01 0x01 %000S SSSS TSL ‘S’ector bits
Type 0x02 0x01 %LTTT TTTT ‘L’ock bit, ‘T’ype bits
Name 0x03 0x18 upper ASCII 24-character file name
Time 0x1B 0x03 0xSS MM HH ‘S’econds byte, ‘M’inute byte, ‘H’our byte
Date 0x1E 0x03 0xYY DD MM ‘Y’ear byte, ‘D’ay byte, ‘M’onth byte
Size 0x21 0x02 0xLL HH 2-byte file size in sectors, ‘L’ow/’H’igh order

Table I.7.1. DOS 4.1 Volume Catalog Entry

If an attempt is made to load (i.e. LOAD or BLOAD) a nonexistent file into memory when the volume
Catalog is full, DOS 3.3 erroneously prints the “DISK FULL” error message rather than the “FILE
NOT FOUND” error message. If an attempt is made to save (i.e. SAVE or BSAVE) a file when the
volume Catalog is full, DOS 3.3 again erroneously prints the “DISK FULL” error message even when
there are sufficient sectors available on the volume. Even though this situation is unusual where the
volume Catalog is full, having DOS issue the wrong error message could lead one to make wrong
conclusions. DOS 4.1 provides a default volume Catalog consisting of five sectors that can support up

 19

to 35 files. However, the volume Catalog may be made as small as one sector by using the B keyword
with the DOS INIT command. If the volume Catalog consists of one or two sectors, the volume
Catalog will only support 7 or 14 files, respectively, and this DOS 3.3 erroneous error message can
have significant consequences in this instance. I have identified and repaired the flawed DOS 3.3
routines, and DOS 4.1 prints the correct error message “File Not Found” when a file does not exist in a
volume Catalog regardless whether the Catalog is full or not full. Also, DOS 4.1 prints the new error
message “Catalog Full” when attempting to save a file to a volume whose Catalog is full even if there
are sufficient sectors available on the volume for the contents of the file.

File Track* Sector Type** Name Time Date Size
1 0x0B Ox0C 0x0D 0x0E-0x25 0x26-0x28 0x29-0x2B 0x2C-0x2D
2 0x2E 0x2F 0x30 0x31-0x48 0x49-0x4B 0x4C-0x4E 0x4F-0x50
3 0x51 0x52 0x53 0x54-0x6B 0x6C-0x6E 0x6F-0x71 0x72-0x73
4 0x74 0x75 0x76 0x77-0x8E 0x8F-0x91 0x92-0x94 0x95-0x96
5 0x97 0x98 0x99 0x9A-0xB1 0xB2-0xB4 0xB5-0xB7 0xB8-0xB9
6 0xBA 0xBB 0xBC 0xBD-0xD4 0xD5-0xD7 0xD8-0xDA 0xDB-0xDC
7 0xDD 0xDE 0xDF 0xE0-0xF7 0xF8-0xFA 0xFB-0xFD 0xFE-0xFF

* If MSB is set the file shown is deleted ** If the MSB is set the file shown is locked

Table I.7.2. DOS 4.1 Catalog Sector Data Offsets for File Entries

File Type Catalog Description
00 T Text file
01 I Integer BASIC file (not supported)
02 A Applesoft file
04 B Binary file
08 S S type file (not supported)
10 R Relocatable object file (not supported)
20 A A type file (processed as an Applesoft file)
40 L L (Lisa) type file (formally B type)
80 * File lock bit

Table I.7.3. DOS 4.1 File Type Byte Description

At the heart of every file is its Track/Sector List. This list of tracks and sectors is contained in the
sector that every catalog entry points to. If a file exceeds 0x7A (NUMTSENT from Table I.6.1)
sectors of data the TSL sector has provisions to point to another sector that contains additional
track/sector entries. And for every increment of 0x7A data sectors DOS creates a new TSL sector for

 20

the file. Figure I.7.2 shows a typical TSL sector and Table I.7.4 defines each entry in the TSL. “Next
TSL” at bytes 0x01/0x02 point to the next TSL if it exist, otherwise these bytes are 0x00/0x00.
“Offset” at bytes 0x05/0x06 is equal to 0x00/0x00 for the first TSL, and “Offset” increases by 0x007A
for each succeeding TSL. Regardless whether the TSL contains track/sector entries from previous file
saves, DOS only loads into memory the number of byte specified by an Applesoft or binary file. The
DOS TLOAD command, for example, reads all data sectors for a TEXT file into memory regardless of
its actual size. The TSL officially concludes when the next track/sector entry is equal to 0x00/0x00.

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 Next TSL Offset T/S 0x01 T/S 0x02
10 T/S 0x03 T/S 0x04
20
30
40
50
60
70
80
90
A0
B0
C0
D0
E0
F0 T/S 0x7A

Figure I.7.2. DOS 4.1L TSL Sector

Byte Name Value Description
0x00 TSLSB 0x00 unused, start of TSL structure block
0x01 TSTRKOFF 0x00 Track to next TSL; 0x00 if no more TSLs
0x02 TSSECOFF 0x00 Sector to next TSL; 0x00 if no more TSLs

0x03-0x04 0x00 unused
0x05-0x06 TSRECOFF 0x00 TSL record offset from RELSLAST; 0x00 first TSL
0x07-0x0B 0x00 unused
0x0C-0x0D TSLTSOFF ~ T/S for data sector 0x01; at least one entry is required
0x0E-0x0F ~ T/S for data sector 0x02; 0x00/0x00 if at end
0x10-0x11 ~ T/S for data sector 0x03; 0x00/0x00 if at end
0x12-0xFD ~ T/S for data sectors 0x04-0x79
0xFE-0xFF ~ T/S for data sector 0x7A

Table I.7.4. DOS 4.1 TSL Structure Block Definition

 21

8. Booting DOS 4.1
DOS 4.1L occupies the first two tracks of a disk volume, whereas an additional 10 sectors on track
0x02 are needed for DOS 4.1H, assuming the disk volume has 16 sectors per track. The remaining 6
sectors on track 0x02 are available in the VTOC for data. The disk drive firmware in its slot card
ROM always loads the bootstrap code from sector 0x00 on track 0x00 into memory address 0x0800-
0x08FF. This starts the Stage 1 boot process and the X-register is always equal to the slot number of
the slot card times 16. The first byte of this bootstrap must equal 0x01 for the boot process to continue
and read the next sector into memory. Therefore, the Stage 0 boot instructions actually begin at
0x0801 to initialize the Stage 1 boot software. Bytes 0x08FE and 0x08FF are known as BOOTADR
and BOOTPGS as shown in Table I.8.1, and they direct the Stage 1 boot software to read in sectors
0x06 to 0x00 on track 0x00 into memory address 0xB900 to 0xBF00 for DOS 4.1L, or sectors 0x0F to
0x02 into memory address 0xD000 to 0xDD00 and sectors 0x01 and 0x00 into memory address
0xBE00 to 0xBF00 for DOS 4.1H.

The disk track/sector mapping to memory address is shown in Tables I.8.2 and I.8.3 for DOS 4.1L and
DOS 4.1H, respectively. A 16-byte sector interleave table is available to the Stage 1 boot software as
well as to RWTS whose interface is now in memory in page 0xBF for both DOS 4.1L and DOS 4.1H.
Transfer of control passes to the Stage 2 boot software, also in memory page 0xBF, that can now use
RWTS to access any track and sector. DOS 4.1L loads the remaining 25 sectors in descending order
starting with sector 0x0F on track 0x01 and ending with sector 0x07 on track 0x00, in ascending order
of memory pages. Similarly, DOS 4.1H loads 26 sectors starting with sector 0x09 on track 0x02 and
ending with sector 0x00 on track 0x01, in ascending order of memory pages. The initial RWTS IOCB
values are specified in a BOOTCFG structure in memory page 0xBF and used by the routine
RWPAGES which is called by Stage 2 to complete the DOS load. A typical DOS 4.1L BOOTCFG
table is shown in Table I.8.2. When all of DOS 4.1 is in memory, ROM initialization is done, main
video and character set are selected and XMODE is initialized, a search is made for a clock card, and
DOS is cold-started and is now ready to execute the DOS CMDVAL command, a topic that will be
discussed further in Section I.9. As an aside, the DOS INIT command also uses the RWPAGES
routine to write DOS onto a newly initialized volume in the same order it was read into memory.

Address Variable Instruction Value
DOS 4.1L DOS 4.1H

0xBFE2 DISKADRS 7 addresses in table (0xBCD2*7) (0xD275*7)
0xBFF0 BOOTCFG 8 bytes in table ~ ~
0xBFF8 INITDOS adr(DOSBEGIN) 0xBED9 0xBED9
0xBFFA USERNDX byt(USEROFF) 0x58 0x5A
0xBFFB DISKTBL byt(DISKADRS-2) 0xE0 0xE0
0xBFFC BCFGNDX byt(BOOTCFG) 0xF0 0xF0
0xBFFD NBUF1ADR hby(NBUF1) 0xB8 0xDE
0xBFFE BOOTADR hby(RWTSTART) 0xB9 0xD0
0xBFFF BOOTPGS hby(BOOTEND-

RWTSTART)
0x06 0x0F

Table I.8.1. DOS 4.1 RWTS Slot Interface Structure Definition

 22

Offset Variable Size Value Description
0x00 DNUM 0x01 0x01 drive number
0x01 VOLEXPT 0x01 0x00 volume number expected
0x02 TNUM 0x01 0x01 track number
0x03 SNUM 0x01 0x0F sector number
0x04 DCTADR 0x02 0x0000 DCT address
0x06 USRBUF 0x02 0x9D00 DOS start address

Table I.8.2. DOS 4.1L Boot Configuration Table

DOS 4.1H includes a new DOS command, HELP, that utilizes the remaining memory of the Language
Card. It is for this DOS command the boot image of DOS 4.1H requires 8 of the 10 sectors on track
0x02.

Once DOS 4.1 is in memory and has initialized, other I/O disk or disk-emulating devices can easily
attach their slot card handler address to DOS 4.1. Table I.8.1 shows where the RWTS disk address
table DISKADRS is located in DOS 4.1. By design this interface structure conveniently resides at the
same memory address in both DOS 4.1L and DOS 4.1H. To attach a slot card handler, simply save the
byte found at DISKTBL and 0xBF to a page-zero pointer. This address is automatically offset to
accommodate slot 0, a slot that is never used for external hardware. Simply double the slot number of
the device, transfer that number to the Y-register, and indirectly save the address of the slot card
handler in low/high byte order to the DISKADRS disk address table. RWTS will transfer control to
the correct slot card handler for the requested I/O based on slot number. Keep in mind that the byte
value found at DISKTBL may change but the location of the DISKTBL variable will not change. I
have made it a habit to always include this DOS 4.1 connection algorithm in the firmware for the
RamDisk 320, Rana, Sider, and Compact Flash For Apple (CFFA) at 0xCs10, where “s” is the slot
number for the device. And, I have always placed the disconnection vector to DOS 4.1 at 0xCs18.
Figure I.8.1 shows an example assembly language routine that attaches the RamDisk handler to DOS
4.1. The handler’s address is “RDENTRY”, its CX page (i.e. 0xC7 for slot 7) is found in “RDPAGECX”,
and its slot number is found in “RDSLOT”.

The disk track/sector mapping to memory address for DOS 4.1 is shown in Tables I.8.3 and I.8.4. The
file images of DOS 4.1 and how they map to memory are shown in Tables 1.8.5 and 1.8.6. These
tables correlate file offset to memory address in pages, and gives the basic function of the code found
there, such as DOS Command routine handlers (CMD), DOS File Manager routine handlers (MNGR),
Data buffers (DATA), tables and variables (DATA), DOS Read/Write Track/Sector routine handlers
(RWTS), and the Stage 0, Stage 1, and Stage 2 boot routines (BOOT). The asterisks in Tables 1.8.4
and 1.8.6 indicate that these DOS 4.1H routines or structures reside in RAM Bank 1 of the Language
Card; the CMD and MNGR routines and DATA reside in RAM Bank 2 of the Language Card.

 23

 : : :
 00FA 5 PTR epz $FA
 0800 6 enz
 BFFB 7 DISKTBL equ $BFFB
 C020 8 RDENTRY equ $C020
 C900 9 RDPAGECX equ $C900
 C901 10 RDSLOT equ $C901
 : : :
 0900 AC FB BF 18 ldy DISKTBL
 0903 A9 BF 19 lda /DISKTBL
 0905 84 FA 20 sty PTR
 0907 85 FB 21 sta PTR+1
 0909 22 ;
 0909 AD 01 C9 23 lda RDSLOT
 090C 0A 24 asl
 090D A8 25 tay
 090E A0 20 26 ldy #RDENTRY
 0910 91 FA 27 sta (PTR),Y
 0912 C8 28 iny
 0913 AD 00 C9 29 lda RDPAGECX
 0916 91 FA 30 sta (PTR),Y
 : : :

Figure I.8.1. Attaching a Slot Card Handler to DOS 4.1

Track Sector Address Code Track Sector Address Code
0x00 0x00 0xBF00 BOOT 0x01 0x00 0xAC00 MNGR
0x00 0x01 0xBE00 RWTS 0x01 0x01 0xAB00 MNGR
0x00 0x02 0xBD00 RWTS 0x01 0x02 0xAA00 MNGR
0x00 0x03 0xBC00 RWTS 0x01 0x03 0xA900 MNGR
0x00 0x04 0xBB00 RWTS 0x01 0x04 0xA800 CMD
0x00 0x05 0xBA00 RWTS 0x01 0x05 0xA700 CMD
0x00 0x06 0xB900 RWTS 0x01 0x06 0xA600 CMD
0x00 0x07 0xB500 DATA 0x01 0x07 0xA500 CMD
0x00 0x08 0xB400 DATA 0x01 0x08 0xA400 CMD
0x00 0x09 0xB300 DATA 0x01 0x09 0xA300 CMD
0x00 0x0A 0xB200 DATA 0x01 0x0A 0xA200 CMD
0x00 0x0B 0xB100 MNGR 0x01 0x0B 0xA100 CMD
0x00 0x0C 0xB000 MNGR 0x01 0x0C 0xA000 CMD
0x00 0x0D 0xAF00 MNGR 0x01 0x0D 0x9F00 CMD
0x00 0x0E 0xAE00 MNGR 0x01 0x0E 0x9E00 CMD
0x00 0x0F 0xAD00 MNGR 0x01 0x0F 0x9D00 CMD

Table I.8.3. DOS 4.1L Disk Track/Sector Mapping to Memory Address

 24

Track Sector Address Code Track Sector Address Code
0x00 0x00 0xBF00 BOOT 0x01 0x05 0xE400 MNGR
0x00 0x01 0xBE00 I/F 0x01 0x06 0xE300 MNGR
0x00 0x02 *0xDD00 HELP 0x01 0x07 0xE200 MNGR
0x00 0x03 *0xDC00 HELP 0x01 0x08 0xE100 MNGR
0x00 0x04 *0xDB00 HELP 0x01 0x09 0xE000 MNGR
0x00 0x05 *0xDA00 HELP 0x01 0x0A 0xDF00 MNGR
0x00 0x06 *0xD900 HELP 0x01 0x0B 0xDE00 MNGR
0x00 0x07 *0xD800 HELP 0x01 0x0C 0xDD00 MNGR
0x00 0x08 *0xD700 HELP 0x01 0x0D 0xDC00 CMD
0x00 0x09 *0xD600 HELP 0x01 0x0E 0xDB00 CMD
0x00 0x0A *0xD500 RWTS 0x01 0x0F 0xDA00 CMD
0x00 0x0B *0xD400 RWTS 0x02 0x00 0xD900 CMD
0x00 0x0C *0xD300 RWTS 0x02 0x01 0xD800 CMD
0x00 0x0D *0xD200 RWTS 0x02 0x02 0xD700 CMD
0x00 0x0E *0xD100 RWTS 0x02 0x03 0xD600 CMD
0x00 0x0F *0xD000 RWTS 0x02 0x04 0xD500 CMD
0x01 0x00 0xE900 DATA 0x02 0x05 0xD400 CMD
0x01 0x01 0xE800 DATA 0x02 0x06 0xD300 CMD
0x01 0x02 0xE700 DATA 0x02 0x07 0xD200 CMD
0x01 0x03 0xE600 DATA 0x02 0x08 0xD100 CMD
0x01 0x04 0xE500 MNGR 0x02 0x09 0xD000 CMD

Table I.8.4. DOS 4.1H Disk Track/Sector Mapping to Memory Address

Offset Address Code Offset Address Code
0x0000 0x9D00 CMD 0x1000 0xAD00 MNGR
0x0100 0x9E00 CMD 0x1100 0xAE00 MNGR
0x0200 0x9F00 CMD 0x1200 0xAF00 MNGR
0x0300 0xA000 CMD 0x1300 0xB000 MNGR
0x0400 0xA100 CMD 0x1400 0xB100 MNGR
0x0500 0xA200 CMD 0x1500 0xB200 DATA
0x0600 0xA300 CMD 0x1600 0xB300 DATA
0x0700 0xA400 CMD 0x1700 0xB400 DATA
0x0800 0xA500 CMD 0x1800 0xB500 DATA
0x0900 0xA600 CMD 0x1900 0xB900 RWTS
0x0A00 0xA700 CMD 0x1A00 0xBA00 RWTS
0x0B00 0xA800 CMD 0x1B00 0xBB00 RWTS
0x0C00 0xA900 MNGR 0x1C00 0xBC00 RWTS
0x0D00 0xAA00 MNGR 0x1D00 0xBD00 RWTS
0x0E00 0xAB00 MNGR 0x1E00 0xBE00 RWTS
0x0F00 0xAC00 MNGR 0x1F00 0xBF00 BOOT

Table I.8.5. DOS 4.1L File Image Mapping to Memory Address

 25

Offset Address Code Offset Address Code
0x0000 0xD000 CMD 0x1500 0xE500 MNGR
0x0100 0xD100 CMD 0x1600 0xE600 DATA
0x0200 0xD200 CMD 0x1700 0xE700 DATA
0x0300 0xD300 CMD 0x1800 0xE800 DATA
0x0400 0xD400 CMD 0x1900 0xE900 DATA
0x0500 0xD500 CMD 0x1A00 *0xD000 RWTS
0x0600 0xD600 CMD 0x1B00 *0xD100 RWTS
0x0700 0xD700 CMD 0x1C00 *0xD200 RWTS
0x0800 0xD800 CMD 0x1D00 *0xD300 RWTS
0x0900 0xD900 CMD 0x1E00 *0xD400 RWTS
0x0A00 0xDA00 CMD 0x1F00 *0xD500 RWTS
0x0B00 0xDB00 CMD 0x2000 *0xD600 HELP
0x0C00 0xDC00 CMD 0x2100 *0xD700 HELP
0x0D00 0xDD00 MNGR 0x2200 *0xD800 HELP
0x0E00 0xDE00 MNGR 0x2300 *0xD900 HELP
0x0F00 0xDF00 MNGR 0x2400 *0xDA00 HELP
0x1000 0xE000 MNGR 0x2500 *0xDB00 HELP
0x1100 0xE100 MNGR 0x2600 *0xDC00 HELP
0x1200 0xE200 MNGR 0x2700 *0xDD00 HELP
0x1300 0xE300 MNGR 0x2800 0xBE00 I/F
0x1400 0xE400 MNGR 0x2900 0xBF00 BOOT

Table I.8.6. DOS 4.1H File Image Mapping to Memory Address

Having DOS 4.1 as a file image can be very useful. The image could be read into memory from a
quikLoader, for example, and placed in memory according to Tables I.8.5 or I.8.6 depending on the
DOS RAM. Getting DOS 4.1 started is as easy as using an indirect “JMP” regardless which DOS 4.1
image is loaded, such as “JMP (INITDOS)”. Refer to Table I.8.1 for the address of the variable
INITDOS. DOS 4.1 will initialize and then transfer control to BASIC. If, on the other hand, you do
not wish to lose control of DOS 4.1 initialization to BASIC, there is a DOS 4.1 command that is not
part of the normal DOS command repertoire, and this command allows you to initialize DOS and have
DOS transfer its control back to your program. This is fully discussed in Section I.9.

The address found at INITDOS shown in Table I.8.1 is also for the DOS 4.1 Initial Address Table
shown in Table I.8.7. One should reference the variables of the Initial Address Table indirectly and,
therefore, more generally using the address found at INITDOS and the offsets shown in Table I.8.7.

Table I.8.1 also contains the most significant byte of the address for NBUF1. NBUF1 is 256 bytes of
memory on a page boundary. This buffer resides in RAM Bank 1 memory in DOS 4.1H. This address
byte was included in order to provide easy access to a temporary page of memory as long as RWTS is
not invoked, which would overwrite the contents of this buffer. The firmware I developed for the
Rana disk drive makes excellent use of the NBUF1ADR address byte in verifying whether DOS 4.1H
is resident in memory or not. If DOS 4.1H is resident (NBUF1ADR > 0xC000) the firmware makes

 26

extensive use of the NBUF1 buffer in RAM Bank 1. On the other hand, if DOS 4.1L is resident then
the firmware makes extensive use of NBUF1 within that DOS.

Offset Variable Size Description
0x00 DOSBEGIN 0x03 Initialize DOS in memory “JMP”
0x03 FLNAMADR 0x02 DOS first buffer filename address
0x05 CMDVLADR 0x02 DOS command variables address
0x07 KEYVLADR 0x02 DOS keyword variables address
0x09 FMWAADR 0x02 DOS file manager workarea address
0x0B VTOCADR 0x02 DOS VTOC structure memory address
0x0D CATSBADR 0x02 DOS catalog structure memory address
0x0F WARMADR 0x02 ROM soft entry handler address
0x11 ERRORADR 0x02 ROM error handler address
0x13 RESETADR 0x02 ROM set/reset handler address
0x15 USERADR 0x02 USERCMD handler address
0x17 CMDVAL 0x01 DOS cold-start command
0x18 NMAXVAL 0x01 MAXFILES at initialization
0x19 YEARVAL 0x01 year for Thunderclock card
0x1A SECVAL 0x01 number of sectors in catalog
0x1B ENDTRK 0x01 number of tracks in volume
0x1C SUBJCT 0x02 volume library value (subject number)
0x1E TRKVAL 0x01 catalog track
0x1F VRSN 0x01 DOS version number
0x20 BLD 0x01 DOS build number
0x21 RAMTYP 0x01 DOS RAM type
0x22 TSPARS 0x01 number of T/S pairs per sector
0x23 ALCTRK 0x01 next sector to allocate
0x24 ALCDIR 0x01 sector allocation direction
0x25 ENDSEC 0x01 number of sectors per track
0x26 SECSIZ 0x01 (bytes per sector) / 256

Table I.8.7. DOS 4.1 Initial Address Table Definition

 27

9. DOS 4.1 Initialization
Software developers of my favorite utilities like ADT, Big Mac, FID, Lisa, PGE, PLE, and
SOURCEROR, made use of the DOS 3.3 initial address table at 0x9D00 to 0x9D0F, 0x9D56 to
0x9D83, and, unfortunately, direct entry points to many other internal DOS variables and routines. I
chose to retain this initial address table concept in order to update those tools to DOS 4.1 in a more
expeditious fashion. According to Table I.8.7 both DOS 4.1L and DOS 4.1H contain the initialization
“JMP” instruction at 0xBED9, parameter and data structure addresses from 0xBEDC through 0xBEE7,
and ROM handler routine addresses from 0xBEE8 through 0xBEED. Furthermore, Table I.8.7
contains the USERADR and DOS initialization values from 0xBEEE through 0xBEFF.

One can simply modify the DOS initialization values to tailor a DOS 4.1 boot image specific to ones
needs: CMDVAL specifies the “HELLO” file type (i.e. 0x06 for RUN, 0x14 for EXEC, and 0x34 for
BRUN), NMAXVAL specifies what the initial MAXFILES value will be, and YEARVAL specifies
the current year to support the Thunderclock card which lacks a year register. SECVAL defines how
many sectors will be used for the file catalog, ENDTRK specifies how many tracks are on the volume,
and ENDSEC specifies whether a track has 16 or 32 sectors. In order to support hardware providing
40 tracks per volume, simply change ENDTRK to 40 (0x28). If hardware supports 32 sectors per
track, change ENDSEC to 32 (0x20). Modify some or all of these parameters in memory directly or
use the INIT keywords and initialize another disk volume with the appropriate “HELLO” file. A file
catalog will be created on this new volume according to the values you specify.

The address variable USERADR is tied to the command CMDUSER and the variable CMDVAL. This
special DOS command, CMDUSER has an index value found at USERNDX (Table I.8.1) for the
Command Handler Entry Point Table in the DOS 4.1 source code. Temporarily replace the value at
CMDVAL with the value found at USERNDX and save your handler’s return entry address at
USERADR, and make a direct or indirect call to DOSBEGIN to completely initialize DOS and transfer
control back to your program through USERADR. The original address at USERADR is MON, or
0xFF65, and the value at CMDVAL is usually CMDRUN-CMDTBL, or 0x06. When USERADR and
CMDVAL are restored, DOS 4.1 for all intents and purposes will appear as if it had just been booted
from disk. Once your processing has completed, simply call DOSWARM as shown in Table I.9.1 and
control will be transferred to BASIC. Figure I.9.1 shows an example assembly language routine that
sets up USERADR and CMDVAL to execute SPCLCODE after DOS has initialized. DOS
initialization is done by indirectly jumping to INITDOS. DOS will then process CMDVAL and
indirectly jump to SPCLCODE which returns the default values to USERADR and CMDVAL, do
some processing, and jump to DOSWARM.

The EPROM Operating System (EOS) I developed for the quikLoader loads either DOS 4.1L or DOS
4.1H from EPROM into memory, and uses USERADR and CMDVAL as described above to initialize
DOS and return control back to EOS for further processing. It is simple and easy to manipulate DOS
4.1 in this fashion. Begin with INITDOS at 0xBFF8 (see Table I.8.1) and copy the address found there
to a page-zero pointer. Then replace the address pointed to using an indirect index of 0x15 in the Y-
register for USERADR with the address of your routine that will handle the CMDUSER processing
after DOS has initialized. Finally place the value of USEROFF (index of CMDUSER) found at
USERNDX, address 0xBFFA, into CMDVAL (see Table I.8.7), using an indirect index of 0x17 in the
Y-register. This method depends only on the address found at INITDOS and the value found at
USERNDX as shown in Table I.8.1. Using this method eliminates having to know which type of DOS
4.1 has currently been read into memory.

 28

 : : :
 00FA 5 PTR epz $FA
 0800 6 enz
 0006 7 CMDRUN equ $06
 0015 8 USEROFF equ $15
 03D0 9 DOSWARM equ $3D0
 BFF8 10 INITDOS equ $BFF8
 BFFA 11 USERNDX equ $BFFA
 FF65 12 MON equ $FF65
 : : :
 0900 AC F8 BF 20 ldy INITDOS
 0903 A9 F9 BF 21 lda INITDOS+1
 0906 84 FA 22 sty PTR
 0908 85 FB 23 sta PTR+1
 090A 24 ;
 090A A0 15 25 ldy #USEROFF
 090C A9 1E 26 lda #SPCLCODE
 090E 91 FA 27 sta (PTR),Y
 0910 C8 28 iny
 0911 A9 09 29 lda /SPCLCODE
 0913 91 FA 30 sta (PTR),Y
 0915 C8 31 iny
 0916 AD FA BF 32 lda USERNDX
 0919 91 FA 33 sta (PTR),Y
 091B 6C F8 BF 34 jmp (INITDOS)
 : : :
 091E A0 15 43 SPCLCODE ldy #USEROFF
 0920 A9 65 44 lda #MON
 0922 91 FA 45 sta (PTR),Y
 0924 C8 46 iny
 0925 A9 FF 47 lda /MON
 0927 91 FA 48 sta (PTR),Y
 0929 C8 49 iny
 092A A9 06 50 lda #CMDRUN
 092C 91 FA 51 sta (PTR),Y
 : : :
 092E 4C D0 03 59 jmp DOSWARM
 : : :

Figure I.9.1. Using USERADR and CMDVAL in DOS 4.1

When DOS 4.1 performs a cold-start it sets MAXFILES equal to NMAXVAL, it initializes the file
buffers, it makes EXEC inactive, and it copies the contents of Table I.9.1 into memory at 0x3D0. It is
this interface where the important entry addresses of DOS routines are found, such as RWTS and the
File Manager. Essentially, this interface is the same as that found in DOS 3.3 in order to maintain
compatibility with virtually all previous software, but with some important additions: read DOS
version or read clock routine (RDCLKVSN) at 0x3E1, the error printing routine (PRTERROR) at
0x3E8, and the Apple //e DOXFER routine (XFERADR) at 0x3ED. All three routines can be accessed
using an indirect “JMP” instruction such as “JMP (RDCLKVSN)”. The two routines GETFMCB and

 29

GETIOCB are changed in DOS 4.1, but return the same information: the address of the RWTS I/O
Context Block in the Y-register (low byte) and the A-register (high byte), and the address of the File
Manager Context Block in the Y-register and the A-register. These two context blocks are shown in
Tables I.9.2 and I.9.5, respectively. The routine RDCLKVSN reads the current DOS version, a 19-
byte upper ASCII string (i.e. “DOS4.1.46L 01/18/19” or “DOS4.1.46H 01/18/19”), into a buffer whose
address is in the Y- and A-registers with the carry flag set. The routine RDCLKVSN reads the current
date and time into a 6-byte buffer as shown in Table I.6.3 whose address is in the Y- and A-registers
with the carry flag clear. The routine PRTERROR prints the error message as shown in Table I.9.8
whose index error number is in the X-register. Example code segments to read the current DOS
version into a 20-byte buffer and the current date and time into a 6-byte buffer are shown in Figures
I.9.2 and I.9.3. Figure I.9.4 shows how Big Mac prints all of its File Manager error codes.

Variable Routine Address Description
DOSWARM WARMSTRT 0x3D0 DOS warm-start “JMP”
DOSCOLD DOSBEGIN 0x3D3 DOS cold-start “JMP”
CALLFM FMHNDLR 0x3D6 File Manager “JMP”

CALLRWTS RWTSHNDL 0x3D9 RWTS handler “JMP”
GETFMCB Y-reg = #FMVALS 0x3DC puts File Manager Context Block

 A-reg = /FMVALS 0x3DE Address in #Y/A
RDCLKVSN adr(DOCLKVSN) 0x3E1 buffer addr in #Y/A, clock clc, version sec

GETIOCB Y-reg = #TBLTYPE 0x3E3 puts RWTS I/O Context Block
 A-reg = /TBLTYPE 0x3E5 Address in #Y/A

PRTERADR adr(PRTERROR) 0x3E8 prints error message of index error # in X
HOOKDOS INITPTRS 0x3EA DOS reconnect “JMP”
XFERADR adr(*-*) 0x3ED used for the Apple //e DOXFER routine
AUTOBRK OLDBRK 0x3EF ROM break handler “JMP”
AUTORSET adr(WARMSTRT) 0x3F2 ROM “auto” reset routine address
PWRSTATE 0xA5^(0x3F3) 0x3F4 power up byte
USRAHAND RPEATCMD 0x3F5 & handler “JMP”
USRYHAND AUXMOVE 0x3F8 ctrl-Y handler “JMP” to 0xC311
NMASKIRQ MON 0x3FB non-maskable IRQ “JMP” to 0xFF65
MASKIRQ adr(MON) 0x3FE maskable IRQ routine address at 0xFF65

Table I.9.1. DOS 4.1 Page 0x03 Interface Routines

It is worthwhile to note that DOS 4.1 RWTS only supports the Disk][type hardware since there was
no other device manufactured that was substantially different. The Device Characteristics Table
(DCT) was originally designed so that RWTS could support devices having different stepper motor
phases per track in order to support half-tracking for example, or even different motor on-time
requirements. I saw no need for DOS 4.1 to support something that simply does not, nor will ever
exist. I am aware that the RanaSystems EliteThree is a dual-headed disk drive with the ability to

 30

access 80 half-tracks on both sides of a double-sided, double-density diskette. Of course the DCT for
the Rana is different, but the Rana uses its own interface handler with its own PHASEON/PHASEOFF
tables for its track stepper motor, and its own number of motor phases to accomplish its half-tracking
capabilities. I even developed my own firmware for the Rana that formats a disk with 40 tracks on
both sides of a diskette with the first 16 sectors on side 1 and the next 16 sectors on side 2, effectively
creating a volume where each track has 32 sectors. I was absolutely successful and, by design, the
firmware attached to the DOS 4.1 RWTS Slot Card Interface. I was able to obtain double-sided,
double-density 5.25-inch floppy diskettes from www.floppydisk.com. As a word of caution, double-
sided, double-density 5.25-inch floppy diskettes are manufactured with an inner reinforcement ring.
Significantly better performance will be achieved from those diskettes whether half-tracking is
employed or not. In summary, DOS 4.1 does not utilize the DCT, and it ignores any DCT address
found in any RWTS IOCB for a Disk][.

 : : :
 03E1 5 RDCLKVSN equ $3E1
 : : :
 0900 A0 0C 13 ldy #VSNBUFR
 0902 A9 09 14 lda /VSNBUFR
 0904 20 08 09 15 jsr READVSN
 : : :
 0907 60 17 rts
 : : :
 0908 38 19 READVSN sec
 0909 6C E1 03 20 jmp (RDCLKVSN)
 090C 21 VSNBUFR dfs 20,0
 : : :

Figure I.9.2. Reading the DOS Version in DOS 4.1

 : : :
 03E1 5 RDCLKVSN equ $3E1
 : : :
 0900 A0 0C 13 ldy #CLKBUFR
 0902 A9 09 14 lda /CLKBUFR
 0904 20 08 09 15 jsr READCLK
 : : :
 0907 60 17 rts
 : : :
 0908 38 19 READCLK clr
 0909 6C E1 03 20 jmp (RDCLKVSN)
 090C 21 CLKBUFR dfs 6,0
 : : :

Figure I.9.3. Reading the Date and Time in DOS 4.1

 31

 : : :
 0044 118 A5L epz $44
 0045 119 A5H epz $45
 : : :
 0800 215 enz
 : : :
 03D6 323 CALLFM equ $3D6
 03DC 324 GETFMCB equ $3DC
 03E8 327 PRTERADR equ $3E8
 : : :
 D0B0 6C E8 03 14 PRTERROR jmp (PRTERADR)
 : : :
 D12D 20 DC 03 131 jsr GETFMCB
 D130 84 44 133 sty A5L
 D132 85 45 134 sta A5H
 : : :
 E58A A2 01 316 ldx #1
 E58C 20 D6 03 318 jsr CALLFM
 E58F 319 bcc HE599
 E591 A0 0A 321 ldy #10
 E593 B1 44 323 lda (A5L),Y
 E595 AA 324 tax
 : : :
 E5BC 8A 361 txa
 E595 48 324 pha
 : : :
 E5C1 E8 366 inx
 E5C2 20 B0 D0 368 jsr PRTERROR
 E5C5 68 370 pla
 E5C6 AA 371 tax
 E5C7 20 B0 D0 373 jsr PRTERROR
 E5CA 20 8E FD 374 jsr CROUT
 : : :
 E599 A2 0E 328 HE599 ldx #$0E
 : : :
 FD8E A9 8D 253 CROUT lda #$8D
 : : :

Figure I.9.4. Big Mac Printing a File Manager Error in DOS 4.1

The DOS 4.1 RWTS interface is very straightforward and simple to use. When you call GETIOCB as
shown in Table I.9.1, the Y and A-registers point to the IOCB within RWTS. You are certainly
welcome to use any other address space for an RWTS IOCB as well. Once you have initialized the
IOCB with your variables as shown in Table I.9.2, call CALLRWTS with the address of your IOCB,
or the address of the IOCB within DOS, in the Y and A-registers. The RWTS handler pushes the
current processor status onto the stack and disables interrupts, and then saves the Y and A-registers to
the IOB address at 0x4A/4B. Next, the handler extracts the supplied buffer address from within the
IOCB and saves the address to BUFADR2Z at 0x3E/3F. The handler also extracts the slot*16 number,
copies it to the X-register, saves it to SLOTFND, and calculates the low-order address byte for

 32

DISKJMP based on the slot*16 number value divided by eight. The RWTS handler then indirectly
jumps to that address in DISKJMP, which is to the routine whose address is located in the disk address
table for the specified slot number. The routine now handling the volume’s I/O must mask all track
values it encounters with TRKMASK, or 0x3F in order to remove the value of TRKZERO, or 0x40.
When the routine has completed its processing, it is required to save its results in the supplied IOCB:
ERRCODE, VOLFND, and DRVFND. The RWTS handler will restore the original processor status
and either clear or set the carry flag based on the return status from the slot handler routine. If
interrupts were initially enabled before the call to the RWTS handler, interrupts will be re-enabled
when the RWTS handler completes its processing. Table I.9.3 shows the four command codes
available to RWTS and Table I.9.4 shows the seven possible error codes generated by RWTS.

Offset Name Size Description
0x00 TBLTYPE 0x01 IOCB structure
0x01 SNUM16 0x01 slot * 16
0x02 DNUM 0x01 drive number
0x03 VOLEXPT 0x01 expected volume number
0x04 TNUM 0x01 track number
0x05 SNUM 0x01 sector number
0x06 DCTADR 0x02 address of Device Characteristics Table
0x08 USRBUF 0x02 data buffer address
0x0A RWTSPARE 0x01 not used
0x0B BYTCNT 0x01 bytes to read/write; 0 means 256 bytes
0x0C CMDCODE 0x01 command
0x0D ERRCODE 0x01 return error code
0x0E VOLFND 0x01 return volume found
0x0F SLOTFND 0x01 return slot found
0x10 DRVFND 0x01 return drive found

Table I.9.2. RWTS I/O Context Block Definition

Command Value Description
RWTSSEEK 0x00 seek to track/sector command code
RWTSREAD 0x01 read track/sector command code
RWTSWRIT 0x02 write track/sector command code
RWTSFRMT 0x04 format volume command code

Table I.9.3. RWTS Command Codes

 33

Error Value Description
RWNOERR 0x00 RWTS no error
RWINITER 0x08 RWTS initialization error

RWPROTER 0x10 RWTS write protect error
RWVOLERR 0x20 RWTS volume number error
RWSYNERR 0x30 RWTS syntax error (added)
RWDRVERR 0x40 RWTS drive error
RWREADER 0x80 RWTS read error (obsolete)

Table I.9.4. RWTS Error Codes

Offset Name Size Description
0x00 FMOPCOD 0x01 File Manager opcode
0x01 SUBCODE 0x01 File Manager subcode
0x02

RECNUM

or FN2ADR
0x02
0x02

record number
secondary filename address

0x04

BYTOFFSET
or VOLUME

0x02
0x01

byte offset
volume number

0x05 DRIVE 0x01 drive number
0x06

BYTRANGE

or SLOT
0x02
0x01

byte range
slot number

0x07 FILETYPE 0x01 file type or VTOC/Data Flag
0x08

DATADR
or FNADR

or DATABYTE

0x02
0x02
0x01

data byte address
primary filename address
data byte

0x0A RTNCODE 0x01 return code
0x0B FMSPARE 0x01 not used
0x0C WBADR 0x02 workarea buffer address
0x0E TSLTSADR 0x02 track/sector buffer address
0x10 DATASADR 0x02 data buffer address

Table I.9.5. File Manager Context Block Definition

The DOS 4.1 File Manager is not as straightforward as RWTS, and it is somewhat more difficult to
use. One look at Table I.9.5 shows how convoluted the File Manager Context Block is. Essentially
the Context Block is completely command dependent and is intended to be used with that in mind. So
many of the Context Block entries are overloaded and the entry definition and its usage totally depends
on the command in question. Table I.9.6 shows the fourteen command codes available to the File
Manager including a new command code in DOS 4.1, FMURMCD. This command code can be used
to undelete a file that has been previously deleted from the volume Catalog by the FMDELECD
command code. The File Manager Context Block entries are used in the same way for the

 34

FMURMCD command as they are used for the FMDELECD command where bytes 8 and 9 contain
the address of the filename to be undeleted. The sectors in the file’s TSL are marked as used in the
VTOC free sector bitmap as well as the TSL sector. It is prudent to always undelete a deleted file
before subsequent files use those sectors made available when the file was deleted. A volume can be
rendered unusable if a data sector should ever be interpreted as a TSL sector. There is no harm in
undeleting a file that already exists in the file Catalog.

Command Value Description
FMNOERR 0x00 File Manager No Operation code

FMOPENCD 0x01 File Manager OPEN code
FMCLOSCD 0x02 File Manager CLOSE code
FMREADCD 0x03 File Manager READ code
FMWRITCD 0x04 File Manager WRITE code
FMDELECD 0x05 File Manager DELETE code
FMCATACD 0x06 File Manager CATALOG code (modified)
FMLOCKCD 0x07 File Manager LOCK code
FMUNLKCD 0x08 File Manger UNLOCK code
FMRENMCD 0x09 File Manager RENAME code
FMPOSICD 0x0A File Manager POSITION code
FMINITCD 0x0B File Manager INIT code (modified)
FMVERICD 0x0C File Manager VERIFY code
FMURMCD 0x0D File Manager URM code (added)

Table I.9.6. File Manager Command Codes

Command Value Description
FMNOOPSC 0x00 File Manager No Operation subcode
FMRW01SC 0x01 File Manager read/write 1-byte subcode
FMRWNBSC 0x02 File Manager read/write range subcode
FMPOS1SC 0x03 File Manager Position and read/write 1-byte subcode

Table I.9.7. File Manager Read and Write Command Subcodes

Some File Manager commands require a subcode to specify how the command will be used. Table
I.9.7 lists the four subcodes used by the read and write commands FMREADCD and FMWRITCD. A
subcode was added to the CATALOG command in order to optionally display what the R keyword
provides to the Command Manager. Simply save a non-zero value to the SUBCODE parameter of the
File Manager Context Block if that additional CATALOG information is desired. Table I.9.8 shows

 35

all the possible error codes reported by DOS and the source or sources of those error codes: Command
Manager, File Manager, or RWTS. In DOS 4.1 the File Manager uses a table lookup algorithm to
translate an RWTS error code into a File Manager error code reported by DOS. The actual value of the
RWTS error code is shown in parenthesis. An RWTS Initialization Error message “Init Error” was
added to the Error and Display Message Text table as well as a “Catalog Full” error message.

There does exist a fifteenth File Manager command code used to implement the DOS 4.1 TS command
(read Track/Sector) in order to utilize the error processing capabilities of the File Manager if an error in
reading a volume sector should ever occur. This opcode does not utilize the File Manager Context
Block sufficiently for external use; rather, a user should always use RWTS to read a volume sector.

Error # CMD FM RWTS Error Message
0 √ √ √ Ring bell and print two <rtn>
1 √ Clock Not Found
2 √ √ Range Error
3 √ (0x08) Init Error
4 √ √ (0x10) Write Protected
5 √ √ End of Data
6 √ File Not Found
7 √ √ (0x20) Volume Number Error
8 √ (0x40) I/O Error
9 √ Disk Full

10 √ File Locked
11 √ √ (0x30) Syntax Error
12 √ No Buffers Error
13 √ File Type Error
14 √ Program Too Large
15 √ Not Direct Command
16 √ Catalog Full

Table I.9.8. DOS 4.1 Error Messages and Sources

The INIT handler in DOS 4.1 specified by the File Manager FMINITCD command has been
substantially modified from its DOS 3.3 version. Before the DOS INIT command is even processed,
the Command Manager initializes the File Manager Context Block to 0x00 except for the FMOPCOD
and SUBCODE values. Then it initializes bytes 0x02/0x03 with the address of the Volume Title
(SFNAME). The DOS Flag found in byte 0x01 of the Context Block, or SUBCODE as shown in
Table I.9.5, actually has a very useful function in DOS 4.1. To better understand how to use this
SUBCODE Table I.9.9 shows the values that could be assigned to DOS Flag. In order to create a fully

 36

bootable DOS “B” type volume, DOS Flag must have a non-zero value, the signal to the INIT handler
to write DOS to the volume.

If DOS Flag is 0x00 the volume will be labeled a “D” type data volume where all of track 0x00 can be
used for data, too. The Volume Title address found in bytes 0x02/0x03, or FN2ADR, is the address
where the INIT handler copies a 24-character upper ASCII Volume Title to the VTOC. In the ideal
situation the File Manager knows nothing about the Command Manager and the values it parses from
the command line keywords. All the information the File Manager requires for processing its
commands must come from its Context Block and its workarea buffer. And this is particularly true for
INIT handler processing. In normal Command Manager INIT handler processing the address in bytes
0x08/0x09 of the Context Block will be 0x00 since the Command Manager has already initialized the
filename (FNAME). But if the MSB of byte 0x07 of the Context Block is set (i.e. the VTOC/Data
Flag or FILETYPE as shown in Table I.9.5), the INIT handler will use the address found at bytes
0x08/0x09 to copy a 24-character upper ASCII filename to FNAME, the name of the file that will be
used to RUN, EXEC, or BRUN when the disk is a “B” type bootable volume. When the Command
Manager calls the File Manager it copies its buffer addresses to bytes 0x0C through 0x11 of the
Context Block.

DOS Flag DOS Installed Description
0x00 No Data Disk ‘D’, all of track 0x00 is used for data
0x06 Yes Boot Disk ‘B’, RUN command code 0x06 put into

CMDVAL
0x14 Yes Boot Disk ‘B’, EXEC command code 0x14 put into

CMDVAL
0x34 Yes Boot Disk ‘B’, BRUN command code 0x34 put into

CMDVAL
0xN,

0x00≤N≤0x58
Yes Boot Disk ‘B’, any even value valid within the DOS

command table is put into CMDVAL

Table I.9.9. File Manager INIT DOS Flags (SUBCODE)

Offset Name Size Range Description
0x00 SECVAL 0x01 0x01 – 0x0F number of sectors in catalog
0x01 ENDTRK 0x01 0x12 – 0x32 number of tracks in volume
0x02 SUBJCT 0x02 0x0000 – 0xFFFF volume library (subject) value

Table I.9.10. File Manager Initialization Data, VTOCVALS

 37

 : : :
 1300 394 FMVALS:
 1300 395 ;
 1300 0B 396 OPCODE byt INITCMD
 1301 06 397 SUBCODE byt DOSFLAGS
 1302 398 ;
 1302 2A 13 399 FN2ADR adr VTITLE
 1304 400 ;
 1304 00 401 VOLUME hex 00
 1305 01 402 DRIVE hex 01
 1306 403 ;
 1306 06 404 SLOT hex 06
 1307 80 405 FILETYPE hex 80
 1308 406 ;
 1308 12 13 407 FNADR adr FNAME
 130A 408 ;
 130A 00 409 RTNCODE hex 00
 130B 410 ;
 130B 00 411 FMSPARE hex 00
 130C 412 ;
 130C 0E 13 413 WBADR adr SECVAL
 130E 07 414 SECVAL hex 07
 130F 23 415 ENDTRK hex 23
 1310 34 12 416 SUBJCT hex 3412
 1312 417 ;
 0012 418 FMPLEN equ *-FMVALS
 1312 419 ;
 1312 E8 E5 EC 420 FNAME asc “hello”
 1315 EC EF
 1317 421 dfs FNLEN-5,SPACE
 132A 422 ;
 132A D4 E5 F3 423 VTITLE asc “Test Disk”
 F4 A0 C4
 E9 F3 EB
 1333 424 dfs FNLEN-9,SPACE
 : : :

Figure I.9.5. Using the File Manager Context Block in DOS 4.1

In normal Command Manager INIT handler processing the addresses found in bytes 0x0C through
0x11 in the Context Block are not used. However, for users of the File Manager external to DOS, if
the MSB of the VTOC/Data Flag (or FILETYPE) is set, then WBADR must contain an address of a 4-
byte data block containing the values for SECVAL, ENDTRK, and SUBJCT as shown in Table I.9.10.
Recall that SECVAL defines how many sectors will be used for the file catalog, ENDTRK specifies
the number of tracks in the volume, and SUBJCT is the two-byte Volume Library value. If bit-6 of the
VTOC/Data Flag is set, the volume will be initialized with 32 sectors per track rather than 16 sectors.
This logic was different in Build 45 where the MSB of SECVAL signaled the initialization of 32 sector
tracks. The 4-byte VTOCVALS data block and the address to FNAME along with DOS Flag and the
VTOC/Data Flag provide the same information the Command Manager obtains when it parses the A,

 38

B, L, and R keywords for the DOS INIT command. Figure I.9.5 shows an Assembly Language listing
of a File Manager Context Block where the VTOC/Data Flag (or FILETYPE) is set to 0x80 and bytes
0x0C/0x0D contain the address of VTOCVALS, located in the following bytes 0x0E through 0x11 of
the Context Block beginning with SECVAL, and including ENDTRK and the two-byte variable
SUBJCT. Yes, surprise! It’s a thoroughly good use of where the Context Block variables TSLTSADR
and DATASADR normally reside but are otherwise unused in the INIT command.

The complete list of File Manager commands and the parameters and buffers that are needed by these
commands is shown in Figure I.9.6. Understand that the File Manager uses only its own Context
Block that resides within DOS memory. GETFMCB can be called to obtain the address of that
Context Block so that its individual parameters can be modified, similar to how FID uses its File
Manager Context Block. FID maintains its own copy of the 18-byte Context Block, modifies it as
needed, and then copies it in its entirety back into DOS address space before calling CALLFM. Upon
return from the File Manager, FID again copies the entire Context Block back into its own address
space before looking at the return code RTNCODE value. The File Manager Context Block in DOS
4.1H resides in the interface area of DOS address space that is not within the Language Card memory,
so bank switching is unnecessary to read and write the DOS 4.1H File Manager Context Block.

It is always the responsibility of the user to utilize the RWTS I/O Context Block and the File Manager
Context Block rationally and with great care. If any context block value is not within its normal value
range unpredictable results should be expected. By design the Command Manager always supplies
values for these context blocks that are within their normal operational range. But the user carries the
full burden of selecting context block values that will provide the intended results. For example, if
SECVAL is initialized to 0x00 or any value greater than 0x7F, and the File Manager Context Block
OPCODE is set to FMINITCD, the target volume’s VTOC will never initialize and DOS will hang.
Table I.9.10 shows that setting SECVAL to a value greater than 0x0F is not within its normal range
and there may very well be unexpected results. It is always a good policy to test and experiment on
disk volumes that are clearly identified as “Test Disk #nnn” when testing new programs whether the
program is written in Applesoft, assembly language, Fortran, or Pascal. Even EXEC files should first
be tested on volumes that are exclusively used for experimentation. No one is immune to mistakes, but
carelessly using these context blocks will surely cause very unwanted results.

It is the job of the Command Manager to supply rational values for either the RWTS I/O Context
Block or for the File Manager Context Block. DOS 4.1, like DOS 3.3, does not bother verifying the
values it finds in either context block, and uses the context blocks as they are. Whether the values are
within range or out of range for the normal operation of each opcode is simply not confirmed.
Hopefully an error will be reported if the opcode fails somewhere in its processing, but that may not
always be the case. As mentioned above using a value of 0x00 for SECVAL will cause the volume
initialization opcode to hang, thus preventing the File Manager the ability to even report the error. The
RWTS and File Manager Context Blocks provide the assembly code user the greatest power and
flexibility in order to control and mange DOS’s volume structure and file Catalog. DOS will do
nothing to stop a user from completing trashing the volume structure and file Catalog of any disk
volume. Therefore, I say again, it is always the responsibility of the user to utilize these context blocks
rationally and with very great care.

 39

0x

11

D
at

a
Se

ct
or

B

uf
fe

r
A

dd
re

ss

A

dd
re

ss
 o

f

D
at

a
Se

ct
or

B
uf

fe
r

SU

B
JC

T
va

lu
e

A
dd

re
ss

 o
f

D
at

a
Se

ct
or

B

uf
fe

r

0x

10

0x

0F

T
ra

ck
/S

ec
to

r
B

uf
fe

r
A

dd
re

ss

A

dd
re

ss
 o

f

Tr
ac

k/
Se

ct
or

B
uf

fe
r

A

dd
re

ss
 o

f

Tr
ac

k/
Se

ct
or

B
uf

fe
r

EN

D
TR

K

va
lu

e

A

dd
re

ss
 o

f
Tr

ac
k/

Se
ct

or

B
uf

fe
r

0x

0E

SE

CV
A

L
va

lu
e

0x

0D

W
or

ka
re

a
B

uf
fe

r
A

dd
re

ss

A

dd
re

ss
 o

f

W
or

ka
re

a

B
uf

fe
r

A
dd

re
ss

 o
f

V
TO

CV
A

LS

Se
e

Ta
bl

e
I.9

.1
0

A

dd
re

ss
 o

f
W

or
ka

re
a

B
uf

fe
r

0x

0C

0x

0B

N
ot

U

se
d

0x

0A

R
et

ur
n

C
od

e
O

ut
pu

t
Return Code Output

0x

09

Fi
le

n a
m

e
A

dd
re

ss

O
ne

 B
yt

e
D

at
a

R
an

ge
 A

dd
re

ss

A
dd

re
ss

 o
f

Fi
le

na
m

e

O

ne
 B

yt
e

D
at

a
or

R

an
ge

 A
dd

re
ss

A
dd

re
ss

 o
f

Fi
le

na
m

e

A

dd
re

ss
 o

f
Fi

le
na

m
e

A

dd
re

ss
 o

f
Fi

le
na

m
e

0x

08

0x

07

Fi
le

T

yp
e

Fi
le

Ty

pe

R

an
ge

 L
en

gt
h

 V
TO

C

SE
C

32

Fl
ag

0x

06

Sl

ot

 S

 S S S S S

 S S S

0x

05

D

ri
ve

 D

B

yt
e

O
ff

se
t

D

 D
 D
 D
 D

B

yt
e

O
ff

se
t D
 D
 D

0x

04

V

ol
um

e

 V

 V

V

 V
 V
 V
 V
 V
 V

0x

03

R
ec

or
d

L
en

gt
h

R
ec

or
d

N
um

be
r

Fi
le

na
m

e
A

dd
re

ss

R
ec

or
d

Le
ng

th

or
 0

x0
00

0

R

ec
or

d
N

um
be

r

A
dd

re
ss

 o
f

N
ew

 F
ile

na
m

e

R

ec
or

d
N

um
be

r

A
dd

re
ss

 o
f

V
ol

um
e

Ti
tle

0x

02

0x

01

Su

bc
od

e

Se

e
Ta

bl
e

I.9
.7

 R
K

EY
-

W
O

R
D

Fl

ag

D
O

S
Fl

ag

0x

00

O

pc
od

e

0x

01

0x

02

0x

03

0x

04

0x

05

0x

06

0x

07

0x

08

0x

09

0x

0A

0x

0B

0x

0C

0x

0D

O

ffs
et

C

om
m

an
d

O

PE
N

C

L
O

SE

R

E
A

D

W

R
IT

E

D

E
L

E
T

E

C

A
T

A
L

O
G

L

O
C

K

U

N
L

O
C

K

R

E
N

A
M

E

PO

SI
T

IO
N

IN

IT

V

E
R

IF
Y

U

R
M

Figure I.9.6. File Manager Command Parameter List

 40

Offset Name Size Description
Data and Track/Sector Buffers

0x000 DATABUFR 0x100 I/O data buffer
0x100 TSBUFFER 0x100 T/S buffer

WORKAREA – File Manager Workarea Variables
0x200 TSFRSTTS 0x02 T/S of first T/S list
0x202 TSCURRTS 0x02 T/S of current T/S list
0x204 TSCURDAT 0x02 T/S of current data sector

0x206

WAFLAGS 0x01

0x02 = VTOC has changed
0x40 = data buffer has changed
0x80 = T/S buffer has changed

0x207 SECATOFF 0x01 sector offset into catalog
0x208 BYCATOFF 0x01 byte offset into catalog
0x209 MAXTSECR 0x02 maximum entries in T/S list
0x20B SECFRSTS 0x02 offset of first T/S entry
0x20D SECLASTS 0x02 offset of last T/S entry
0x20F SECLSTRD 0x02 relative sector last read
0x211 SECRSIZE 0x02 sector size in bytes
0x213 SECRPOST 0x02 current position in sector
0x215 BYSECOFF 0x01 current sector byte offset
0x216 RECDLNGH 0x02 fixed record length
0x218 RECURNUM 0x02 current record number
0x21A BYRECOFF 0x02 byte offset into record
0x21C SECFILEN 0x02 length of file in sectors
0x21E SECALOTR 0x01 next sector to get on this track
0x21F CURALOTR 0x01 current track to allocate
0x220 SECFRETR 0x04 bitmap of free sectors on this track
0x224 WAFILTYP 0x01 file type (^0x80 = locked)
0x225 WASLTNUM 0x01 slot number times 16
0x226 WADRVNUM 0x01 drive number
0x227 WAVOLNUM 0x01 volume number
0x228 WATRKNUM 0x01 track number

Filename Buffer
0x229 FILNAMBF 0x18 upper ASCII filename

Addresses of Buffer Locations
0x241 WABUFADR 0x02 address of WORKAREA
0x243 TSBUFADR 0x02 address of TSBUFFER
0x245 DABUFADR 0x02 address of DATABUFR
0x247 NXTFNADR 0x02 address of next FILNAMBF

Table I.10.1. File Manager File Buffer Definition

 41

10. DOS 4.1 Data Structures
The Data Structures, or areas where data is found in DOS 3.3 are spread out between the various
managers. Those variables used by the Command Manager are found after the Command Manager.
Those variables used by the File Manager are found after the File Manager. The RWTS IOCB is
found in the middle of all the RWTS routines. I thought DOS 4.1 should have better organization of
the various collections of variables and data structures, and therefore reduce the number of addresses
required to access any single variable or data structure if that is what is desired.

The Data Structures in DOS 4.1 reside after the File Manager routines and are followed by the two
pages of memory needed for the working VTOC and Catalog buffers, and the page of memory needed
for the primary nibble buffer NBUF1. In DOS 4.1L the RWTS routines follow the NBUF1 and
NBUF2 buffers and the WRTNIBL and RDNIBL disk nibble translate tables. The five DOS file
buffers follow the VTOC and Catalog buffers in DOS 4.1H. Quite a few software tools such as Big
Mac, Lisa, and PGE make use of several internal variables from the data structures found after the File
Manager routines. Big Mac needs the internal values of LOADLEN and DRVAL, and it needs the
addresses of what DOS considers to be the true CSWL and KSWL handlers. Lisa also needs the
internal values of LOADLEN and DRVAL. PGE needs the internal value of ADRVAL. There is no
telling what other software utilities and programs that exist that need values from these internal data
areas and data structures of DOS in order to complete their processing functions. Both DOS 4.1L and
DOS 4.1H provide addresses for the internal DOS data structures as shown in Table I.8.7. Caution
must be exercised in using the addresses for these data structures in DOS 4.1H because they are
addresses in the Language Card memory area, specifically RAM Bank 2. Bank switching code is
necessary to access the actual data. There are no data structures in RAM Bank 1 except for the
RDNIBL and WRTNIBL data translate tables and the two nibble buffers NBUF1 and NBUF2,
conveniently located there for access to all the RWTS routines. Except for RWTS, DOS 4.1 makes no
queries into these particular data tables and buffers.

The address found at FLNAMADR (offset 0x03) in Table I.8.7 is for the filename FILNAMBF in the
first DOS file buffer. DOS must have at least one file buffer allocated, which is all that Lisa actually
needs and uses, surprisingly. Even the CATALOG command requires an unused file buffer. Of
course, more file buffers can be allocated using the DOS MAXFILES command if they are needed.
Table I.10.1 shows the contents of a file buffer which is 585 (0x249) bytes in size: one memory page
(256 bytes) for the data buffer DATABUFR, one memory page for the track/sector buffer TSBUFFER,
41 bytes for the working variables buffer WORKAREA, 24 bytes for the filename buffer FILNAMBF,
and 8 bytes for the addresses of WORKAREA, TSBUFFER, DATABUFR, and NXTFNADR, the
address of FILNAMBF for the next (not necessarily following) file buffer, much like a single-direction
linked-list address. If the address in NXTFNADR is 0x0000, there are no more next-linked file
buffers. Incidentally, the size of a file buffer in DOS 3.3 is 0x250 bytes, or 7 bytes larger due to the
larger filename buffer and the resize of the BYSECOFF variable to 1 byte as it should have been.

I have changed the order of some of the variables in the workarea shown in Table I.10.1 from the order
found in DOS 3.3. As long as the workarea definition in Table I.10.1 is consistent with the File
Manager workarea definition shown in Table I.10.4 there will be no processing problems. I made
these changes in order to reduce the number of routines necessary to copy variables to and from a file
buffer workarea and the File Manager copy of those workarea variables in its workarea buffer. I also
provided FID with the same changes to its copy of the WORKAREA structure as well.

 42

The address found at CMDVLADR (offset 0x05) in Table I.8.7 points to the data structure called
CMDVALS because it contains the variables used by the Command Manager in processing DOS
commands as shown in Table I.10.2. Simply transfer the address found at CMDVLADR to a page-
zero pointer and index into the structure for the desired variable in order to obtain its value or change
its value. Table I.10.2 provides the offset, or index to use for each variable.

Offset Name Size Description
0x00 BUFRADR 0x02 current file buffer address

0x02

CURSTATE 0x01

0x00 = warm-start status
0x01 = READ state status
0x40 = Applesoft RAM (unused)
0x80 = cold-start status

0x03 CSWSTATE 0x01 CSWL intercept state number
0x04 CMDLNIDX 0x01 offset into Apple command line
0x05 CMDINDX 0x01 index of last command * 2
0x06 ASAVE 0x01 A-register save
0x07 XSAVE 0x01 X-register save
0x08 YSAVE 0x01 Y-register save
0x09 SSAVE 0x01 S-register save
0x0A CSWLSAV 0x02 true CSWL handler address
0x0C KSWLSAV 0x02 true KSWL handler address
0x0E EXECFLAG 0x01 EXEC active flag
0x0F EXECBUFR 0x02 EXEC file buffer address
0x11 TEMP 0x01 scratch variable
0x12 MAXFILES 0x01 MAXFILES value

0x13

MONFLAGS 0x01

0x10 = Output
0x20 = Input
0x40 = Command

0x14 DIRTS 0x02 catalog track and sector values
0x16 FILELAST 0x02 file end address
0x18 FILESTRT 0x02 file start address
0x1A FILELEN 0x02 file length
0x1C CLKSLOT 0x01 clock slot
0x1D CLKINDEX 0x01 index into clock data
0x1E FIRSTCAT 0x01 number of sectors in catalog
0x1F LASTRACK 0x01 number of tracks in volume

Table I.10.2. CMDVALS Data Structure Definition

In Build 46 I found it absolutely necessary to add two additional variables to the end of the
CMDVALS Data Structure shown in Table I.10.2. These two variables are FIRSTCAT and

 43

LASTRACK. At first glance these two variables look exactly like SECVAL and ENDTRK in
VTOCVALS shown in Table I.9.10. In the DOS 4.1 source code FIRSTCAT and SECVAL are set to
the same value as are LASTRACK and ENDTRK. SECVAL and ENDTRK are working variables in
that their values can be changed by the Command Manager or by a user using the File Manager
Context Block. FIRSTCAT and LASTRACK are reference variables in that their values are
transferred to SECVAL and ENDTRK, respectively, when the Command Manager determines that the
values it finds in the B keyword or in the A keyword is 0x00. Now, the user can set FIRSTCAT and
LASTRACK to any default value without having to reassemble DOS 4.1.

Like the address found at CMDVLADR, the address found at KEYVLADR (offset 0x07) in Table
I.8.7 points to the data structure called KEYVALS because it contains the keyword variables the
Command Manager extracts during DOS command parsing, and those variables are shown in Table
I.10.3. Simply transfer the address found at KEYVLADR to a page-zero pointer and index into the
structure for the desired variable in order to obtain its value or change its value. Table I.10.3 provides
the offset, or index to use for each variable. Before DOS 4.1 begins to parse the keyword variables it
sets the keyword variables from ADRVAL through RUNFLAG to 0x00. This is convenient because
now these keywords and the processing flags KYWRDFND, CHNFLAG, and RUNFLAG all begin at
a known state. Only when certain DOS commands are selected do CHNFLAG and RUNFLG have
any effect on command processing.

Offset Name Size Description
0x00 SLOTVAL 0x02 S keyword, slot value
0x02 DRVAL 0x02 D keyword, drive value
0x04 VOLVAL 0x02 V keyword, volume value
0x06 ADRVAL 0x02 A keyword, address value
0x08 LENVAL 0x02 L keyword, length value
0x0A RECVAL 0x02 R keyword, record value
0x0C BYTVAL 0x02 B keyword, byte value
0x0E LOADLEN 0x02 LOAD and BLOAD length
0x10 MONVAL 0x01 MON/NOMON value
0x11 KYWRDFND 0x01 command-line keyword found
0x12 CHNFLAG 0x01 CHAIN flag
0x13 RUNFLAG 0x01 RUN/LOAD flag
0x14 FNAME 0x18 primary filename buffer
0x2C SFNAME 0x18 secondary filename buffer

Table I.10.3. KEYVALS Data Structure Definition

Figure I.10.1 shows a sample assembly language program used in Lisa to obtain the value of
LOADLEN. LOADLEN is the memory load address used by the DOS LOAD or BLOAD command.
The routine extracts LOADLEN from the KEYVALS Data Structure simply by starting with the
address found at INITDOS and using the offsets found in Tables I.8.6 and I.10.3. KEYVLADR has an

 44

offset of 0x07 and is the index value given to the parameter KEYVLNDX. LOADLEN has an offset
of 0x0E and is the index value given to the parameter LDLENNDX. First, the address at INITDOS is
copied to a page-zero pointer FMT and the offset KEYVLNDX is used to extract the address
KEYVLADR. Next, the address at KEYVLADR is copied to the same page-zero pointer FMT and the
offset LDLENNDX is used to extract the value of LOADLEN. Finally, LOADLEN is used to adjust
the address found in BUFR.

 : : :
 0002 5 BUFR epz $02
 0044 6 FMT epz $44
 0800 7 enz
 0007 8 KEYVLNDX equ $07
 000E 9 LDLENNDX equ $0E
 : : :
 0900 AD F8 BF 18 lda INITDOS
 0903 85 44 19 sta FMT
 0905 AD F9 BF 20 lda INITDOS+1
 0908 85 45 21 sta FMT+1
 090A 22 ;
 090A A0 07 23 ldy #KEYVLNDX
 090C B1 44 24 lda (FMT),Y
 090E 48 25 pha
 090F C8 26 iny
 0910 B1 44 27 lda (FMT),Y
 0912 85 45 28 sta FMT+1
 0914 68 29 pla
 0915 85 44 30 sta FMT
 0917 31 ;
 0917 A0 0E 32 ldy #LDLENNDX
 0919 18 33 clc
 091A A5 02 34 lda BUFR
 091C 71 44 35 adc (FMT),Y
 091E 85 02 36 sta BUFR
 0920 C8 37 iny
 0921 A5 03 38 lda BUFR+1
 0923 71 44 39 adc (FMT),Y
 0925 85 03 40 sta BUFR+1
 : : :

Figure I.10.1. Lisa Using LOADLEN from KEYVALS in DOS 4.1

The address found at FMWAADR (offset 0x09) in Table I.8.7 points to the Data Structure called
FMWORK because it contains the workarea variables used by the File Manager in processing DOS
input/output commands. The FMWORK variables are shown in Table I.10.4. Simply transfer the
address found at FMWAADR to a page-zero pointer and index into the structure for the desired

 45

variable in order to obtain its value or change its value. Table I.10.4 provides the offset, or index to
use for each variable. Except for the VTOC and CAT structure blocks, Table I.10.4 maps directly to
the WORKAREA shown in Table I.10.1 so that the two buffers can be copied to each other in total as
needed. In DOS 4.1H the data areas and structures shown in Tables I.10.2, I.10.3, and I.10.4 all reside
in RAM Bank 2.

Offset Name Size Description
0x00 FRTSTRK 0x01 first T/S track
0x01 FRTSSEC 0x01 first T/S sector
0x02 CURTSTRK 0x01 current T/S track
0x03 CURTSSEC 0x01 current T/S sector
0x04 CURDATRK 0x01 current data track
0x05 CURDASEC 0x01 current data sector

0x06

FLAGS 0x01

0x02 = VTOC has changed
0x40 = data buffer has changed
0x80 = T/S buffer has changed

0x07 DIRSECIX 0x01 directory sector index
0x08 DIRBYTIX 0x01 directory byte index
0x09 SECPERTS 0x02 T/S entries in a sector
0x0B RELSFRST 0x02 relative sector to first sector
0x0D RELSLAST 0x02 relative sector to last sector
0x0F RELSLRD 0x02 relative sector to just read sector
0x11 SECTLEN 0x02 sector size in bytes
0x13 FILEPOSN 0x02 current file position
0x15 FILEBYTE 0x01 current file byte
0x16 OPNRCLEN 0x02 file open record length
0x18 RECNUMBR 0x02 current record number
0x1A BYTEOFFS 0x02 current byte offset
0x1C SECCNT 0x02 sector count
0x1E NEXTSECR 0x01 next sector
0x1F CURTRACK 0x01 current track
0x20 SECBTMAP 0x04 sector bitmap
0x24 FYPTE 0x01 File type (^0x80 = locked)
0x25 SLOT16 0x01 slot * 16
0x26 DRVNUMBR 0x01 drive number
0x27 VOLNUMBR 0x01 volume number
0x28 TRKNUMBR 0x01 track number
0x29 VTOCSB 0x100 VTOC structure block
0x129 CATSB 0x100 Catalog structure block

Table I.10.4. File Manager Workarea Structure Definition

 46

The address found at VTOCADR (offset 0x0B) in Table I.8.7 points to the VTOC structure block and
the address found at CATSBADR (offset 0x0D) points to the Catalog structure block. Now, both the
VTOC and the Catalog structure blocks can be easily accessed as needed. Refer back to Table I.6.1 for
the definition of the VTOC structure block or to Table I.7.2 for the definition of the Catalog structure
block. In DOS 4.1H these two structure blocks both reside in RAM Bank 2. It is quite easy to
calculate the free space on any volume that has been immediately accessed simply by obtaining the
address of the VTOC structure block and processing its free sector bitmap.

Many DOS commands utilize the File Manager to open a file, which is handled by the Common Open
routine “CMNOPN”. This routine initializes the File Manager workarea, sets the sector size, checks the
RECNUM value as shown in Table I.9.5 for 0x0000, and allocates a file if the requested filename is
not found in the Catalog. If DOS 3.3 finds RECNUM is equal to 0x0000, it changes the value of
OPNRCLEN to 0x0001 as shown in Table I.10.4. If DOS 4.1 finds RECNUM is equal to 0x0000, it
changes the value of OPNRCELN to BYTPRSEC as shown in Table I.6.1. For sectors that are 256
bytes in size, BYTPRSEC would equal 0x0100. The DOS 4.1 design uses a far better and more logical
value to set OPNRCLEN if “CMNOPN” finds RECNUM is equal to 0x0000.

 47

11. DOS 4.1 Clock Access
As soon as DOS 4.1 is read into memory it attempts to locate a clock card in one of the seven
peripheral slot card slots. Fortunately, the clock cards I am acquainted with conform to a convention
that can be used to identify a peripheral slot card slot as having a clock slot card. The FINDCLK
routine begins checking slot 7, working its way down to slot 1, and it looks for the PHP and SEI
signature bytes, the first two bytes of the clock slot card firmware, and the CLKID byte, the last byte of
the clock slot card firmware, set to either 0x03 or 0x07. When those conditions have been met, the slot
number is saved, a “colon read” command is issued to the clock slot card firmware, and an attempt is
made to parse the generated data from the clock slot card. The “colon read” command expects the
clock data to be written to the INPUT buffer, or page 0x02 of memory (address 0x200) in the generic
format of “mo/dd hh:mi:ss” or “mo/dd/yy hh:mi:ss”, where “mo” is month, “dd” is day,
“yy” is year, “hh” is hour, “mi” is minute, and “ss” is second. Some clock firmware includes the
number of the week’s day (“w”) before the date and time, or some firmware might include a period and
a three-digit millisecond suffix to the seconds’ data. Both my clock card and the TimeMaster clock
card model the “colon read” command after the Thunderclock card, except those clock cards produce a
year value whereas the Thunderclock card does not.

(Why the Thunderclock slot card became the de facto standard is beyond my comprehension. Maybe
it was the first clock card marketed for the Apple? So what! Maybe it was well integrated in ProDOS.
Again, so what! Not being able to produce a year value was just wrong, and definitely shortsighted.)

In order to evaluate the clock data an index to the month data must be determined: there must be either
no data before the month value or there must be at least one space before the month value. It does not
matter what precedes that space, or what the separators are for the date and time values (/, :, ;, or
space). Table I.11.1 lists the DOS 4.1 supported clock cards, the raw data string generated when a
“colon read” command is issued (where “x” can be any data), and the index determined for that data.
The READCLK routine uses that data index to begin extracting the date and time values, and
substituting in YEARVAL (see Table I.8.7) if it is parsing Thunderclock slot card data. If it is not
parsing Thunderclock slot card data, READCLK assumes the date data will contain a year value.

Clock Card Data Index Raw Data String
Thunderclock card 0 mo/dd hh;mi;ss

unknown clock card 1 mo/dd/yy hh:mi:ss
unknown clock card 2 x mo/dd/yy hh:mi:ss
Philip’s Clock card 3 “w mo/dd/yy hh:mi:ss

TimeMaster Clock card 3 “w mo/dd/yy hh:mi:ss
unknown clock card 4 xxx mo/dd/yy hh:mi:ss
unknown clock card 5 xxxx mo/dd/yy hh:mi:ss

Table I.11.1. Supported Clock Cards in DOS 4.1

 48

The slot number CLKSLOT of the clock slot card and the index into the clock data CLKINDEX are
shown in Table I.10.2, and are available as indexed parameters of CMDVALS. If CLKSLOT is 0x00
there is no clock slot card and CLKINDEX is not valid. If an indirect “JMP” is made to the address
found in RDCLKVSN as shown in Table I.9.1 with the Y-register containing the low byte and the A-
register containing the high byte of the address of a 6-byte data buffer, and the carry flag is cleared,
READCLK will read the clock, parse the clock data, and put the date and time values obtained in the
order shown in Table I.6.3 into the supplied 6-byte data buffer as shown in Figure I.9.3. The date and
time values represent decimal data in a hexadecimal format, so the data must be printed as
hexadecimal values or converted to an equivalent decimal value, if desired.

 49

12. DOS 4.1 Error Processing
Whether an Applesoft or Binary program is running, if BASIC is not running, or if BASIC is running
and the ASONERR (0xD8) flag has its MSB clear, the first step in DOS 4.1 error processing is to beep
the speaker and print the error message text as shown in Table I.9.8. BASIC is running when ASRUN
(0x76) is not equal to 0xFF and PROMPT (0x33) is not equal to the “]” character. Conversely,
BASIC is not running when ASRUN equals 0xFF or PROMPT equals “]”. If BASIC is running and
the MSB of ASONERR is set, the error message is not printed and DOS exits indirectly to 0xD865 by
means of ERRORADR (offset 0x11 in Table I.8.7). After the error message is printed, the next step in
error processing is started beginning with DOS restoring its keyboard and video intercepts, and exiting
indirectly to 0xD43C by means of WARMADR (offset 0x0F).

Applesoft programs can handle DOS error processing by using the “ONERR GOTO <line
number>” command in order to prevent program termination. Assembly language programs need to
do a little more work: store 0xFF to ASONERR, 0x00 to ASRUN and PROMPT, and change the
address stored at ERRORADR to your own error handler. DOS 4.1 will load the X-register with the
appropriate DOS error number as shown in Table I.9.8 before exiting indirectly to ERRORADR (or
WARMADR for that matter if BASIC is not running). Calling PRTERADR as shown in Table I.9.1
using an indirect “JMP” instruction and with the appropriate DOS error number stored in the X-
register, will print the corresponding DOS error message text without beeping the speaker and without
printing a carriage return after the error message. Big Mac, for example, utilizes PRTERADR in
printing all DOS errors it encounters as shown in the assembly language snippet of Figure I.9.4. In
that example code the first call to PRTERROR with the X-register set to 0x00 will beep the speaker.
Then Big Mac calls PRTERROR with the actual error number in the X-register followed by a carriage
return. There is absolutely no need to locate the PRTERROR routine in the source code because it is
so conveniently located in the Page 0x03 vectors at 0x3E8.

 50

13. DOS 4.1 Chain Command
DOS 4.1 does include an actual CHAIN command designed specifically for floating point Applesoft
BASIC. Having a native CHAIN command is far more convenient than having to include an assembly
language utility on each and every application volume for those programs requiring this capability.
However, careful considerations must be made when designing Applesoft programs that CHAIN to
each other. The purpose of the DOS CHAIN command is to move two areas of memory where they
reside for the “Start” program to where they need to reside for the “Chained” program. These two
areas of memory include the Simple Variables and the Array Variables, or SAVs for short. Figure
I.13.1 shows a typical Start Applesoft Program in memory. In that figure Free Space exists when the
Start Program and its SAVs and its Character String Pool memory area do not exceed the value stored
in HIMEM minus 0x0801, the address where the Start Program begins. Also, the Start Program must
never CHAIN to a Chained Program whose size will exceed the available Free Space.

Applesoft uses a large number of page-zero memory locations for its use. Many of these locations are
to store addresses in low/high byte order that can easily be used as pointers for memory management
routines. An Applesoft program loads into memory starting at address 0x0801, which is the value
found in PRGTAB at 0x67/0x68. The DOS LOAD command knows the program’s size in bytes even
before it actually loads the file by reading its first data sector and examining the first two bytes, and it
calculates where in memory its end address will be, and stores that information in PRGEND at
0xAF/0xB0. Initially, VARTAB, ARYTAB, and STREND will be initialized to the same value in
PRGEND, and FRETOP will be initialized to the same value in HIMEM. Of course, the MAXFILES
command can be used to change HIMEM, and thus FRETOP, and this should be done early in the Start
program before any string variables are pushed into the Character String Pool memory area.

As the Applesoft program begins to execute its instructions it will start to create simple variables that
include integers, real numbers, and string pointers. These variables and pointers reside in the Simple
Variables area of memory as descriptors beginning in VARTAB at 0x69/0x6A, and ending in
ARYTAB at 0x6B/0x6C. The definition of the descriptors for these variables and pointers that
comprise the content of the Simple Variables is shown in Table I.13.1. As more and more Simple
Variable descriptors are added, the Array Variables area is pushed higher and higher up in memory.
Simple variables are always seven bytes in size, and depending on the variable type, some of the bytes
may not be used. Table I.13.1 shows that real variables require all seven bytes for the variable name,
the exponent, and its 4-byte mantissa. Integers require only four bytes for the variable name and its
value in high/low byte order, leaving the remaining three bytes set to 0x00. Finally, simple strings
require only five bytes for the variable name, the length of the string, and the address where the string
resides in low/high byte order, leaving the remaining two bytes set to 0x00.

The definition of the descriptors for Applesoft Array Variables is shown in Table I.13.2. As seen in
Figure I.13.1 the Array Variables area of memory begins in ARYTAB and ends in STREND at
0x6D/0x6E. This area of memory contains single and multi-dimensioned arrays of integers, real
numbers, and string pointer descriptors. Table I.13.2 shows arrays having two dimensions. Successive
array element dimension sizes precede each other with the first dimension size (high/low byte order)
always coming last. The array variable descriptor grows as the number of dimensions increase in
number. The nominal size of an array variable descriptor is seven bytes for a single dimension array.
The descriptor increases in size by two bytes for each dimension added. Therefore, the dimension
number becomes a critical piece of information that is used to calculate where the array elements begin
relative to the address of the array variable descriptor.

 51

Pointer
Addresses

Start
Program

Smaller
Program

Problem
Program

Bigger
Program

 0x0000 0x0000 0x0000 0x0000

PRGTAB – 0x67/68 0x0801

Start
Applesoft
Program

0x0801
Small

Chained
Applesoft
Program

0x0801

Problem
Chained

0x0801

Big

PRGEND – 0xAF/B0
 Applesoft

Program
Chained

Applesoft
VARTAB – 0x69/6A Simple

Variables
 Program

ARYTAB – 0x6B/6C Array
Variables

STREND – 0x6D/6E

Free
Space

FRETOP – 0x6F/70

HIMEM – 0x73/74

Character

String Pool

DOS

DOS

DOS

DOS

Figure I.13.1. Example Applesoft Program Layout in Memory

Using Table I.13.1 as guide and extracting the two variable name bytes shows that Real elements of a
Real array variable are each five bytes, one byte for the exponent and four bytes for the mantissa.
Integer elements of an Integer array variable are each two bytes, and the values are in high/low byte
order. Finally, string elements of a String array variable are each three bytes, one byte for the length of

 52

the string and two bytes for the address where the string resides in memory in low/high byte order. As
in the case for simple variables, the actual string data referenced by these string elements is pushed into
the Character String Pool memory area that begins at HIMEM at 0x73/74 and ends at FRETOP at
0x6F/0x70. The Free Space area of memory is what is left over as the SAVs memory area grows up in
memory and the Character String Pool memory area grows down in memory.

Variable
Type

Byte Definitions
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Real
Numbers

name1
+ASCII

65

name2
+ASCII

66
Exponent Mantissa

1
Mantissa

2
Mantissa

3
Mantissa

4

Integer
Numbers

name1
-ASCII

195

name2
-ASCII

196

High
Value

Low
Value 0 0 0

Simple
Strings

name1
+ASCII

69

name2
-ASCII

198

String
Length

Low
Address

High
Address 0 0

Table I.13.1. Applesoft Simple Variable Descriptor Definition

Variable
Type

Byte Definitions
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

Real
Array

name1
+ASCII

65

name2
+ASCII

66

Low
Byte

Offset

High
Byte

Offset

Number of
Dimensions

K

Size of
Kth Dim

High Byte

Size of
Kth Dim
Low Byte

Size of
K-1 Dim

High Byte

Size of
K-1 Dim
Low Byte

Integer
Array

name1
-ASCII

195

name2
-ASCII

196

Low
Byte

Offset

High
Byte

Offset

Number of
Dimensions

K

Size of
Kth Dim

High Byte

Size of
Kth Dim
Low Byte

Size of
K-1 Dim

High Byte

Size of
K-1 Dim
Low Byte

String
Array

name1
+ASCII

69

name2
-ASCII

198

Low
Byte

Offset

High
Byte

Offset

Number of
Dimensions

K

Size of
Kth Dim

High Byte

Size of
Kth Dim
Low Byte

Size of
K-1 Dim

High Byte

Size of
K-1 Dim
Low Byte

Table I.13.2. Applesoft Array Variable Descriptor Definition

Many times an Applesoft program will contain the text of some string variable. As long as there is no
text operation on that string variable such as “A$ = A$ + B$”, for example, the text pointer address
found in the Simple Variable or in the Array Variable descriptor will point to the actual string text
within the contents of the Applesoft program, and therefore the string can never be available to a
Chained Program. In order for a simple string variable or a string element to be available to a Chained
Program, the actual string text of the string variable must be located in the Character String Pool
memory area. A simple way to force this is to perform some text operation on that string variable,

 53

such as “A$ = A$ + “””. This particular operation does nothing to string “A$” except to cause the
actual text of “A$” to be copied from within the contents of the Applesoft program and into the
Character String Pool memory area.

The purpose of the CHAIN command is to move the SAVs of the Start Program to the end of the
Chained Program, and to update PRGEND, VARTAB, and ARYTAB with their new addresses so that
the Chained Program may access the variables and strings of the Start Program. Because of some
required Applesoft calls, even FRETOP needs to be reinitialized. When the Chained Program is
smaller than the Start Program or when the Chained Program is larger than the Start Program plus the
size of the SAVs area, there is no problem copying the SAVs directly to their new location. However,
if the end of the Chained Program occurs somewhere within the SAVs area of the Start Program, there
will be disaster if the SAVs are copied directly. Due to the nature of the memory move routine, if the
SAVs area of memory is copied in this particular situation, the move routine will begin to overwrite
the same area of memory it is attempting to copy. And this will certainly lead to disaster for the
Chained Program because some of the variable descriptors of the Start Program will be overwritten
and, therefore, destroyed. Disaster will also occur if the SAVs area is copied in reverse order (high
memory to low memory) to the end of a Chained Program that is smaller than the Start Program. The
CHAIN routine can either refuse to perform the chain operation and signal an error message in these
situations, or select another alternative algorithm.

One option of another alternative algorithm is to copy the SAVs to the address in STREND and set
PRGEND and VARTAB to that address if there is enough memory in Free Space. PRGEND does not
necessarily have to be exactly the address where the Chained Program ends in memory, technically at
its triple-nulls. In fact, an Applesoft program may include assembly language subroutines attached to
its triple-null ending giving the program a different physical end address. The DOS SAVE command
uses PRGTAB and PRGEND to calculate the number of bytes to save, not necessarily the address
where the triple-nulls occur in memory minus 0x0801. However, this option does potentially waste a
good deal of memory if the SAVs area is sizeable.

The better option would be to always copy the SAVs up in memory to FRETOP and then copy them
again down in memory to the new PRGEND. Unfortunately, the first copy would require a negatively-
indexed memory move algorithm (the pointers are decremented, not incremented), which is not for the
faint of heart due to its difficulty and complexity, and it requires more CPU instructions than a simple
positively-indexed memory move algorithm. The second copy would require a straight-forward
positively-indexed memory move algorithm. Fortunately there was enough code space to implement
this far superior option. The user can utilize the DOS 4.1 CHAIN command to their heart’s content
and rest assured that CHAIN will always place the SAVs fully intact precisely where the Chained
Program ends with the single caveat already mentioned: the Start Program must never CHAIN to a
Chained Program whose size will exceed the available Free Space.

If the R keyword is not used with the CHAIN command, CHAIN will call the Applesoft ROM routine
GARBAG at 0xE484 before it moves the Simple Variable and Array Variable descriptors to their new
location at the end of the Chained Program. The GARBAG routine utilizes an algorithm similar in
concept to a basic bubble sort algorithm to remove all unreferenced string data from the Character
String Pool memory area, thus compacting the Character String Pool before CHAIN relocates the
SAVs in memory. The processing time for this garbage algorithm to collect all the little bits and
pieces of old strings is proportional to the square of the number of strings in use. That is, if there are
100 active strings it will take four times longer to process those strings than if there had been only 50

 54

active strings. Many Garbage Collection algorithms have been previously published that accomplish
the same results as GARBAG in far less time, but there can be a number of caveats when using some
of these algorithms. For instance, normal Applesoft programs save all string data in lower ASCII, i.e.
with the MSB of each byte cleared to zero. Furthermore, normal Applesoft programs never allow
more than one string descriptor to point to the same exact copy of that string in memory. Some
Garbage Collection algorithms depend on these constraints. If either constraint is not true, a
catastrophe will happen during the course of subsequent Applesoft processing! Of course, if the
Applesoft program’s string data is normal, there will be no subsequent problems. Only if assembly
language appendages to the Applesoft program or other code segments perform exotic manipulations
to string descriptors or to Character String Pool memory might these constraints be violated, for
example. The Applesoft Garbage Collector is discussed in more detail in section II.5.

If an efficient Garbage Collection routine is available, the user should invoke that routine before using
the DOS CHAIN command and utilize the R keyword to bypass calling GARBAG from within
CHAIN processing. There is always the dilemma in finding that balance between making the
Applesoft and chained programs smaller in order to accommodate an external and complex assembly
language Garbage Collection routine or enlarging the Applesoft and chained programs and
strategically placing multiple Applesoft “FRE(aexpr)” commands throughout the program. The
“FRE(aexpr)” command calls GARBAG and will process the Character String Pool more
efficiently if there are fewer inactive strings and little unreferenced string data. Again, there is always
the dilemma in finding that balance for the best strategy in ensuring that memory is used as efficiently
as possible.

 55

14. The VTOC Bitmap Definition
The free sector bitmap of a volume is located in the VTOC of a volume starting at byte 0x38 as shown
in Figure I.6.1. Four bytes are reserved for each track on a volume whose bits determine whether a
sector on that track is utilized or not utilized for a CATALOG sector, a TSL sector, or a data sector.
There are two routines where DOS 3.3 uses NUMSECS, the VTOC variable equal to the number of
sectors comprising a track: ALLOCSEC and RORBITMP. ALLOCSEC is a routine that will find and
allocate a disk track that has an available sector. It uses the VTOC bitmap to locate this track.
RORBITMP is a routine used by FREESECT that will set or clear a sector’s assigned bit within the 4-
byte bitmap of a track. The ramifications of limiting these routines to the value in NUMSECS causes
the definition of the bit assigned to sector 0x00 to be different in 16-sector and 32-sector tracks. In
DOS 3.3 sector 0x00 is assigned to the first bit in the second byte of the 4-byte bitmap of its track
when NUMSECS is equal to 16 as shown in Table I.6.2. When NUMSECS is equal to 32, sector 0x00
is assigned to the first bit in the fourth byte of the 4-byte bitmap of its track as shown in Table I.14.1.
Furthermore, FID always assumes NUMSECS is equal to 16 and always rotates the bitmap of a track
accordingly. FID, as published by Apple, cannot copy files onto a volume that contains 32-sector
tracks because it does not rotate the bitmap properly for 32-sector tracks.

Here is a confounded situation where the VTOC, designed by Apple, is not fully supported even by
Apple designed utilities. I wonder if Apple thought as early as 1979 when Apple published FID that
there would never be a device that would support 32-sector tracks? Perhaps Apple had given up on
DOS 3.3 in preference to ProDOS earlier than anyone suspected. I was never convinced that the Apple
][series of computers was necessarily the right platform for the hierarchal directory structures created
in ProDOS. I’m even less convinced now.

ALLOCSEC and RORBITMP manipulate the free sector bitmap for each track as shown in Table I.6.2
consistently in DOS 4.1 without regard to the value found in NUMSECS: 32 sectors per track is
always assumed even when a volume contains 16-sector tracks. DOS 4.1 only interacts with the
VTOC bitmap by means of the variable NEXTSECR exclusively OR’d with the value 0x10 in the
routines FREESECT and ALLOCSEC. In other words, the bitmap is manipulated as if it looks like
what is shown in Table I.14.1, but the bitmap appears in the VTOC as if it looks like what is shown in
Table I.6.2. Whether a volume contains 16-sector or 32-sector tracks does not matter to the DOS 4.1
routines that utilize the bitmap. When the bitmap is manipulated in this fashion, sector 0x00 will
always be assigned to the first bit in the second byte of the four-byte bitmap of its track as shown in
Table I.6.2.

Byte Sector Bitmap
0 1F-18 FEDCBA98
1 17-10 76543210
2 0F-08 FEDCBA98
3 07-00 76543210

Table I.14.1. Free Sector Bitmap for 32 Sector Tracks in DOS 3.3

 56

For volumes having 16-sector tracks, the 4-byte bitmap of such a track having all 16 of its sectors
available would be “FF FF 00 00”. For volumes having 32-sector tracks the 4-byte bitmap of such a
track having all 32 of its sectors available would be “FF FF FF FF”. When the 4-byte bitmap of a track
is not used consistently for 16-sector and 32-sector volumes, it puts an unnecessary burden on the DOS
INIT command routine to determine exactly which bit is assigned to sector 0x00 and which bit is
assigned to sector 0x10. Utilizing and manipulating the 4-byte bitmap of a track consistently puts
virtually no further throughput burden onto DOS. I have also incorporated the necessary changes into
FID that model how DOS 4.1 defines the 4-byte bitmap of a track and how the bitmap must be
manipulated correctly. As to be expected, DOS 4.1 and DOS 4.1 FID can fully read, copy, and write a
16-sector DOS 3.3 volume, or any other volume for that matter, without exception, onto a DOS 4.1
volume whether that volume contains 16-sector or 32-sector tracks.

 57

15. ProDOS Disk I/O Algorithm
I have no idea whether Apple or Axlon, the manufacture of the RamDisk 320, developed the fast disk
read algorithm. As described in section IV.17, the RamDisk software can transfer the contents of an
entire 35-track diskette to one of the RamDisk drives in 7 seconds, the time to make 35 revolutions,
one revolution for each track on a Disk][. The Axlon software locates track 0x00 on the Disk][,
clears a 16 byte “sector read” table, and finds the first sector data header it encounters. The software
notes the sector number and proceeds to read the sector data putting the first 86 bytes into a buffer like
NBUF2 as shown in Table I.15.1. These 86 bytes contain the lower two bits for the next three groups
of data bytes about to be read. The first group of data bytes is comprised of 86 bytes, each byte OR’d
with its lower two bits obtained from the BITNIBL table indexed by the respective byte from NBUF2,
and stored directly into the designated RamDisk sector. The second group of data bytes is comprised
of another 86 bytes, similarly processed, and stored in the designated RamDisk sector. The last 84 data
bytes are similarly processed and stored in the designated RamDisk sector. The final byte read is the
checksum byte. If the checksum is 0x00 then no read error is flagged and the “sector read” table is
updated with the sector marked as read. Once the “sector read” table is complete the Axlon software
moves to the next Disk][track, clears the “sector read” table, and looks for the first sector data header.

Routine,
Table, or Buffer

DOS 4.1 ProDOS
Bytes Cycles Bytes Cycles

PRENIBL 36 10557 172 6331
POSTNIBL 23 9524 n/a
READSCTR 84 11207 206 11248
WRITSCTR 128 11419 222 11420

RDNIBL 106 106
WRTNIBL 64 n/a
BITNIBL n/a 256
NBUF1 256 n/a
NBUF2 86 86

Total 783 42707 1048 28999

Table I.15.1. DOS 4.1 and ProDOS RWTS Routines, Tables, and Buffers

The ProDOS version of the fast disk read algorithm is essentially the same as the Axlon version except
that ProDOS incorporates the contents of the WRTNIBL table into the unused portion of its BITNIBL
table. Since only three of every four bytes are needed for NBUF2 processing, it made sense to utilize
the remaining fourth byte for its WRTNIBL table. Axlon did not provide a fast disk write algorithm so
there was no need to incorporate the WRTNIBLE table in its BITNIBL table. Closer inspection of the
two algorithms indicates to me that the Axlon version is a little cleaner programmatically speaking.
Perhaps Axlon obtained the ProDOS version and tweaked it some? If I had seen the ProDOS version
initially I would have made the same modifications Axlon did. I cannot imagine the reverse taking
place where Apple obtained the Axlon version and purposefully sabotaged it. Whatever the case the

 58

algorithm is clever and it works well, and there is no need for a POSTNIBL routine. However, the
READSCTR routine that implements the ProDOS fast disk read algorithm is nearly twice in size as
that of the combined DOS 4.1 READSCTR and POSTNIBL routines: 206 bytes versus 107 bytes,
respectively. The ProDOS READSCTR routine also takes a few more startup processing cycles than
the DOS 4.1 READSCTR routine. ProDOS requires the BITNIBL table and DOS 4.1 requires the
NBUF1 buffer for their data processing. Both are the same size, but the BITNIBL table also includes
the WRTNIBL table, a table that is a standalone table in DOS 4.1. To read and process a DOS 4.1
sector takes 20731 cycles, or 20.73 milliseconds. ProDOS takes 11.25 milliseconds to read and
process a sector. In order for ProDOS to read a block of data it must read two sectors.

The processing duration of the ProDOS version of the fast disk write algorithm is essentially the same
as the DOS 4.1 algorithm, and this is to be expected. Both algorithms must write five 40-microsecond
sync bytes, three 32-microsecond prologue bytes, 343 32-microsecond data bytes and checksum, three
32-microsecond epilogue bytes, and a final 32-microsecond sync byte. However, their algorithm sizes
are substantially different and that is because NBUF1 lies on a page boundary for DOS 4.1 and the
user data buffer may or may not lie on a page boundary for ProDOS. ProDOS must prenibblize user
buffer data in the same way that DOS 4.1 prenibblizes user buffer data, and “on the fly” ProDOS must
modify its WRITSCTR code: it must determine whether the user data buffer lies on a page boundary,
and if not, then which pages contain what portion of the buffer. There is one exception the ProDOS
algorithm must also handle, and that is when the user data buffer falls off a page boundary by just 1
byte. The ProDOS fast disk write algorithm requires 394 bytes for its PRENIBL and WRITSCTR
routines, and gets its WRITNIBL table for free. On the other hand, DOS 4.1 requires a mere 164 bytes
for its PRENIBL and WRITSCTR routines, but it requires a WRITNIBL table, for a total of 228 bytes
which is still 57% the size of the ProDOS memory requirements. To process and write a DOS 4.1
sector takes 21976 cycles, or 21.98 milliseconds. ProDOS takes 17751 cycles to process and write a
sector, or 17.75 milliseconds. In order for ProDOS to write a block of data it must write two sectors.

I have been referring to the data in Table I.15.1 for the information in the above sizing and timing
discussion. Overall the amount of software, table data, and buffer space required for DOS 4.1 to read
and write data to and from a diskette is 783 bytes. ProDOS requires 1048 bytes, a difference of 265
bytes, or an additional page of memory plus nine bytes. This difference in bytes amounts to a 25%
increase in memory requirements for ProDOS. The time to read and write a sector of data takes 42.71
milliseconds for DOS 4.1 and 29.00 milliseconds for ProDOS. The ProDOS algorithms are 32% faster
than the DOS 4.1 algorithms overall. With these results it is obvious that extensive use of table data
and self-modifying code alone cannot account for the visible differences the two operating systems
demonstrate when reading and writing files. ProDOS achieves its significant speed difference by
employing a sector interleaving (or skewing) such that only two revolutions are required to read all
eight blocks on a track, similar to the same technique Apple Pascal and Apple Fortran use for reading
their diskettes. The sectors are arranged such that there is one sector between each of the sectors
comprising a block, and there is one sector between each successive block. Blocks are read and
written in ascending block number (“2 ascending” skew) in ProDOS and sectors are read and written in
descending sector number (“2 descending” skew) in DOS 4.1. DOS 4.1 employs a sector interleaving
such that it could read all 16 sectors on a track ideally in two revolutions, but three or four revolutions
are more typical. For a more complete discussion on sector interleaving refer to Worth’s and
Lechner’s “Beneath Apple DOS”, “Beneath Apple ProDOS”, and “Bag of Tricks.”

One may ask whether DOS 4.1 could benefit from the disk I/O routines of ProDOS. To test this very
question I removed most of the code that supports the HELP command in DOS 4.1H and inserted the
ProDOS disk I/O routines in place of the DOS 4.1 disk I/O routines. ProDOS also uses the Language

 59

Card memory for its disk I/O routines so I thought this was a fair match. I was astonished, though I
should not have been, to learn there was absolutely no benefit. Without these I/O routines coupled
with a “2 ascending” skew sector interleave table the overall disk I/O throughput did not benefit. DOS
4.1 still uses the “2 descending” skew sector interleave table from DOS 3.3 to maintain compatibility
to that operating system. The DOS 4.1 I/O routines are still perfectly matched for the best I/O
performance possible with its particular sector interleave table.

 60

16. Building and Installing DOS 4.1 Images
The source code for both DOS 4.1L and DOS 4.1H and their object code “SEGnn” files each
completely fit on DOS 4.1 data volumes. A separate data Image volume called “DOS4.1.Image”
contains the linked images of both versions of DOS 4.1. The Lisa “ctrl-P” command is used to
create a linked image from several object code files on the source code volume so the complete object
code image can be saved to the Image volume. The Image volume also contains several utilities that
can install the DOS 4.1 images onto the boot tracks of a volume and to copy the DOS 4.1 images to
other volumes. For example, “INSTALL46L” reads the linked DOS 4.1L image “DOS4.1.46L”
from the Image volume in disk drive 2 and installs it directly onto the boot tracks of the volume in disk
drive 1 as if the DOS image had been written onto those tracks by the DOS INIT command. The
utility “DOS2TO1” copies the linked DOS images “DOS4.1.46L” and “DOS4.1.46H” from the
Image volume in disk drive 2 to a volume in disk drive 1. It is assumed that both disk drives are
connected to the disk controller slot card in slot 6. The utility “DOS2TO1.2” does essentially the
same thing except the saved file names are shortened to “DOS4.1L” and “DOS4.1H”.

It is quite a simple matter to assemble the DOS 4.1L source code found on the DOS 4.1L Source
volume “DOS4.1.SourceL” and for the DOS 4.1H source code found on the DOS 4.1H Source
volume “DOS4.1.SourceH”. I imagine it would take some effort to adapt this source code and its
directives to another assembler other than Lisa. Lisa provides all the enhancements and directives
necessary as well as the addition of new directives to provide a straightforward assembly: the source
code may be sectioned into many input files that are linked using a directive, and the generated object
code may be saved into many output files as well. In other words, the entire source code does not have
to reside in memory and the generated object code files may be linked together later with the Lisa
“ctrl-P” command. The “ctrl-P” command is not a Linker as found in a compiler; it merely
combines into memory a series of object code files sequentially. As discussed in Section IV.14 Lisa
uses lower memory above 0x0800 for object code, source code, and the complete symbol table.

To assemble the DOS 4.1L source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the DOS 4.1L Source volume “DOS4.1.SourceL” in disk drive 2, load the
“DOS4.1L.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. Four object code
files will be created on the DOS4.1L Source volume: “SEG01” to “SEG04”. The four object code
files can be combined in memory sequentially starting at 0x1000 using the “ctrl-P” command. The
complete binary image can be saved to the DOS 4.1 Image volume “DOS4.1.Image”, or any other
volume, as “DOS4.1.46L”.

The DOS 4.1H source code is assembled using the same procedure. Place the DOS 4.1H Source
volume “DOS4.1.SourceH” in disk drive 2 and load the “DOS4.1H.L” file into memory.
Assemble as above and save the complete binary image to the DOS 4.1 Image volume, or any other
volume, as “DOS4.1.46H”.

 61

17. Using DOS 4.1 Commands
I have enhanced many of the original commands from DOS 3.3 primarily using the R keyword as a
command switch since this keyword has very limited usage other than in the commands EXEC,
POSITION, and the Random-Access Data file commands READ and WRITE. All DOS commands
may be entered in lowercase and/or uppercase in DOS 4.1. Filenames may also be entered in a mixture
of lowercase and uppercase, and the filenames are treated as case sensitive. For example, the
filenames “HELLO” and “Hello” are treated as two different files. In order to make full use of
lowercase and uppercase in DOS 4.1, an Apple //e is preferred. DOS 4.1 does function quite nicely on
an Apple][or an Apple][+ if its character generator (for example, Dan Paymar’s Lowercase Adaptor
Interface PROM) can display the complete lowercase and uppercase Latin character set. DOS 4.1 does
print error messages in mixed case. The Apple //e ROM also supports lowercase and/or uppercase
entry for Applesoft commands. However, in my opinion this ROM continues to have at least two
substantial deficiencies: no native DELETE key utilization and the HLIN drawing algorithm is
flawed. Both deficiencies are correctable within the available ROM code space without sacrificing
other routines and algorithms. And that’s quite an achievement!

There is no consistency in DOS 3.3 in whether no, one, or two carriage returns are printed after
completing DOS command processing when the DOS command is issued from the Apple command
line. Certainly it would be a mistake to print any additional carriage returns after completing DOS
command processing during the execution of an Applesoft program or during the processing of an
EXEC file. DOS 4.1 does print one carriage return after completing DOS command processing when
the DOS command is issued from the Apple command line. This policy is to ensure that there will be
at least one blank line between all DOS commands issued from the Apple command line in order to
keep the DOS commands and their output data as legible as possible on the screen. Of course DOS 4.1
does not print any additional carriage returns after completing DOS command processing during the
execution of an Applesoft program or during the processing of an EXEC file. However, DOS
commands that are issued from assembly language programs using COUT will appear with the
additional carriage return. One way to prevent DOS 4.1 from printing the additional carriage return is
to store a zero at the variables ASRUN (0x76) and PROMPT (0x33). When DOS 4.1 checks these
variables after completing DOS command processing, it will appear to DOS 4.1 that Applesoft is
running and, therefore, DOS will not print an additional carriage return.

Both DOS 3.3 and DOS 4.1 save files to a disk volume using the TSL resources of the file if the file
already exists. For example, if the file “TEMP” already exists and its TSL contains eight entries, those
same track/sector entries will be used to save “TEMP” again whether “TEMP” is larger or smaller than
its initial size. If “TEMP” is larger, the File Manager will simply request additional sectors and add
them to the file’s TSL. If “TEMP” is smaller, say the program only uses three pages of memory, the
first three track/sector entries will be used to save the file and the remaining entries will be unused. In
other words, the last five entries in the file’s TSL in this example will remain allocated to the file and
those data sectors will be unavailable for use by any other file. This inherent resource wastefulness for
both DOS 3.3 and DOS 4.1 is perpetuated by programs like FID. FID uses the File Manager to copy
files in total, and it assumes that all track/sector entries in a file’s TSL belong to that file. DOS 4.1,
Build 46 introduces the new strategy “File Delete/File Save”. The DOS 4.1 commands BSAVE,
LSAVE, SAVE, and TSAVE can now utilize the B keyword to implement “File Delete/File Save”.

 62

 63

II. Apple ROM Modifications
In my version of the Apple //e firmware source code I use the variables KEYMOD and HLINMOD in
conditional assembly directives that are used to optionally assemble the original (flawed) code (i.e.
“KEYMOD EQU 0”) or the modified (corrected) code (i.e. “KEYMOD EQU 1”). The object code is
located in either a single 128 Kb ROM (or 27128 EPROM) as found in the Enhanced Apple //e or in
two 64 Kb ROMs. On the other hand, the Apple //e character generator pixels that define each ASCII
character is located in a 32 Kb ROM (or 2732 EPROM). An EPROM burner is needed in order to
burn a new EPROM having the necessary modifications to replace the Apple //e firmware ROM or
ROMs depending on the motherboard version.

1. Apple ROM Modification for Correct HLIN Drawing Algorithm
I have always disliked the unsymmetrical look of a HIRES diagonal line in either the horizontal or the
vertical direction ever since acquiring my Apple][+. And this same HLIN code resides in the Apple
//e ROM unchanged, which is shameful. When I was assigned to provide all the icons for HomeWord
Speller at Sierra On-Line I analyzed the HLIN algorithm and found the algorithm does not calculate
the delta difference of a line’s horizontal and/or vertical end points correctly. It is a simple matter to
demonstrate this error before and after installing the code modifications. There are two locations that
require a small code adjustment. The first code adjustment is located at 0xF57A.

 0xF57A:

 .if HLINMOD
 bcs HF580 ; 0xF580, branch to CLC
 asl ; times 2
 jsr HF465 ; 0xF465
HF580 clc ; prepare for delta, not diff
 lda ZPGD4 ; 0xD4
 .el
 bcs HF581 ; 0xF581, branch to SEC
 asl ; times 2
 jsr HF465 ; call 0xF465
 sec ; prepare for diff, not delta
HF581 lda ZPGD4 ; 0xD4
 .fi

where ZPGD4 is the page-zero location 0xD4 and HF465 is a label for a routine at memory address
0xF465. The second code adjustment is located at 0xF5A5.

 0xF5A5:

 .if HLINMOD
 sec ; prepare for diff, not delta
 .el
 clc ; prepare for delta, not diff

 64

 .fi

You will be simply amazed at how “lovely” and symmetrical diagonal lines are drawn either left to
right, right to left, top to bottom, or bottom to top. And I am appalled that the old code passed any sort
of testing and/or code review vis-à-vis how trivial this modification is and how elegant the results are.

Figure II.1.1 shows an Applesoft program that can be used to demonstrate the difference between the
original HLIN drawing algorithm and the modified drawing algorithm. Figure II.1.2 shows what this
Applesoft program produces when it runs on an Apple //e without the HLIN modification to its ROM
firmware. The two boxes on the left are square boxes that draw perfectly no matter which direction the
lines are drawn. The two middle boxes are nearly square boxes where the horizontal and vertical line
end points differ by 1 pixel, and they show different anomalies depending upon which direction the
lines are drawn: the upper box is drawn clockwise and the lower box is drawn counterclockwise. The
shape on the right is drawn clockwise and it shows many corner anomalies as the direction and angle
of the lines change. Figure II.1.3 shows what this same Applesoft program produces when the
program runs on the same Apple //e having the HLIN modification included in its ROM firmware. All
corner anomalies disappear and when the lines are drawn diagonally they are segmented equally. It is
obvious from Figure II.1.3 that having the HLIN modifications allows one to draw shapes in any
direction and in any order without having to worry about corner anomalies and inconsistent line
segmentation.

10 HOME
20 HGR
30 HCOLOR= 3
40 HPLOT 10,10
50 HPLOT TO 50,10
60 HPLOT TO 50,50
70 HPLOT TO 10,50
80 HPLOT TO 10,10
90 GOSUB 1000
100 HPLOT 100,10
110 HPLOT TO 140,11
120 HPLOT TO 139,50
130 HPLOT TO 101,51
140 HPLOT TO 100,10
150 GOSUB 1000
200 HPLOT 10,110
210 HPLOT TO 10,150
220 HPLOT TO 50,150
230 HPLOT TO 50,110
240 HPLOT TO 10,110
250 GOSUB 1000
300 HPLOT 100,110

310 HPLOT TO 101,151
320 HPLOT TO 139,150
330 HPLOT TO 140,111
340 HPLOT TO 100,110
350 GOSUB 1000
400 HPLOT 200,15
410 HPLOT TO 260,10
420 HPLOT TO 265,30
430 HPLOT TO 250,35
440 HPLOT TO 270,55
450 HPLOT TO 255,75
460 HPLOT TO 275,100
470 HPLOT TO 245,115
480 HPLOT TO 215,117
490 HPLOT TO 200,15
500 GOSUB 1000
900 TEXT
910 END
1000 POKE - 16368,0
1010 WAIT - 16384,128
1020 RETURN

Figure II.1.1. Applesoft HLIN Demonstration Program

 65

Figure II.1.2. Original ROM HLIN Routine Display

Figure II.1.3. Modified ROM HLIN Routine Display

 66

2. Apple ROM Modification for Delete Key Utilization
In order to have native DELETE key utilization the Apple //e firmware locations 0xC29A and 0xC846
require the following code.

 0xC29A:

.if KEYMOD
 jsr MODKEY ; 0xFB0A, check for DELETE
 .el
 sta CLRKEY ; 0xC010, clear keyboard strobe
 .fi

 0xC846:

.if KEYMOD
 jsr MODKEY ; 0xFB0A, check for DELETE
 .el
 sta CLRKEY ; 0xC010, clear keyboard strobe
 .fi

and MODKEY is the following code at 0xFB0A.

 0xFB0A:

 .if KEYMOD
MODKEY sta CLRKEY ; 0xC010, clear keyboard strobe
 cmp #NEGONE ; 0xFF, is it DELETE
 bne MODKEY2 ; branch if not
 lda #LARROW ; 0x88, get backspace character
;
MODKEY2 rts ; return to caller
;
 .el
 asc “Apple][“ ; unused data
;
 dfs 2,0 ; add 2 bytes of space
;
 .fi

The .el/.fi code in MODKEY is 10 bytes of unused data and not accessed by any firmware routine or
algorithm. The next section will explain why MODKEY is situated in this particular location.

 67

3. Apple //e 80 Column Text Card and ROM Monitor
My parents purchased their Apple //e while I was working at Sierra On-Line with the understanding
that I would set up their system, teach them how to use its capabilities, fix and/or repair any software
or hardware problems, and perform any regular maintenance as required. I didn’t fully realize what I
was getting myself into particularly when I attempted to teach my father how to use VisiCalc: his
hands were quite large so his fingers were not keyboard-nimble, he had poor close-up vision, and he
could not remember key-entry sequences very well. I developed his VisiCalc daily expense report
(requiring wide paper in their EPSON MX-100 printer) and an Applesoft program to strip his monthly
totals from his VisiCalc data files in order to create his annual summary VisiCalc data file. I provided
him detailed instructions on how to begin a VisiCalc session and how to enter his data into each row
and column. When he made mistakes or skipped instructions he became agitated and blamed the
computer for making his errors. My mother would then enter the data for him to keep everyone calm.

My parents purchased their Apple //e early in its availability before the enhanced version was
developed. I have no recall if we were even aware of an Enhanced Apple //e while I was at Sierra
around 1983 and 1984. Because I was assisting in porting ScreenWriter to the Apple //e I became very
familiar with the 80-column text card and the routines AUXMOVE and XFER. Also, Ken Williams
asked me to extract the database from the Dic-tio-nary, the companion spell checker to ScreenWriter,
for his new product HomeWord Speller, the companion spell checker to HomeWord he had already
released. HomeWord and HomeWord Speller were both developed in-house. I utilized calls to XFER
within a printer driver I wrote for the Dic-tio-nary, its only vulnerable access location at 0x300, and
the driver sent specific sections of the product’s database to AUX memory instead of to a printer.
Once I took control of the computer after the data transfer, I was able to copy that database section
from AUX memory to main memory, and then into a file on a disk volume. It is important to note that
the XFER starting address is found at 0x3ED and 0x3EE in the Page 0x03 Interface Routines.

I believe the enhanced version of the Apple //e provides MouseText characters in place of the alternate
uppercase inverse characters and it also introduced double-high-resolution graphics. This Apple also
provides lowercase input for Applesoft and its new Monitor provides lower ASCII data input to
memory, a search command, and the return of the phenomenal Mini-Assembler. The new Monitor
also supports a very sophisticated interrupt handler that works in any Apple //e memory configuration.
This is done by saving the current memory configuration state at the time of the interrupt onto the
stack, placing the Apple in a standard memory configuration before calling the requested interrupt
handler, and then restoring the original memory configuration state when the requested interrupt
handler is finished. However, in my estimation Apple fell way short in not providing the ability to
fully utilize the Mini-Assembler to enter and to display the complete 65C02 Instruction Set particularly
in view of the fact that the computer was designed to use and was shipped with a 65C02 processor.
What was Apple thinking? Any fool knows that the Mini-Assembler is dynamite when coupled with
the Monitor Step and Trace commands.

What was Apple thinking when it continues to promote and to support the use of a cassette tape
recorder to store and retrieve programs, multi-dimensioned integer and real arrays, and shape tables? I
know of no software engineer in my professional career or among my personal friends who ever used a
cassette tape recorder with any Apple computer for any reason. I did develop a communication
protocol with a programmable keyboard by means of a wire, which was similar to the tape output data
to a cassette tape recorder. Other than programming a keyboard using an annunciator, I have never
used a cassette tape recorder with any of my Apple computers. I have never used the Applesoft
LOAD, RECALL, SAVE, STORE, or SHLOAD commands in any of my Applesoft programs nor

 68

have I seen these commands used in any professional or commercial Applesoft programs. And, I have
never used the Monitor Read or Write commands at any time. Why would I use such a ridiculous and
incredibly slow data archiving method when I have the Disk][, the Rana, the RamDisk 320, the Sider,
or the CFFA card to save programs and data in the form of files, visible within its media, and time and
date stamped? Honestly, I derive no personal satisfaction in knowing that one can read data into an
Apple computer using a cassette tape recorder port. I do have a few suggestions for what could replace
the useless Monitor Read and Write commands with something rather quite useful.

Address Access Name Description Notes
0xC000 W STR80OFF Disable 80 column store 1
0xC001 W STR80ON Enable 80 column store 1
0xC002 W RAMRDOFF Read enable Main RAM, 0x0200-0xBFFF 2
0xC003 W RAMRDON Read enable AUX RAM, 0x0200-0xBFFF 2
0xC004 W RAMWROFF Write enable Main RAM, 0x0200-0xBFFF 2
0xC005 W RAMWRON Write enable AUX RAM, 0x0200-0xBFFF 2
0xC006 W CXROMOFF Enable slot ROMs, slots 1-7, or 0xC100-0xC7FF 3
0xC007 W CXROMON Enable internal CX00 ROM, or 0xC100-0xCFFF 3
0xC008 W AUXZPOFF Enable Main ZP, stack, lang card, Av1 BSR RAM 4
0xC009 W AUXZPON Enable AUX ZP, stack, lang card, AV1 BSR RAM 4
0xC00A W C3ROMOFF Enable internal CX3 ROM, 0xC300-0xC3FF
0xC00B W C3ROMON Enable Slot ROM, 0xC300-0xC3FF
0xC00C W VID80OFF Disable 80 column video
0xC00D W VID80ON Enable 80 column video
0xC00E W ALTCHOFF Enable normal Apple character set
0xC00F W ALTCHON Enable alternate character set (no flash)

Table II.3.1. New Memory Management and Video Soft Switches

Address Access Name Description Clear Set Notes
0xC000 R/R7 KEY Read keyboard input No key Yes key
0xC010 R/R7 CLRKEY Clear keyboard strobe No key Yes key
0xC011 R7 RDBANK2 Which LC BANK in use BANK1 BANK2
0xC012 R7 RDLCRAM LC RAM or ROM read-enabled ROM LC RAM
0xC013 R7 RDRAMRD Main, AUX RAM read-enabled AUX Main
0xC014 R7 RDRAMWR Main, AUX RAM write-enabled AUX Main
0xC015 R7 RDCXROM Slot or internal ROM enabled Slot Internal
0xC016 R7 RDAUXZP Which ZP & LC enabled Main AUX
0xC017 R7 RDC3ROM Slot or CX ROM enabled Slot ROM CX3 ROM
0xC018 R7 RDSTR80 State of STR80 switch Disabled Enabled
0xC019 R7 RDVRTBLK State of vertical blanking Yes No
0xC01A R7 RDTEXT State of TEXT switch Graphics Text
0xC01B R7 RDMIXED Read MIXED switch Off On
0xC01C R7 RDPAGE2 State of PAGE2 switch PAGE1/Main PAGE2/AUX
0xC01D R7 RDHIRES State of Graphics resolution LOWRES HIRES
0xC01E R7 RDALTCH State of Alternate Char. Set Off On
0xC01F R7 RDVID80 State of VID80 video Disabled Enabled
0xC07E R7 RDIOUDIS Read IOUDIS switch DHIRES On DHIRES Off 5
0xC07F R7 RDDHIRES Read DHIRES switch Off On 5

Table II.3.2. New Soft Switch Status Flags

 69

The Apple //e Main and Auxiliary memory together total 128 KB and each can be controlled by means
of an MMU and an IOU device using soft switches. By design the memory addresses of a 65C02
processor within the Apple //e hardware architecture can be naturally divided into four strategic areas:
page-zero and the stack, 0x200 to 0xBFFF, 0xC000 to 0xCFFF, and 0xD000 to 0xFFFF that includes
the bank-switched 0xD000 to 0xDFFF space. These memory areas can be individually activated from
main or auxiliary memory resources using the appropriate soft switches. What is also unique to the
Apple //e is that the Monitor firmware has been expanded to include additional ROM firmware that is
mapped to the 0xC100 to 0xCFFF address space. This address space is enabled or disabled using the
appropriate soft switches. If there is a display slot card residing in Slot 3 that card’s firmware can be
activated rather than using the internal 80-column text card firmware. Table II.3.1 summarizes the
new memory management and video soft switches used to control main and auxiliary memory. Some
data must be written to all these soft switches in order to invoke their action. It does not matter what
that data is. Table II.3.2 summarizes the new soft switch status flags. It is by means of these status
flags that one may determine the complete memory and video configuration of the Apple //e.

Address Access Name Description Notes
0xC020 R TAPEOUT Cassette output Toggle
0xC030 R SPKRTOGL Speaker output Toggle
0xC040 R UTILTOGL Utility Strobe; 1 ms pulse Game I/O pin 5
0xC050 R/W TEXTOFF Display Graphics
0xC051 R/W TEXTON Display Text
0xC052 R/W MIXEDOFF Full Screen graphics 6
0xC053 R/W MIXEDON Text with graphics 6
0xC054 R/W PAGE1ON Display Page 1 or Main video memory 7
0xC055 R/W PAGE2ON Display Page 2 or Aux video memory 7
0xC056 R/W HIRESOFF Select low resolution Graphics 6
0xC057 R/W HIRESON Select high resolution Graphics 6
0xC058 R/W ANN1OFF Annunciator 1 off (active if IOUDIS on)
0xC059 R/W ANN1ON Annunciator 1 on (active if IOUDIS on)
0xC05A R/W ANN2OFF Annunciator 2 off (active if IOUDIS on)
0xC05B R/W ANN2ON Annunciator 2 on (active if IOUDIS on)
0xC05C R/W ANN3OFF Annunciator 3 off (active if IOUDIS on)
0xC05D R/W ANN3ON Annunciator 3 on (active if IOUDIS on)
0xC05E R/W ANN4OFF Annunciator 4 off (active if IOUDIS on)
0xC05E R/W DHRESON Double HIRES on (active if IOUDIS off)
0xC05F R/W ANN4ON Annunciator 4 on (active if IOUDIS on)
0xC05F R/W DHRESOFF Double HIRES off (active if IOUDIS off)
0xC060 R TAPEIN Cassette input 8
0xC061 R PB1IN Push Button 1 input 8
0xC062 R PB2IN Push Button 2 input 8
0xC063 R PB3IN Push Button 3 input 8
0xC064 R GC1IN Game Controller 1 input 9
0xC065 R GC2IN Game Controller 2 input 9
0xC066 R GC3IN Game Controller 3 input 9
0xC067 R GC4IN Game Controller 4 input 9
0xC070 R GCTOGL Game Controller Strobe; resets GC1-GC4
0xC073 W BANKSEL RamWorks Bank Select; 64 KB bank select
0xC07E W IODISON Disable annunciators, enable double HIRES
0xC07F W IODISOFF Enable annunciators, disable double HIRES

Table II.3.3. Original Input/Output Control Soft Switches

 70

For completeness I have included Tables II.3.3, II.3.4, and II.3.5 showing the original Input/Output,
memory management, and Disk][control soft switches. In all cases the names of each soft switch are
those that I use within the Lisa assembler because Lisa has an eight-character limitation for labels.
Figure II.3.1 contains all notes referenced by Tables II.3.1 to II.3.5.

Address Access Name Description Notes
0xC080 R RAM2WP Select Bank 2; write protect RAM
0xC081 R | RR ROM2WE Deselect Bank 2; enable ROM | write enable RAM
0xC082 R ROM2WP Deselect Bank 2; enable ROM; write protect RAM
0xC083 R | RR RAM2WE Select Bank 2 | write enable RAM
0xC084 See 0xC080
0xC085 See 0xC081
0xC086 See 0xC082
0xC087 See 0xC083
0xC088 R RAM1WP Select Bank 1; write protect RAM
0xC089 R | RR ROM1WE Deselect Bank 1; enable ROM | write enable RAM
0xC08A R ROM1WP Deselect Bank 1; enable ROM; write protect RAM
0xC08B R | RR RAM1WE Select Bank 1 | write enable RAM
0xC08C See 0xC088
0xC08D See 0xC089
0xC08E See 0xC08A
0xC08F See 0xC08B

Table II.3.4. Original Memory Management Soft Switches

Address Access Name Description Notes
0xC080 R PHAS0OFF Turns stepper motor phase 1 off
0xC081 R PHAS0ON Turns stepper motor phase 1 on
0xC082 R PHAS1OFF Turns stepper motor phase 2 off
0xC083 R PHAS1ON Turns stepper motor phase 2 on
0xC084 R PHAS2OFF Turns stepper motor phase 3 off
0xC085 R PHAS2ON Turns stepper motor phase 3 on
0xC086 R PHAS3OFF Turns stepper motor phase 4 off
0xC087 R PHAS3ON Turns stepper motor phase 4 on
0xC088 R MOTOROFF Turns motor off
0xC089 R MOTORON Turns motor on
0xC08A R DRV0EN Selects Drive 1
0xC08B R DRV1EN Selects Drive 2
0xC08C R STROBE Strobe data latch for I/O
0xC08D R/W LATCH Load data latch
0xC08E R DATAIN Prepare latch for input 10
0xC08F W DATAOUT Prepare latch for output 11

Table II.3.5. Original Disk][Control Soft Switches

 71

(1) If STR80OFF access PAGE1/PAGE2 and use RAMRD and RAMWR; if STR80ON access
Main or AUX display page (0x400) using PAGE2.

(2) If 80STORE is ON these switches do not affect video memory.
(3) If INTCXROM in ON then switch SLOTC3ROM is available, otherwise MAIN ROM is

accessed.
(4) Use Bank enable and write protect switches to control 0xD000-0xFFFF.
(5) Triggers paddle timer and resets VBLINT.
(6) This mode is only effective when TEXT switch is OFF.
(7) This switch changes function when 80STORE is ON.
(8) Data on MSB only.
(9) Read 0xC070 first, then count until MSB is zero.
(10) DATAIN with STROBE for Read and DATAIN with LATCH for Sense Write Protect.
(11) DATAOUT with STROBE for Write and DATAOUT with LATCH for Load Write Latch.

Figure II.3.1. Notes for Tables II.3.1 to II.3.5

Address Access Name Description
0xC05A W ZIPCTRL 4 writes of 0x5A unlocks ZIP CHIP; 0xA5 locks ZIP CHIP
0xC05B W ZIPSTATS Any byte written enables ZIP CHIP
0xC05B R ZIPSTATS Bits 0 and 1 is RAM size: 0 – 8K, 1 – 16K, 2 – 32K, 3 –

64K; bit 3 for memory delay: 0 – fast mode (no delay),
1 – sync mode (delay); bit 4 is ZIP enable: 0 –
enabled, 1 – disabled; bit 5 is paddle speed: 0 - fast,
1 – normal; bit 6 is cache update: 0 – no, 1 - yes; bit
7 is clock pulse every 1.0035 milliseconds

0xC05C R/W ZIPSLOTS read/write speaker/slot 0 – fast, 1 – normal. Bit 0 -
speaker, bits 1 to 7 for slots 1 to 7

0xC05D W ZIPSPEED Write speed: bit 2 – clk2/3, bit 3 – clk3/4, bit 4 -
clk4/5, bit 5 – clk5/6, bit 6 – clk/2, bit 7 – clk/4

0xC05E W ZIPDELAY Bit 7: 0 – enable delay, 1 – disable and reset delay
0xC05E R ZIPDELAY 0 – off, 1 – on: bit 0 – ROMRD, bit 1 – RAMBNK, bit 2

– RAGE2, bit 3 – HIRES, bit 4 – 80STORE, bit 5 – MWR,
bit 6 – MRD, bit 7 - ALTZP

0xC05F W ZIPCACHE Bit 6 paddle delay: 0 – disable, 1 – enable; bit 7
language card cache: 0 – enable, 1 - disable

Table II.3.6. Zip Chip Control Soft Switches

Table II.3.6 shows the soft switches that are used to control the Zip Chip if it is used in place of the
65C02 processor. The Zip Chip includes a 65C02 processor along with cache memory and a cache
memory controller in order to execute processor instructions and manage memory data faster. Table
II.3.7 shows the soft switches that are used to control the CFFA and Table II.3.8 shows the soft
switches that are used to control the quikLoader. Table II.3.9 shows the soft switches that are used to
control the Sider, RamDisk 320, RamCard, and Rana drives. Typically, the X-register contains the slot
number in which the device resides times sixteen and the register is used in combination with the
addresses shown in Tables II.3.7, II.3.8, and II.3.9. Or, if speed is critical and the address space where
the device driver is writable, the slot number of the device times sixteen is added to the base addresses

 72

shown in these tables. In addition to what is shown in Table II.3.9, the Rana controller card also uses
the original Disk][control soft switches shown in Table II.3.5. The Rana controller card uses a
complicated algorithm using some of the PHASEON and PHASEOFF control soft switches to select
its upper or lower recording head and the 0xC800/0xC801 addresses to select drives 1 to 4.

Address Access Name Description
0xC080 R/W ATADATAH Read or write high data byte register
0xC081 R SETCSMSK Disable pre-fetch register
0xC082 R CLRCSMSK Enable pre-fetch register
0xC086 W ATADEVCT Write device control register
0xC086 R ATASTAT2 Read alternate status register
0xC088 R/W ATADATAL Read or write low data byte register
0xC089 R ATAERROR Read error register
0xC08A W ATASECCT Write sector count register
0xC08B W ATASECTR Write LBA3 (07:00) address register
0xC08C W ATACYLNL Write LBA2 (15:08) address register
0xC08D W ATACYLNH Write LBA1 (23:16) address register
0xC08E W ATAHEAD Write drive/head configuration register
0xC08F W ATACMD Write command register
0xC08F R ATASTAT Read primary status register

Table II.3.7. CFFA Control Soft Switches

Address Access Name Description
0xC080 W QLSELC0 Select banks 0 or 1, on/off, USR, EPROM number
0xC081 W QLSELC1 Select banks 2 or 3, on/off, USR, EPROM number
0xC082 W QLSELC2 Select banks 4 or 5, on/off, USR, EPROM number
0xC083 W QLSELC3 Select banks 6 or 7, on/off, USR, EPROM number

Table II.3.8. quikLoader Control Soft Switches

Address Access Name Description
0xC080 R SDINPUT Sider read status
0xC080 W SDINPUT Write drive number, DCB data, input data
0xC081 R SDOUTPUT Sider read output data
0xC081 W SDOUTPUT Write start, flush, and stop commands

0xC080 W RDSECTR RamDisk sector number
0xC081 W RDTRACK RamDisk track number

0xC084 W RAMCARD RamCard on/off, track*2, sector/8

0xC800 W ROMCODE1 Select Rana drive pairs 1 and 2
0xC801 W ROMCODE2 Select Rana drive pairs 3 and 4

Table II.3.9. Sider, RamDisk, RamCard, and Rana Control Soft Switches

 73

The Apple][+ Monitor disabled the Step and Trace commands. Now that the Apple //e has additional
ROM memory in the CX (0xC100 to 0xCFFF) address space the disabled Step and Trace table entry
points are now used for the Mini-Assembler command (the “!” command) entry and for the Search
command (the “S” command) entry. In my opinion the Search command is pretty lame for it can find
at most two consecutive bytes in low/high byte order. And I am still annoyed that the cassette tape
recorder Read and Write commands were retained in the Apple //e. What disturbs me the most is that
the Monitor cannot display the additional opcodes in the 65C02 Instruction Set that pertains to the
specific 65C02 processor used in the Apple //e. As an aside the 65C02 Instruction Set was expanded
even further in the Rockwell and WDC versions of the 65C02 processor to include the BBR, BBS,
RMB, and SMB mnemonics adding 32 additional opcodes. These opcodes are not available in the
Apple //e 65C02 processor. Therefore, it makes no sense to me to provide a user with a computer that
utilizes a particular processor and firmware that can display a subset of its processor’s mnemonics.
What I would have done is to recommend to Apple to retire the Monitor Read and Write commands
and reintroduce the Monitor Step and Trace commands, and to provide a more useful Monitor
command in addition to the Search command if there was sufficient room. And, of course, the Monitor
must be able to display all of the useable 65C02 mnemonics. Will retiring the Monitor Read and Write
commands provide enough room for all my suggestions? Can the Monitor’s new lower ASCII data
input routine be further enhanced? Let’s find out. The Monitor software begins at 0xF800.

I have no doubt that the engineering team that designed the Apple //e ROM firmware, and
subsequently the Enhanced Apple //e ROM firmware were given a momentous task. That task was to
preserve sixteen “classic” entry points and introduce a few new Monitor entry points in order to
support 40-column and 80-column screen displays, and to support most all previously written software
for the Apple][and Apple][+. These “classic” and new entry points include GETFMT, RESET,
BASCALC, NEWVW, RDKEY1, KEYIN, RDESC, PICKFIX, IOPRT1, MINIASM, and the screen
handling routines HOME, SETWND, VTABZ, CLEOLZ, CLREOP, and SCROLL. Obviously, one
can no longer expect to use any Monitor entry point “within” these routines or any other Monitor
routine and expect reliable results. For example, the IRQ interrupt vector at 0xFFFE and 0xFFFF no
longer uses the old BREAK vector at 0xFA40. The snippet of code left at 0xFA40 only saves the A-
register to 0x45 (AREG) before jumping to the new IRQ interrupt handler at 0xC3FA instead of to the
address found at 0x3FE and 0x3FF (usually the address of the Monitor, 0xFF65). This new IRQ
handler now pushes all the registers onto the stack and saves the current memory configuration state of
the machine as previously explained. It appears that it may be no longer necessary to clear the page-
zero 0x48 location after making a call to RWTS if DOS 4.1 is not being utilized. Furthermore, the
RESET routine has undergone a substantial overhaul as well. If the ClosedApple key is held down
along with the CONTROL key while pressing and releasing the RESET key the built-in self-test
diagnostics will begin to execute. These diagnostics test page-zero RAM separately from all other
writable RAM in main memory, it repeats these tests for auxiliary memory, and then it tests the IOU
and MMU devices. If an error should occur the output message simply states an error has occurred in
ZP RAM, RAM, IOU, or MMU, and nothing more. The diagnostics simply freeze on the occurrence
of the first error it encounters, and does not continue to determine if there are additional memory or
device errors. Essentially the user is left bewildered and confused, and the only course of action is to
seek authorized Apple service. If the diagnostics find no errors it prints “System OK” and the
computer freezes. Only then, if the ClosedApple and OpenApple keys are pressed together will the
built-in self-test diagnostics execute again and leave the computer frozen as before. Generally, the
computer needs to be powered off, then powered on in order for it to be placed in a normal, useable
configuration. These diagnostics consume two pages of address space in the CX ROM from 0xC600
to 0xC7FF, a rather substantial, if not bombastic amount of ROM space. Unfortunately, these tests

 74

require them to reside and execute in the ROM address space as they will not execute correctly in total
in any other address space.

It is fair to say that ROM address space is very, very precious. I believe the Apple engineering team
did a remarkable job in building a quality 80-column text card software product that performs simply
and elegantly. It is so easy to place the cursor or characters anywhere on the screen, for example,
compared to the difficulty I had with the Videx UltraTerm video display card for the very same task.
In order to support the Monitor Read and Write commands and the Applesoft commands that depend
on those Monitor commands, the Apple team used an entire page of CX ROM from 0xC500 to
0xC5FF. I disabled those Applesoft commands dependent on the Monitor Read and Write commands
by replacing the nine subroutine calls at 0xD8C0, 0xD8C6, 0xD8CC, 0xD8E3, 0xF3B3, 0xF3B9,
0xF3BF, 0xF3D5, and 0xF77B with a subroutine call to IORTS at 0xFF58, a simple RTS instruction.
Now, if any of these Applesoft commands are used on the command line or within a program the
Applesoft command performs no action and it returns immediately.

It must be understood and accepted that the location of some data tables in the Monitor is not
sacrosanct and these tables may be moved to other locations. For example, there are three unused
bytes between the Translate table XLTBL and the Display Register table RTBL. By moving the
XLTBL up three bytes in memory will provide sufficient room for MODKEY. The BASCALC
routine at 0xFBC1 is repeated in the CX ROM at 0xCABA, and there is even an entry point at 0xC1B6
that is simply not utilized, though incorrectly coded in my opinion. The following code segments
show how to code the 0xC1B6 entry point correctly so that both X-register and Y-register will be
preserved.

 0xFBC1:

BASCALC sty BASL ; 0x28, preserve Y-reg
 ldy #2 ; index for XBASCLC routine
 bne GOTOROM ; 0xFBB4, go to the CX ROM
FMT2 byt %00000000 ; first byte of table at 0xFBC7

0xC1B6:
XBASCLC ldy BASL ; 0x28, recover Y-reg
 jsr XBASCALC ; 0xCABA, do the calculation
 bcc CXEXIT ; 0xC208, always taken

Using the CX ROM BASCALC routine will provide enough room for the new 65C02 16-byte FMT2
table to reside in the Monitor beginning at 0xFBC7. Once the FMT2 table has been relocated there is
enough address space starting at 0xF962 for the larger 65C02 FMT1, MNEML, and MNEMR tables
leaving 4 unused bytes at 0xFA3C. The INSDS1 routine at 0xF882 needs a little modification in view
of the new FMT1 and FMT2 tables, and there is just enough room to detect the relative (zpage) opcode
format (“LDA ($A5)”, for example). Various FMT2 tables I have seen usually contain the value
0x4B for the relative (zpage) opcode format. The correct value is 0x49. In addition, this value is still
unique among the other FMT2 table entries and using this value highly simplifies the code at 0xF8A5
to adjust the opcode index into the MNEML/MNEMR tables, the calculation of LENGTH, and the
search for the correct opcode by the Mini-Assembler. The GETFMT routine is continued in the CX

 75

ROM at 0xC1D5 using a Y-register index of 16. The following code segment shows the necessary
changes.

 0xF8A5:
 tax ; FMT2 index
 lda FMT2,X ; 0xFBC7, get opcode format
 cmp #$49 ; is it relative (zpage) format
 bne GETFMT1 ; 0xF8AE, if not this format
 dey ; correct the opcode index
 ;
 GETFMT1 tax ; preserve opcode format
 sty BAS2L ; 0x2A, preserve opcode index
 ldy #16 ; index for XGETFMT routine
 jmp GOTOROM ; 0xFBB4, enter CX ROM

 0xC1D5:

XGETFMT txa ; recover opcode format
 sta FORMAT ; 0x2E, save format
 and #3 ; mask to extract length
 sta LENGTH ; 0x2F, save length
 lda BAS2L ; 0x2A, recover opcode index
 jmp XGETFMT2 ; 0xC5D5, continue processing

Some of the new 65C02 opcodes do not follow the general classification rules of the 6502 Instruction
Set so they must be processed using a lookup table. This is what the XGETFMT2 code does at
0xC5D5 in combination with tables TBLC and TBLL I placed at 0xCA71 instead of segmenting the
XGETFMT2 code. Table TBLC at 0xCA71 contains the problem opcode index and table TBLL at
0xCA7D contains the new opcode index that indexes into the MNEML and MNEMR tables that
contain the actual compressed ASCII of the opcode mnemonics. The Monitor Step and Trace
commands as well as the GETNSP routine must now fit into the remaining space in the 0xC5 page
from 0xC500 through 0xC5D4. Before the TRACE and STEPZ entry points can be restored to their
“classic” entry location in the Monitor, the CXOFF1 and CXRTN entry points need to be moved.
These four bytes fit nicely at 0xFA3C, just after the MNEMR data table mentioned earlier. The
following code segments show the reintroduction of the TRACE and STEPZ entry points and their exit
entry point STEPRTN that handles a BRK opcode, a CONTROL-C key entry, and when STEP
processing has completed. If the space bar is pressed TRACE will pause until any key is pressed. If
the ESC key is pressed during a TRACE pause, TRACE will exit cleanly. Either STEP or TRACE
may be resumed after exiting TRACE. STEP and TRACE utilize the complete 65C02 Instruction Set.

 0xFEC2:

TRACE dec YSAV ; 0x34, automatically repeat STEP
STEPZ sta CXROMON ; 0xC007, turn the CX ROM on
 jmp CXSTEP ; 0xC508, enter CXSTEP

 76

 0xFCCA:
STEPRTN sta CXROMOFF ; 0xC006, turn the CX ROM off
 bcs STEPRTN2 ; 0xFC5D, if a BRK occurred
 jmp NXTITM ; 0xFF73, enter NXTIT

 0xFC5D:
STEPRTN2 jmp OLDBRK ; 0xFA59, enter OLDBRK

I know I have used the following Monitor instructions hundreds (or thousands?) of times to either clear
memory or to set memory to a particular value.

*1000:0 ; set 0x1000 to zero
*1001<1000.1FFEM ; copy current data to next byte

*1000:FF ; set 0x1000 to negative one
*1001<1000.1FFEM ; copy current data to next byte

I do recall only one or two instances when I needed to search memory for certain bytes in order to
defeat someone’s copy protection algorithm. Now having the Mini-Assembler in ROM allows me to
enter a few lines of code, say at 0x300, to find any number of consecutive bytes in a range of memory
either in main or auxiliary memory. Unfortunately, the Monitor Search command does not search
auxiliary memory. Now that the Step and Trace commands have been fully integrated into the Monitor
once again, the “S” command is taken by the Step command and the Search command must be either
renamed or replaced. I chose to rename the Search command to the “X” command for “eXamine”
memory. Since there is no longer a need for a Write command at 0xFECD I believe a memory Zap
command would be the perfect replacement for that command. The Zap command has the following
syntax.

*00<1000.1FFFZ ; change memory to zero
*FF<1000.1FFFZ ; change memory to negative one

The following code can be placed at 0xFECD.

 0xFECD:

ZAPMEM lda A4L ; 0x42, get value to set memory
 sta (A1L),Y ; 0x3C, change memory

 jsr NXTA1 ; 0xFCBA, increment address
 bcc ZAPMEM ; 0xFECD, continue if not done
 rts ; return to 0xFF85

After removing the Read command at 0xFEFD and its return code CXOFF2 at 0xFF03, moving the
GETNSP routine to 0xC500 where it belongs, and moving TITLE up from 0xFF0A to 0xFF05, the

 77

enhanced ASCII data input capability allows one to enter lower and upper ASCII data easily into
memory. The following example lines of Monitor instructions show how this is done.

*300:’A ’B ’C ; enter 0x41, 0x42, 0x43 to 0x300
*303:”A ”B ”C ; enter 0xC1, 0xC2, 0xC3 to 0x303

Instead of increasing the size of the CHRTBL table at 0xFFCC and the SUBTBL table at 0xFFE3 the
Apple engineers added an additional routine LOOKASC at 0xFF1B prior to entering DIG at 0xFF8A.
This routine essentially accomplishes the ability to add an additional command to the Monitor’s
repertoire. Because there is now additional code space from 0xFF0F to 0xFF1B why not enhance the
utility and power of lower ASCII data input and modify the Apostrophe command used to enter lower
ASCII data by including a Quote command to enter upper ASCII data? Also, can the LOOKASC
routine be leveraged such that it can be used to enter the Search command routine so that the
ZAPMEM routine can be accessed by means of the CHRTBL/SUBTBL method like all other Monitor
commands? Actually, the ZAPMEM routine must be accessed by means of the CHRTBL/SUBTBL
method because it depends on having the Y-register initialized to 0x00 since there is not enough code
space for the routine to do this. On the other hand, the Search routine initializes the Y-register to the
values it requires. Unfortunately, there is simply not enough code space to accomplish all of these
wonderful ideas unless some serious changes are made in a few other Monitor routines.

Both the CX ROM and the 0xF0 ROM share a common routine to change lowercase characters to
uppercase characters. There is absolutely no reason why the CX ROM routines cannot use part of the
UPMON routine found at 0xFCFD and eliminate the UPRCASE routine found at 0xCE14. That space
could be used by the XRDKEY originally found at 0xC2F2 since it only requires ten bytes of code
space. Moving the routine XRDKEY to the 0xCE ROM page provides sufficient code space to the
0xC2 ROM page in order to allow an expansion of the XRESET routine originally found at 0xC2B0.

 0xFCFD:
 UPMON lda INPUT,Y ; 0x200, get next input character
 iny ; increment index
 ;
 UPRCASE cmp #”a” ; is it a lowercase value
 bcc UPMON2 ; 0xFD0B, branch if less than
 cmp #”z”+1 ; is it within range
 bcs UPMON2 ; 0xFD0B, branch if out of range
 and #LWRMASK ; 0xDF, make it uppercase
 ;
 UPMON2 rts ; return to caller

 0xCE14:
 XRDKEY ldy CH ; 0x24, get cursor location
 lda (BASL),Y ; 0x28, get screen character
 bit RDVID80 ; 0xC01F, is 80 column enabled
 bpl INVERT ; 0xCE26, branch if not
 rts ; return to caller

 78

 ;
 dfs 1,ZERO ; add 1 byte of space

Both the RESET routine at 0xFA62 and the OLDRST routine at 0xFF59 share twelve bytes of
common code. The OLDRST routine happens to be midway between the LOOKASC routine and the
“jmp” instruction to LOOKASC at 0xFFBB. If the common code at OLDRST could be partially
eliminated there would be sufficient code space to enhance the ASCII data input routine and provide a
means to enter the Search command routine. The following code shows how this can be done.

 0xC2AE:

XRESET lda ANN1OFF ; 0xC058, turn annunciator 1 off
 lda ANN2OFF ; 0xC05A, turn annunciator 2 off
 lda ANN3ON ; 0xC05D, turn annunciator 3 on
 lda ANN4ON ; 0xC05F, turn annunciator 4 on
 lda #NEGONE ; 0xFF, get negative one
 sta XMODE ; 0x4FB, initialize MODE
 ...

 0xFA62:
 RESET cld ; clear decimal
 jsr RSETINIT ; $FA6A, do the initialization
 ldy #9 ; index for XRESET routine
 bne RESET1 ; $FA78, skip over RSETINIT
 ;
 RSETINIT jsr SETNORM ; 0xFE84, set normal video
 jsr INIT ; 0xFB2F, init mode and window
 jsr SETVID ; 0xFE93, init CSWL (0x36)
 jmp SETKBD ; 0xFE89, init KSWL (0x38)
 dfs 2,ZERO ; add 2 bytes of space
 ;
 RESET1 jsr GOTOROM ; 0xFBB4, enter CX ROM
 lda CLRROM ; 0xCFFF, disable extension ROM
 bit CLRKEY ; 0xC010, clear keyboard strobe

 ...

Now, working from upper memory to lower memory the changes to the NXTCHR and OLDRST
routines can be better appreciated.

 0xFFAD:
 NXTCHR jsr UPMON ; 0xFCFD, get next input char
 eor #”0” ; extract number
 cmp #10 ; is it a decimal digit
 bcc DIG ; 0xFF8A, process decimal digit
 adc #$88 ; shift value to get HEX digit

 79

 cmp #$FA ; is it a HEX digit
 bcs DIG ; 0xFF8A, process HEX digit
 bcc LOOKASC0 ; 0xFF5F, process command

 ...

 0xFF59:
 OLDRST jsr RSETINIT ; 0xFA6A, do the initialization
 jmp MON ; 0xFF65, enter Monitor
 ;
 LOOKASC0 cmp #$89+$B0^””” ; 0x9B, is it Quote command
 beq LOOKASC1 ; 0xFF18, process it (carry set)
 bne LOOKASC ; 0xFF0F, continue

This six-byte space in the OLDRST routine area is just enough code space to eliminate the “jmp”
instruction to LOOKASC at 0xFFBB and to provide the first check if there is a Quote command. The
next two checks determine if there is a Search command or an Apostrophe command at LOOKASC.

 0xFF0F:

LOOKASC cmp #$89+$B0^”X” ; 0xF1, is it Search command
 beq SEARCH ; 0xFED7, process it
 cmp #$89+$B0^”’” ; 0xA0, is it Apostrophe command
 bne IORTS ; 0xFF58, branch if not (done)
 clc ; make sure carry flag is clear
;
LOOKASC1 php ; save processor status
 lda INPUT,Y ; 0x0200, get the ASCII data
 cmp #RETURN ; 0x8D, is it a premature end
 beq LOOKASC3 ; 0xFF2A, branch if so (done)
 plp ; recall processor status
 bcs LOOKASC2 ; 0xFF25, branch if Quote command
 and #MSBCLR ; 0x7F, turn MSB off
;
LOOKASC2 ldx #7 ; get ASL counter for NXTBIT
 iny ; point to next data byte
 bne NXTBIT ; 0xFF90, always taken
;
LOOKASC3 plp ; recall processor status
 beq GETNUM ; 0xFFA7, always taken

Entering the Monitor Search command routine in this manner is certainly not normal, and its exit must
be handled differently than the other CHRTBL/SUBTBL command routines. Also, I found that adding
an extra carriage return at the conclusion of the routine’s output highlights the addresses the routine
finds. There are eight bytes free at 0xFEFD after the CRMON routine at 0xFEF6 and before the
TITLE data in upper ASCII at 0xFF05. The return from the Mini-Assembler MINIASM routine fits
nicely here, after CRMON where the READ routine used to be.

 80

 0xFED7:
 SEARCH ldy #1 ; index to second search address
 lda A4H ; 0x43, second search data
 beq SEARCH1 ; 0xFEE1, skip if none requested
 cmp (A1L),Y ; 0x3C, check for match
 bne SEARCH2 ; 0xFEEB, skip if no match
 ;
 SEARCH1 dey ; index to first search address
 lda A4L ; 0x42, first search data
 cmp (A1L),Y ; 0x3C, check for match
 bne SEARCH2 ; 0xFEEB, skip if no match
 jsr PRA1 ; 0xFD92, print A1H and A1L
 ;
 SEARCH2 jsr NXTA1 ; 0xFCBA, increment address
 bcc SEARCH ; 0xFED7, still in search range
 jsr CROUT ; 0xFD8E, print carriage return
 jmp CRMON1 ; 0xFEF9, fix program counter
 ;
 CRMON jsr BL1 ; 0xFE00, process input SPACE
 ;
 CRMON1 pla ; pop stack, low address byte
 Pla ; pop stack, high address byte
 bne MONZ ; 0xFF69, enter Monitor
 ;
 MINIASM: ldy #13 ; index for XMINIASM
 jsr GOTOROM ; 0xFBB4, enter CX ROM
 jmp CRMON ; 0xFEF6, re-enter Monitor
 ;
 TITLE asc “Apple //e+” ; screen title during autostart

 ...

This just about completes the changes I made to the Enhanced Apple //e Monitor firmware. One last
detail is to integrate the Zap memory command into the CHRTBL and SUBTBL tables in place of the
Search memory command. Once that is accomplished there is little if any unused code space left in the
Monitor firmware except for a sum of 19 bytes, all in byte pairs except for one single byte instance.
This is certainly not enough address space to get excited about. There are ten bytes of unused address
space in the 0xC2 ROM page at 0xC2F6 as a result of moving the XRDKEY routine to 0xCE14.

As an exercise I was able to compact the RESET diagnostic routines residing in CX ROM pages 0xC6
and 0xC7 to gain an additional 34 bytes of address space without compromising the integrity of those
routines. That turned out to be more effort than it was actually worth. Finally, I found that the RESET
diagnostic routines do not play very well with the Zip Chip because the Zip Chip handles RESET
activities internally before it releases the INH line so the MMU and IMU devices can initiate their
internal switching. It only staggers the imagination what one could do with two pages of code space in
lieu of the virtually useless RESET diagnostic routines that only provide a PASS result if no errors are
encountered or a FAIL result only for the first error encountered. What about subsequent errors?

 81

I came away from my analysis of the CX ROM code realizing I know little if anything about the
required ROM entry points that support Pascal processing. The 80-column video firmware residing in
page 0xC3 of the CX ROM contains signature bytes at 0xC30B and 0xC30C followed by four offset
bytes for the JPINIT, JPREAD, JPWRITE, and JPSTAT entry points. These entry points provide jump
instructions for the Init, Read, Write, and Status Pascal routines within the 0xC8 and 0xC9 pages of the
CX ROM. What I am unclear about are the CX ROM entry points for PXINIT at 0xC800, a jump
instruction to PINIT1 located at 0xC9B0, for PXREAD at 0xC84D, a jump instruction to JPREAD
located at 0xC350, and for PXWRITE at 0xC9AA, a load and jump instruction to JPWRITE located at
0xC356. The addresses 0xC800, 0xC84D, and 0xC9AA appear to be hard-coded such that other CX
ROM routines must span these specific addresses and/or entry points. I wonder if the original
designers of the Pascal firmware failed to utilize a common jump-block structure strategy, perhaps at
0xC800, where the jump-block order of jump instructions can remain constant, thus allowing the
addresses within the jump-block to change. Both Randall Hyde and Glen Bredon used this technique
quite successfully when they designed Lisa and Big Mac, respectively. Both software engineers put
their jump-block structures at the beginning of page 0xE0, the traditional entry point area for ROM
software, like Applesoft does for its warm-start and cold-start entry points. If it is so important to
support Pascal then there is little choice but to “dance” around these hard-coded addresses. What I
need to ascertain is what was the previous firmware that established the 0xC800, 0xC84D, and
0xC9AA addresses in the first place, and why the Pascal software engineer created these hard-coded
addresses that surely would cause future issues.

It is quite straight forward to assemble the source code for the ROM firmware found on the ROM
Source volume “ROM.SW16.Source”. This ROM firmware does not include the TAPEIN and
TAPEOUT routines nor does it include the Apple //e Memory Test routines. This ROM firmware does
include the Mini-Assembler, the complete 65C02 disassembler, the enhanced ASCII data input, Step,
Trace, and Zap commands, and the Sweet 16 Metaprocessor. It would take some effort to adapt this
source code and its directives to another assembler other than Lisa. Lisa provides all the enhancements
and directives necessary as well as the addition of new directives to provide a straightforward
assembly. As discussed in Section IV.14 Lisa uses lower memory above 0x0800 for object code,
source code, and the complete symbol table.

To assemble the ROM.SW16 firmware place the Image volume “ROM.SW16.Image” in disk drive 1
and boot the volume. Lisa will automatically load. Enter the “SE” command-line command to select
the “SETUP” program in order to verify or set the “Start of Source Code” to 0x1A00 and the
“End of Source Code” to 0x4A00. Place the ROM.SW16 Source volume
“ROM.SW16.Source” in disk drive 2, load the “ROM2E.L” file into memory, and start the
assembler by entering either the “A” command-line command or the “Z” command-line command. If a
printed version of the screen output is desired simply preface the “A” or “Z” command with the “P1”
command-line command. Four object code files will be created on the Image volume: “C0ROM”,
“D0ROM”, “E0ROM”, and “F0ROM”. The utility “BLDROM” can be used to combine the four object
code files in memory sequentially starting at 0x1000, and the utility saves the complete ROM.SW16
firmware file “SW16ROM” and the two half-firmware files “SW16ROM.A” and “SW16ROM.B” to the
Image volume. Now, the utility “BURNER” can used to burn a 27128 EPROM using the firmware file
“SW16ROM” or two 2764 EPROMs using the firmware files “SW16ROM.A” and “SW16ROM.B”.

It is beyond the scope of this manual to describe and include all the C language routines and programs
I have created in the XQuartz environment that support and process Apple][DOS 4.1 volumes and
files. Suffice it to say that “~.dsk” files are simple binary files that begin with a 256-byte page of

 82

data for track 0x00, sector 0x00 and end with a 256-byte page of data for track 0x23, sector 0x0F.
There are no headers that preface each of the 256-byte pages of data that label their track and sector
numbers. I found that it was most efficient to read a “~.dsk” file into a three-dimensional array
defined as “UCHAR Disk[48][32][SECTOR_SIZE]” and base the Track and Sector maximum
index values on the size of the “~.dsk” file. For example, a “~.dsk” file that is 143360 bytes in size
when opened will have a maximum of 35 tracks, each track having 16 sectors. A “~.dsk” file that is
393216 bytes in size when opened will have a maximum of 48 tracks, each track having 32 sectors. Of
course, there are other quite valid algorithms to choose from. My programs can extract files from and
insert files onto any DOS 4.1 “~.dsk” volume simply by knowing the structure of Apple][files
based on filetype and the structure of the DOS 4.1 VTOC and Catalog sectors. Once I extract all the
files from an Image volume such as “ROM.SW16.Image”, I can easily create a ROM firmware file
for Virtual][, like “APPLE2E.SW16.ROM”. I prefer to use the UNIX “tcsh” C shell environment
for processing UNIX command files. Here are the entries in the command file “buildRom”:

cat d0rom e0rom f0rom > romA
cat c0rom romA > SW16.ROM
cat zeropage zeropage zeropage slot3 > rom1
cat zeropage zeropage slot6 zeropage > rom2
cat zeropage zeropage zeropage zeropage > rom3
cat rom1 rom2 rom3 rom3 romA > rom4
cat rom4 c0rom romA > APPLE2E.SW16.ROM
rm rom1 rom2 rom3 rom4 romA

All that is left to do is to copy the ROM firmware file “APPLE2E.SW16.ROM” to the Virtual][ROM
directory found at:

Users/<username>/Library/Application Support/Virtual][/ROM

The directory “Library” must be made visible, of course.

Within Virtual][simply pull down the Machine/Configure/Components/ROM memory tab and select
the button for “Use specific ROM”. The ROM firmware file “APPLE2E.SW16.ROM” can be
selected from the ROM files listed. Be sure to save this version of Virtual][appropriately labeled.

Section II.5 discusses the Applesoft Garbage Collector. The source code for the modifications to the
ROM firmware that supports my Applesoft garbage collector is found on the ROM.SW16GC Source
volume “ROM.SW16GC.Source” and Image volume “ROM.SW16GC.Image”. The firmware files
“SW16GCROM”, “SW16GCROM.A”, and “SW16GCROM.B” can be created using the same procedures
as above. The resulting ROM firmware file “APPLE2E.SW16GC.ROM” can be copied to the
“Virtual][ROM” directory as well.

As mentioned earlier the Applesoft LOAD, RECALL, SAVE, STORE, and SHLOAD commands are
useless without the cassette tape TAPEIN and TAPEOUT routines, which were removed from the
0xC500 page in favor of the Mini-Assembler. Instead of replacing the calls to the TAPEIN and
TAPEOUT routines with a call to IORTS at 0xFF58 as in the Source volume “ROM.SW16.Source”, I

 83

replaced the addresses to the Applesoft LOAD, RECALL, SAVE, STORE, and SHLOAD commands
with a call to IORTS in the Source volume “ROM.SW16GC.Source”. Doing this frees a total of
0xAE bytes for other processing and/or other Applesoft commands. The Applesoft commands’ text is
located from 0xD0D0 to 0xD25F, and the commands’ entry addresses are located from 0xD000 to
0xD0CF. Table II.3.10 shows the available ROM space and its location when the Applesoft LOAD,
RECALL, SAVE, STORE, and SHLOAD commands are disabled and effectively removed. I have no
doubt that I will innovate a terrific use for this ROM memory space in the next development cycle.

Start End Length Applesoft Commands
0xD8B0 0xD900 0x51 LOAD and SAVE
0xF39F 0xF3D7 0x39 STORE and RECALL
0xF775 0xF786 0x12 SHLOAD
0xF7D5 0xF7E6 0x12 GETARYPT

Table II.3.10. Disabled Applesoft Commands

 84

4. Sweet 16 Metaprocessor
Sweet 16 is a "pseudo microprocessor" implemented in 6502 assembly language. Originally conceived
and written by Steve “Woz” Wozniak, Sweet 16 and Integer BASIC were included in the ROM
firmware of early Apple II computers. Sweet 16 is a really smart and useful extension to a 6502 based
computer and it can be ported to other 6502 based systems to provide useful 16-bit functionality. It
can be thought of as a virtual machine that gives the 6502 programmer a 16-bit extension to the 8-bit
CPU. Sweet 16 utilizes sixteen 16-bit registers/pointers in page-zero and it provides new opcodes to
use those registers. Although Sweet 16 instructions are not as fast as native 6502 instructions, it can
reduce the code size of programs and ease some programming difficulties.

Steve Wozniak wrote “While writing Apple BASIC for the 6502 microprocessor, I repeatedly
encountered a variant of Murphy's Law. Briefly stated, any routine operating on 16-bit data will
require at least twice the code that it should. Programs making extensive use of 16-bit pointers such as
compilers, editors, and assemblers are included in this category. In my case, even the addition of a few
double-byte instructions to the 6502’s Instruction Set would have only slightly alleviated the problem.
What I really needed was a hybrid of the MOS Technology 6502 and RCA 1800 architectures: a
powerful 8-bit data handler complemented by an easy to use processor with an abundance of 16-bit
registers and excellent pointer capability. My solution was to implement a non-existent 16-bit
“metaprocessor” in software, interpreter style, which I call Sweet 16. Sweet 16 is based around sixteen
16-bit registers called R0 to R15, which are actually implemented as 32 memory locations. R0 doubles
as the Sweet 16 Accumulator (ACC), R15 as the Program Counter (PC), and R14 as the Status
Register. R13 holds compare instruction results and R12 is the Subroutine Return stack pointer if
Sweet 16 subroutines are used. All other Sweet 16 registers are at the user's unrestricted disposal.

“Sweet 16 instructions fall into register and non-register categories. The register instructions specify
one of the sixteen registers to be used as either a data element or as a pointer to data in memory,
depending on the specific instruction. For example, the instruction INR R5 uses R5 as a data register
and ST @R7 uses R7 as a pointer register to data in memory. Except for the SET instruction, register
instructions require one byte. The non-register instructions are primarily 6502 style branch operations
with the second byte specifying a +/- 127-byte displacement relative to the address of the following
instruction. If a Prior Register (PR) operation result meets a specified branch condition, the
displacement is added to the Sweet 16 Program Counter, thus effecting a branch. Sweet 16 is intended
as an enhancement package to the 6502 processor, not as a standalone processor. A 6502 program
switches to Sweet 16 mode with a subroutine call, and subsequent code is interpreted as Sweet 16
instructions. The non-register instruction RTN returns the user program to the 6502’s direct execution
mode after restoring the A, X, Y, P, and S internal registers. Even though most opcodes are only one
byte long, Sweet 16 runs approximately ten times slower than equivalent 6502 code, so it should be
employed only when code is at a premium or execution is not. As an example of its usefulness, I have
estimated that about 1K byte could be weeded out of my 5K byte Apple][BASIC interpreter with no
observable performance degradation by selectively applying Sweet 16.”

Sweet 16 was probably the least used and least understood seed in the original Apple][. In exactly the
same sense that the Integer and Applesoft Basics are languages, Sweet 16 is a language, too.
Compared to the Basics, however, it would be classified as lower level with a strong likeness to
conventional 6502 Assembly language. Obviously, to use Sweet 16, you must learn the language.
And according to "Woz", "The opcode list is short and uncomplicated.” Sweet 16 was ROM based in
every early Apple][from 0xF689 to 0xF7FC. It uses the SAVE and RESTORE routines in the
Apple’s Monitor to preserve the 6502 registers during its use, allowing Sweet 16 to be used as a

 85

subroutine. Table II.4.1 lists the Sweet 16 registers and the function of each register. The complete
Sweet 16 Instruction Set is shown in Tables II.4.2 and II.4.3 listing each opcode, its mnemonic, and a
brief description what the opcode does. Table II.4.2 lists the non-register opcodes and Table II.4.3 lists
the register opcodes.

Register Description
R0 Sweet 16 Accumulator (ACC)

R1-R11 Sweet 16 user registers
R12 Sweet 16 subroutine return Stack Pointer (SP)
R13 Sweet 16 compare instruction results
R14 Sweet 16 Status Register (PR & carry flag)
R15 Sweet 16 Program Counter (PC)

Table II.4.1. Sweet 16 Register Descriptions

Opcode Mnemonic Description
0x00 RTN Return to 6502 mode to process native 6502 instructions
0x01 BR ea Branch always to PC+ea+2®PC
0x02 BNC ea Branch if prior operation left carry clear to PC+ea+2®PC
0x03 BC ea Branch if prior operation left carry set to PC+ea+2®PC
0x04 BP ea Branch if Prior Register is positive to PC+ea+2®PC
0x05 BM ea Branch if Prior Register is negative to PC+ea+2®PC
0x06 BZ ea Branch if Prior Register is zero to PC+ea+2®PC
0x07 BNZ ea Branch if Prior Register is not zero to PC+ea+2®PC
0x08 BM1 ea Branch if Prior Register is minus one to PC+ea+2®PC
0x09 BNM1 ea Branch if Prior Register is not minus one to PC+ea+2®PC
0x0A SOUT chr Send character ‘chr’ to COUT (originally the BK opcode)
0x0B RS Return from Subroutine, and POPD @SP®PC, SP=SP-2
0x0C BS ea Branch to Subroutine, and PC®STD @SP, SP=SP+2,

PC+ea+2®PC
0x0D RSNS Return from Subroutine without stack, and SP®PC (originally

unassigned opcode)
0x0E BSNS ea Branch to Subroutine without stack, and PC®SP, PC+ea+2®PC

(originally unassigned opcode)
0x0F SJMP adr Jump to 16-bit address ‘adr’ and adr-1®PC (originally

unassigned opcode)

Table II.4.2. Sweet 16 Non-Register Opcodes

 86

Opcode Mnemonic Description
0x1n SET Rn,val Load Rn with 16-bit value ‘val’
0x2n LD Rn Load ACC from Rn, PR=n
0x3n ST Rn Store ACC into Rn, PR=n
0x4n LD @Rn Load LO ACC indirectly using Rn, HO ACC=0, Rn=Rn+1, PR=0
0x5n ST @Rn Store LO ACC indirectly using Rn, Rn=Rn+1, PR=0
0x6n LDD @Rn Load ACC indirectly using Rn, Rn=Rn+2, PR=0
0x7n STD @Rn Store ACC indirectly using Rn, Rn=Rn+2, PR=0
0x8n POP @Rn Rn=Rn-1, load LO ACC indirectly using Rn, HO ACC=0, PR=0
0x9n STP @Rn Rn=Rn-1, store LO ACC indirectly using Rn, PR=0
0xAn ADD Rn ACC = ACC + Rn, status = carry, PR=0
0xBn SUB Rn ACC = ACC – Rn, status = carry, PR=0
0xCn POPD @Rn Rn=Rn-2, load ACC indirectly using Rn, PR=0
0xDn CPR Rn R13 = ACC – Rn, status = carry, PR=13
0xEn INR Rn Rn = Rn + 1, PR=n
0xFn DCR Rn Rn = Rn – 1, PR=n

Table II.4.3. Sweet 16 Register Opcodes

Glen Bredon utilized Sweet 16 extensively in his Big Mac software by incorporating the Sweet 16
interpreter within its source code since the interpreter did not exist in the Apple][+ or Apple //e
ROMs. Mr. Bredon re-coded the NUL and BNM1 opcodes to provide other functions specific to his
needs. He also did not use the R12 register as a Return from Subroutine stack pointer and he did not
use the R14 register for the Prior Register and status. Rather than using a stack pointer at all, he
simply saved the Return from Subroutine address at 0xDA/0xDB and the Prior Register and status at
0xFF. I am simply astounded at how easy it is to utilize the Sweet 16 instructions for any task that
processes large sets of data, like an assembler. In fact, the early versions of the S-C Assembler II used
Sweet 16 in several locations. The TED/ASM assembler and all its descendants, including the DOS
Tool Kit, TED II+, Merlin, and many others, used Sweet 16 heavily. Several of the programs in the
Apple Programmer's Aid ROM used Sweet 16 including the Integer BASIC Renumber/Append
programs.

As Tables II.4.2 and II.4.3 show, the Sweet 16 opcode list is short and uncomplicated. Except for
relative branch displacements, hand assembly is trivial. All register opcodes are formed by combining
two hexadecimal digits, one for the opcode and one to specify a register. For example, opcodes 0x15
and 0x45 both specify register R5 while opcodes 0x23, 0x27, and 0x2B are all LD Rn instructions.
Most register instructions are assigned in complementary pairs to facilitate remembering them. Thus,
LD Rn and ST Rn are opcodes 0x2n and 0x3n respectively, while LD @Rn and ST @Rn are opcodes
0x4n and 0x5n. Opcodes 0x00 to 0x0F are assigned to the sixteen Non-Register Opcodes and opcodes
0x1n to 0xFn opcodes are assigned to the fifteen Register Opcodes. Except for the opcodes RTN
(0x00), SOUT (0x0A), BS (0x0C), BSNS (0x0E), and SJMP (0x0F), the non-register opcodes are
basic 6502 style branches. The second byte of a branch instruction contains a +/- 127-byte
displacement value (in two's complement form) relative to the address of the instruction immediately
following the branch. The SOUT (0x0A) opcode sends its second byte to COUT at 0xFDED. Of
course, the SJMP opcode, like the SET opcode, takes its second and third byte to form a 16-bit address,

 87

or a 16-bit value in the case of SET. Before the BS/RS opcodes can be used, R12 must be initialized
with the address of the stack containing the return from subroutine addresses. The stack must be a
buffer of sufficient size to hold n-levels of subroutine calls. If a specified branch condition is met by
the Prior Register instruction result, the displacement is added to the Program Counter effecting a
branch. Except for the BR (Branch always) opcode, the BS (Branch to a Subroutine) opcode, and the
BSNS (Branch to a Subroutine without stack) opcode, the branch opcodes are assigned in
complementary pairs, thus rendering them easily remembered for hand coding. For example, Branch if
Plus and Branch if Minus are opcodes 0x04 and 0x05 while Branch if Zero and Branch if Not Zero are
opcodes 0x06 and 0x07.

 The original Sweet 16 software left the last three non-register opcodes unassigned, where any of them
could be used as a NUL opcode, and the BK (Break, 0x0A) opcode simply executed a 6502 BRK
instruction. The Prior Register and the carry status were both combined in the high order (HO) byte of
R14. I chose to separate the Prior Register and carry status into separate bytes of the R14 register in
order to reduce the code size and number of execution cycles for all of the non-register operations.
Doing this allowed the inclusion of three additional opcodes within the limited, single memory page
boundary that must contain all the SW16 routines: Send character to COUT, Branch to Subroutine
without stack, Return from Subroutine without stack, and Jump to Address. Incidentally, one can jump
to an address using the other Sweet 16 opcodes, but it requires using two of them (SET and ST), and
the address must be already decremented by one, or decremented using a third opcode, DCR. The new
instruction, SJMP adr, will load the Sweet 16 Program Counter directly with adr-1.

My implementation of Sweet 16 saves the register number (Prior Register) of the register receiving the
value or change in value into the low order (LO) byte of R14 when a register opcode is processed. If
the register opcode is ADD, SUB, or CPR, I chose to save the state of the carry flag in bit 0 of the HO
byte of R14. The reasons for doing this are quite compelling. Originally the LO byte of R14 was not
utilized by the SW16 interpreter, so it was available to the user. Personally, I found that unused byte to
be virtually useless. So, if there was a way to transform that byte into a more useful function I was
more inclined to adopt that strategy. Each time a non-register opcode is encountered, the original code
used nine cycles in five bytes for part of the setup code, and 10 additional bytes were used for five of
the branch instructions. My implementation requires only eight cycles in five bytes for the setup code,
and no additional bytes for the same five branch instructions. This does not seem like very much of a
savings, 1 cycle for every invocation of a non-register opcode, but in data processing loops that
execute many, many times, a single cycle of savings adds up. Mr. Bredon chose to use 16 cycles in
seven bytes for the same capability. While on the same subject, the SET command is another place
where a few cycles can be saved just by using a different strategy. The original code used 13 cycles in
10 bytes to increment the SW16 Program Counter by two, not including its RTS instruction. My
implementation requires only 11 cycles in 10 bytes every time the SET command is utilized. Mr.
Bredon requires 35 cycles in seven bytes for the same functionality. To me, that seems like a lot of
overhead just to save three bytes. This simply exemplifies the observable fact that when code is made
extremely compact, the price paid is usually slower execution.

As stated above the original image of Sweet 16 was located in ROM from 0xF689 to 0xF7FC, so it
was 372 bytes in size, though the last three bytes of the 0xF7 page were set to 0xFF. My
implementation of Sweet 16 is exactly 400 bytes in size, though it includes four additional, and useful
opcodes in my opinion. Previously, in Section II.3 I wrote “It only staggers the imagination what one
could do with two pages of code space in lieu of the virtually useless RESET diagnostic routines that
only provide a PASS result if no errors are encountered or a FAIL result for the first error
encountered.” I believe having the Sweet 16 Metaprocessor in the Apple //e CX ROM rather than the

 88

RESET diagnostic routines certainly makes a lot more sense to me. And, what’s more, there is more
than sufficient room for the interpreter in the CX ROM if, and only if, there is sufficient room for a
calling and return location in the 0xF0 Monitor firmware. Having those ten bytes of unused address
space in the 0xC2 ROM page at 0xC2F6 certainly does help, too.

I have revised the RESET interface yet again in order to provide a suitable ROM entry point for Sweet
16 at 0xFA72. I increased the entry address by one byte for XRESET to 0xC2AF because I believe a
CLD instruction should be added to the DOCMD routine at 0xC22E before it makes a crucial
hexadecimal calculation forming the “jump” address to some of the GOTOROM routines. Removing the
test for the state of the solid Apple key and the jump to the DIAGS diagnostic routines certainly help in
providing enough room for the instructions removed from RESET at 0xFA62 and relocated to
0xC2AF. Now there remains only seven bytes of unused address space in the 0xC2 ROM page at
0xC2F9. It is totally awesome after plugging in a newly programmed EPROM to have the Sweet 16
Metaprocessor at 0xFA72 ready to interpret any and all software routines containing Sweet 16
instructions. There remains the rare opportunity of what to do with the first 0x70 bytes that are still
available in the 0xC6 ROM page.

 0xC2AF:

XRESETX cld ; clear decimal
 jsr RESETINIT ; 0xFA66, do the initialization
 lda ANN1OFF ; 0xC058, turn annunciator 1 off
 lda ANN2OFF ; 0xC05A, turn annunciator 2 off
 lda ANN3ON ; 0xC05D, turn annunciator 3 on
 lda ANN4ON ; 0xC05F, turn annunciator 4 on
 lda #NEGONE ; 0xFF, get negative one
 sta XMODE ; 0x4FB, initialize MODE
;
; lda PB2IN ; 0xC062, get solid Apple key
; bpl >1 ; 0xC2C4, skip if not pressed
; jmp DIAGS ; 0xC600, go to DIAGS
;
^1 lda PB1IN ; 0xC061, get open Apple key
 bpl CXRESET ; 0xC2DF, switch in C3 ROM
 ...

 lda CLRROM ; 0xCFFF, disable extension ROM
 bit CLRKEY ; 0xC010, clear keyboard strobe
 rts ; return to caller

0xFA62:

 RESET ldy #9 ; index for XRESET routine
 bne RESET1 ; $FA7E, skip over RSETINIT
 ;
 RSETINIT jsr SETNORM ; 0xFE84, set normal video
 jsr INIT ; 0xFB2F, init mode and window
 jsr SETVID ; 0xFE93, init CSWL (0x36)
 jmp SETKBD ; 0xFE89, init KSWL (0x38)

;

 89

 SWEET16 sta CXROMON ; 0cC007, turn the CX ROM on
 jmp SW16 ; 0xC670, enter the Sweet 16
 SW16RTN sta CXROMOFF ; 0xC006, turn the CX ROM off
 jmp (R15L) ; 0x1E, return to 6502 user code
 ;
 RESET1 jsr GOTOROM ; 0xFBB4, enter CX ROM
 ;
 NEWMON cld ; clear decimal

 ...

 90

5. Applesoft Garbage Collector
The Applesoft Garbage Collector routine GARBAG is located in ROM from 0xE484 to 0xE597, and
that routine moves all currently active string variables up in String Pool memory as far as possible.
There are several routines in ROM that rely on the garbage collector, as well as the Applesoft
command “FRE(aexpr)”, to consolidate the Character String Pool when there is not enough Free
Space memory as shown in Figure I.13.1 to perform the requested string variable manipulation. When
certain conditions are met while these ROM routines process character string data, GARBAG is called,
and depending on how many variables are active, the processing time for GARBAG is proportional to
the square of the number of active strings currently in use. This processing time may be a few seconds
if there are less than fifty active strings, or many minutes if there are hundreds of active strings. It may
even appear as if the Applesoft program has literally stopped, or hanged, for no apparent reason. In
section I.13 it was even suggested that strategically placing multiple Applesoft “FRE(aexpr)”
commands throughout an Applesoft program may help to alleviate processing delays.

Many years ago Cornelis Bongers of Erasmus University in Rotterdam, Netherlands, published a
brilliant Garbage Collector algorithm for Applesoft strings in Micro in August, 1982. According to an
article in Apple Assembly Line, March, 1984, the speed of his program was incredible when compared
to the GARBAG algorithm in ROM. And the processing time for his algorithm was directly
proportional to the number of active strings, rather than to the number of active strings squared. The
only problem with his algorithm was that the magazine that published it owned the algorithm. Worse
yet, the algorithm was tied to a program called Ampersoft, marketed by Microsparc, then publishers of
Nibble magazine. It was reported that a license to use Bongers’ algorithm was very costly at that time.

Referring back to Table I.13.1 which shows the definition of a simple string variable descriptor as it is
found in the Simple Variables memory area and to Table I.13.2 which shows the definition of an array
string variable descriptor as it is found in the Array Variables memory area, Bongers introduced the
idea of marking active strings located in the Character String Pool memory area: he set the third byte
in the string data to an upper ASCII value and swapped in the address of the string descriptor for the
first two bytes of the string data. Also during this first pass through the Simple Variables and Array
Variables memory area he saved those first two bytes of the string data safely in the address field of its
descriptor or string element. The address previously in the address field would be changed anyway
after all the strings are moved up in memory to their final location. The second pass through the
Character String Pool memory area moved all active strings as high in memory as they could go,
retrieved the first two characters from storage in its descriptor or string element, and updated the
address field to the new memory location for that string.

Bongers’ algorithm is most efficient when the active strings are a least three bytes in length; so one-
and two-character strings require different handling. On the first pass through the Simple Variables
and Array Variables memory area, the first byte of string data pointed to by these “short” descriptors is
stored in the string length byte of its descriptor. If the string length is two, the second data byte is
stored in the low address byte of its descriptor. For one-character strings the low address byte is
flagged with an 0xFF byte. The high address byte in all “short” descriptors is flagged with an 0xFF
byte since no string can have an address greater than 0xFF00. If “short” strings are found during the
first pass, a third pass returns them to the string pool with their descriptors updated to their new
memory location. “Short” strings do slow down Bongers’ algorithm a little. However, the number of
passes is still proportional to the number of active strings, and not to the number of active strings
squared. Tables II.5.1 and II.5.2 illustrate Bongers’ algorithm during the first pass.

 91

ADL/ADH Descriptor Before Pass 1 Þ ADL/ADH Descriptor After Pass 1
+AS -AS 1 LSB MSB 0 0 +AS -AS 41 FF FF 0 0

LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1

41 41

ADL/ADH Descriptor Before Pass 1 Þ ADL/ADH Descriptor After Pass 1
+AS -AS 2 LSB MSB 0 0 +AS -AS 41 42 FF 0 0

LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1

41 42 41 42

ADL/ADH Descriptor Before Pass 1 Þ ADL/ADH Descriptor After Pass 1
+AS -AS >2 LSB MSB 0 0 +AS -AS LEN 41 42 0 0

LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1

41 42 43 44 45 46 47 ADL+2 ADH C3 44 45 46 47

Table II.5.1. Simple Variable Descriptor Processing in Pass 1

ADL/ADH Element Before Pass 1 Þ ADL/ADH Element After Pass 1
1 LSB MSB 41 FF FF

LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1

41 41

ADL/ADH Element Before Pass 1 Þ ADL/ADH Element After Pass 1
2 LSB MSB 41 42 FF

LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1

41 42 41 42

ADL/ADH Element Before Pass 1 Þ ADL/ADH Element After Pass 1
>2 LSB MSB LEN 41 42

LSB/MSB Memory Before Pass 1 Þ LSB/MSB Memory After Pass 1

41 42 43 44 45 46 47 ADL ADH C3 44 45 46 47

Table II.5.2. Array Variable Element Processing in Pass 1

 92

Pass two in Bongers’ algorithm uses only the information in the String Pool to move all currently
active string variables up in String Pool memory as far as possible. This is accomplished by
initializing a pool pointer and a string pointer to HIMEM and searching down to FRETOP for any
upper ASCII bytes. Once an upper ASCII byte has been found, its string descriptor is located at the
address found two bytes before the upper ASCII byte. That string descriptor contains the length of the
string and the first two ASCII characters of the string. Those two characters may be safely moved
back to the string and the upper ASCII byte changed to a lower ASCII byte. Now the string length can
be subtracted from the current string pointer address, the new string address can be copied to the
second and third byte in its string descriptor, and the string can be copied to its new string address.
However, the string must be copied from its last character backward to prevent possibly overwriting
part of the string if the string were to be copied from its first character forward. Once the pool pointer
reaches the original address in FRETOP, the current string pointer address becomes the new address in
FRETOP if the “short” descriptors flag is clear.

If the “short” descriptors flag is set then a third pass must be made through the Simple Variables and
Array Variables memory area. A memory pointer is initialized to VARTAB and the 0xFF marker is
searched for in either the fifth byte of a Simple Variable descriptor or the third byte of an Array
Variable element. If there is an 0xFF marker in the prior byte then the descriptor is for a one-character
string, otherwise the descriptor is for a two-character string. The current string pointer is adjusted for
one or two characters, the string data is copied from its descriptor to the string pool, and the string
pointer address is copied to its string descriptor. Once the memory pointer reaches STREND, the
current string pointer address becomes the new address in FRETOP.

It must be emphasized that Bongers’ algorithm depends on two important caveats: normal Applesoft
programs save all string data in lower ASCII, i.e. with the high-order bit of each byte cleared to zero,
and normal Applesoft programs never allow more than one string descriptor to point to the same exact
copy of that string in memory. If a user should program something like “A$ = CHR$(193)”,
Bongers’ algorithm will fail. If an assembly language program should modify two string descriptors to
point to the same string in the String Pool, Bongers’ algorithm will fail. Therefore, reasonable care
must be given to creating an Applesoft program and/or assembly language programs that take the
above caveats seriously in order to exact the stupendous benefit in using a garbage collector routine
located in ROM that is based on Bongers’ algorithm.

Armed with only the above information, my attempt to recreate Bongers’ algorithm resulted in an
assembly language program that was 0x200 bytes in size. This necessitated creating a suitable
Applesoft test program that would verify the accuracy of my algorithm and confirm that no character
string was altered in length, modified in content, or destroyed. My ultimate goal would be to replace
GARBAG in ROM with my version of Bongers’ algorithm. GARBAG occupies 0x113 bytes of ROM
and there is 0x70 bytes of memory available in the CX ROM from 0xC600 to 0xC66F (0xC670 is
where the Sweet 16 program begins). If the CX ROM is used then CX ROM management must also
be incorporated. All totaled my garbage routine must fit within 0x183 bytes if it is to be located in
ROM. On the other hand, my garbage routine, after some adjustment, could be attached to an
Applesoft program and simply called prior to issuing the DOS CHAIN command providing that the R
keyword is utilized with CHAIN. At least that would mitigate having GARBAG called in this
particular instance. Periodically the Applesoft program could check the remaining Free Space and call
its attached garbage routine based on reasonable criteria. There is still much indeterminacy whether a
particular character string manipulation will trigger a call to GARBAG. If that should happen

 93

Applesoft processing could come to a grinding pause until the Character String Pool has been
processed.

In order to compact an assembly language routine certain decisions must be made that, hopefully, will
not cause the introduction of more processor cycles than absolutely necessary. Example strategies
would be to limit subroutine calls in the inner-most loops and to limit the pushing and popping of
variables onto the stack. Sometimes simply reorganizing the order of a number of processing loops
can greatly simplify the code and reduce the reinitialization of registers. Keeping a variable’s MSB
address in a register when addresses are compared often can help simplify and accelerate the code as
well. I have no doubt that Mr. Bongers could have condensed his algorithm down to 0x183 bytes (with
six bytes required for CX ROM management). My initial attempt to condense my garbage routine
could not meet the goal of 0x183 bytes unless I removed the flag that signaled whether a third pass was
necessary, and so the routine always made a third pass. Many times it’s helpful to just take a break
from a difficult programming task like this one, and work on something else. Thus, when I returned to
my garbage routine I took a fresh look and I found several additional strategies that could condense the
code further allowing the reintroduction of the third pass flag. I was able to fit one segment into the
0x70 bytes located in CX ROM and the other segment into the 0x113 bytes where GARBAG resided.
All that was left to do was the testing and the timing and the verification.

As mentioned earlier a verification test must prove that no character string was altered in length,
modified in content, or destroyed by the garbage collector algorithm. The test results of the new
algorithm must be identical to the results obtained using the GARBAG algorithm. And since there is a
DOS 4.1 DATE command available, each pass through the string array variables can be easily time
stamped. The Applesoft test created three two-dimension character string arrays where both
dimensions were set to 26. Each string array element was initialized with a single character that was
“forced” into the String Pool. On each successive pass another character was added to each element
within the dimension that was being processed from 1 to 26. This caused the utilization of memory to
grow larger (or faster) on each successive pass. Before each pass I monitored the size of Free Space.
If Free Space was less than 15,000 bytes I issued the Applesoft “FRE(aexpr)” command forcing
the garbage collector to process the String Pool. I obtained identical memory results for each and
every pass in my Applesoft test program whether I used GARGAG in ROM or my garbage routine in
ROM. The timing results of my test program are shown in Table II.5.3. The left three columns
summarize the results obtained from the original GARBAG routine. The time each pass began is
shown in the left column. If the Free Space fell below 15,000 bytes another timestamp was recorded
after a call to “FRE(aexpr)” was made. This timestamp is shown in the middle column. The
delta time the routine required for processing is shown in the right column. The right three columns
contain the same information for my new garbage collector routine.

My implementation of Bongers’ algorithm shows how amazing this routine is. Table II.5.3 shows only
a peek at what this routine can do. When I changed the Free Space parameter from 15,000 to 5,000
bytes the Applesoft program calling the original GARBAG routine did not complete, even after an
hour, because I terminated it. The Applesoft program using my garbage collector routine completed in
06:54 minutes, and 24 of the 26 possible passes finished. Table II.5.3 shows that only 18 of the 26
possible passes finished before insufficient memory remained. Finally, I booted DOS 4.1H because it
provides far more Free Space, I removed the HIMEM command, and I removed all Free Space size
checks. The program completed all 26 passes for both versions of the garbage collector. The program
using the original GARBAG routine completed in 01:11:46 hours and the program using my garbage
collector routine completed in 00:07:40 hours.

 94

Pass
Number

Original Garbage Collector New Garbage Collector
Time <15000 Delta Time <15000 Delta

0 00:00 00:00
1 00:02 00:02
2 00:05 00:05
3 00:09 00:09
4 00:14 00:14
5 00:21 00:20
6 00:28 00:28
7 00:37 00:36
8 00:47 01:26 00:39 00:46 00:47 00:01
9 02:37 00:58
10 02:49 04:55 02:06 01:10 01:12 00:02
11 05:11 01:25
12 05:25 07:57 02:32 01:39 01:41 00:02
13 08:13 11:08 02:55 01:56 01:58 00:02
14 11:29 14:31 03:02 02:15 02:16 00:01
15 14:59 18:12 03:13 02:34 02:36 00:02
16 18:36 21:59 03:23 02:55 02:56 00:01
17 22:27 26:00 03:33 03:17 03:19 00:02
18 30:27 34:14 03:47 03:42 03:43 00:01
 34:40 03:43

Table II.5.3. Garbage Collector Timing Results

 95

6. Apple Character Generator ROM
Virtual][, Gerard Putter’s MacOS application to emulate the Apple][computer, provides the
capability to use a personally designed ASCII character set. The character set is defined by a bitmap
file that is either a PNG or TIFF file exactly 128 pixels wide and exactly 64 pixels high, and the bitmap
depth must be 1 or 8 pixels. Each character in the bitmap file is defined in a character cell that is 8
pixels by 8 pixels. Because characters displayed on the Apple][are only 7 pixels wide, the right most
column of the character cell is ignored by Virtual][. The black pixels within a character cell comprise
the background of the character; all other pixels comprise the character itself. The bitmap file must be
located at “Users/<username>/Library/Application Support/Virtual][/CharacterSets.” The Virtual][
documentation suggests using the filename MyCharacters.tif for the bitmap file. An XML file called
International.plist must also be located in this directory and it defines the name of the bitmap character
set file. This XML file may include the name of an icon bitmap file called MyCharSetIcon.tif that can
be up to 16 pixels wide by 11 pixels high. The XML file may also include a keyboard translation table
if that is needed as well. The XML file I created is shown in Figure II.6.1 and it includes two character
set bitmap files.

I used Xcode to easily create the XML file. Any “Property List Editor” will work as well. To create
the TIFF bitmap files I used the MacOS Paintbrush application because it was available for download
at no charge. I am not an expert Paintbrush user and I had some difficulties with the application to
produce what I wanted easily. Most of my difficulties occurred when I tried to save my work during
incremental stages of testing. I found that if I used the Lasso tool to copy the entire bitmap area into
the clipboard, I could save the contents of the clipboard into a new bitmap file of the same size, and
then discard the original file. I do not know why the “save” or “save as” option failed to save my
incremental work to the original file, and why I had to save my work in such a round-about way. I
used the Line tool configured for a “stroke” of 1 to toggle a pixel from black to white or white to black.
Paintbrush saved the bitmap file as a TIFF file having a Color Space of RGB, a Color Profile of
Generic RGB Profile, and the Alpha Channel set to Yes. I have no idea what these specifications mean
or imply, but Virtual][had no problem reading and utilizing all the TIFF files I created in this manner.

My greatest source of irritation came when I discovered that the “Library” directory specified in the
pathname above is a hidden file by default. I lost more time putting the XML and TIFF files in the
wrong location because I could not see the hidden Library directory in my personal Users account.
Once I realized this directory was hidden it was extremely easy to unhide it using XQuartz or the
Terminal application found in the Utilities directory. Simply launch the Terminal application and enter
“bash” on the command line. This will start the GNU “Bourne-Again SHell.” Now when you enter
the UNIX command “ls” at /Users/<username>, all files, including “.” files and hidden files (i.e.
directories), will be displayed. Now enter the command “chflags nohidden Library” and
have a look at a Finder window of your personal Users account. You should now see a “Library”
directory. Once you locate the XML and TIFF files properly and launch Virtual][, select Quick
settings>Character Set>My character set. Be sure to save your Virtual][session when you are
satisfied with the selected character set bitmap file: it will be loaded and selected every time Virtual][
is launched.

Figures II.6.2 and II.6.3 show the MyNewCharacters.tif and MyCharSetIcon.tif files I created for
Virtual][. I modified quite a few of the characters to my preference. Once I was satisfied with my
character set bitmap I created a simple tool using LORES graphics that allowed me to create a 4 KB
binary character set ROM file. This file must also contain the inverse characters as well as the
alternate keyboard characters which are not included in Figure II.6.2. I found it was easier to dump the

 96

character generator ROM, display its character data using my LORES tool, and edit a copy of each
character which is displayed to the right of the original character as shown in Figure II.6.4. Once I
made all the changes to the character set, I saved the data currently in memory to another binary ROM
file and burned the data to an equivalent sized 2732 EPROM. All my Apple][computers use the
character set shown in Figure II.6.2.

Figure II.6.1. International XML File

Figure II.6.2. New Character Set TIFF Bitmap File

 97

Figure II.6.3. Icon TIFF Bitmap File

Figure II.6.4. Binary Character Set LORES Editor

 98

7. Peripheral Slot Card Signature Bytes
Most likely Apple Computer designed the concept of Signature Bytes when it marketed the Disk][.
The first eight bytes of the firmware on the peripheral slot card that connects the Disk][drive to the
Apple][are the Signature Bytes for this slot card. Other manufactures of peripheral slot cards adopted
this scheme so that each slot card could be identified (potentially) by inspecting these eight bytes. Slot
cards that interface disk drives like the Disk][used the scheme developed by Apple Computer. Real
time clock cards used the scheme found on the ThunderClock. Similarly, signature byte schemes were
developed for printer interface slot cards, serial data interface slot cards, mouse interface slot cards,
and display interface slot cards to list a few examples. Each scheme has a general pattern that contains
identical portions and unique portions of bytes. Table II.7.1 lists the signature bytes for a number of
peripheral slot cards.

All of the odd signature bytes for peripheral slot cards that interface disk drives are the same. This is
done purposefully because the Autostart ROM that Apple Computer copyrighted in 1978 checks these
four particular bytes during powerup or restart. However, the Autostart routine was modified for the
Apple //e Video Firmware, copyrighted in 1981 and in 1984. According to the firmware notes
“Check 3 ID bytes instead of 4. Allows devices other than Disk II’s
to be bootable.” In other words, only the first three odd signature bytes are checked by the
Apple //e Autostart ROM for a bootable disk drive. After analyzing the disk startup firmware that
follows the eight signature bytes for the Disk][peripheral slot card shows that upon entry the Y-
register must be 0x00, the X-register can be any value from 0x00 to 0x16, and the A-register can be
any value. The page-zero location 0x3C is a temporary storage location so any value can be stored
there as done in the fourth instruction, “STX $3C”. The first instruction, “LDX #$20”, does nothing
since the third, and critical instruction rewrites the value of the X-register.

Apparently Applied Engineering used the same signature bytes for their TimeMaster II clock card as
found in the ThunderClock. Only the first two bytes are significant as well as the last byte on that
firmware page. The last byte, or CLKID for the ThunderClock firmware is 0x07 and the last byte for
the TimeMaster II firmware is 0x03. The last byte for my clock card firmware is also 0x03. It is these
three bytes, the first two and the last, that DOS 4.1 checks for a valid clock card.

In many cases a peripheral slot card not only must be compatible with DOS, but with possibly
ProDOS, CP/M, and Pascal as well. The peripheral-card ROM memory and the peripheral-card
expansion ROM memory amounts to only nine pages of code space. Therefore, even the signature
bytes must perform a necessary function besides being unique to the particular peripheral slot card. In
some cases the signature bytes provide multiple return entry points for input and output data control. If
the peripheral slot card supports Pascal, the Pascal initialization, read, write, and status routine offsets
closely follow the signature bytes.

The firmware I wrote for the RANA is only dependent on the second signature byte instruction, “LDY
#$00”, at bootup. The SIDER, RamDisk 320, and CFFA firmware I wrote is not dependent on any of
the signature byte instructions. Since the operation of the first signature byte instruction is not used,
any of the other ten Immediate Addressing Mode 6502 instructions can be used as a component
identifier within the Disk][signature byte scheme. Once I realized which were the important and
unimportant bytes within the signature byte data, I could design a very simple strategy to quickly
identify a Disk][signature byte scheme by checking the first three odd bytes like the Apple //e
Autostart ROM does, and use the first byte to select the actual device. Table II.7.2 lists the revised
signature bytes for my collection of disk drive peripheral devices.

 99

Slot Card 0 1 2 3 4 5 6 7

Disk][LDX #$20 LDY #$00 LDX #$03 STX $3C
 0xA2 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

SCSI][LDX #$20 LDX #$00 LDX #$03 LDX #$00
 0xA2 0x20 0xA2 0x00 0xA2 0x03 0xA2 0x00

RANA LDX #$20 LDY #$00 LDX #$03 LDX #$3C
 0xA2 0x20 0xA0 0x00 0xA2 0x03 0xA2 0x3C

SIDER LDA #$20 LDA #$00 LDA #$03 LDA $3C
 0xA9 0x20 0xA9 0x00 0xA9 0x03 0xA9 0x3C

RamDisk LDX #$20 LDY #$00 LDX #$03 STY $3C
 0xA2 0x20 0xA0 0x00 0xA2 0x04 0x84 0x3C

CFFA LDA #$20 LDX #$00 LDA #$03 LDA #$00
 0xA9 0x20 0xA2 0x00 0xA9 0x03 0xA9 0x00

ThunderClock PHP SEI PLP BIT $FF58 BVS $Cs0D
 0x08 0x78 0x28 0x2C 0x58 0xFF 0x70 0x05

TimeMaster II PHP SEI PLP BIT $FF58 BVS $Cs0D
 0x08 0x78 0x28 0x2C 0x58 0xFF 0x70 0x05

My Clock PHP SEI BIT $CFFF CLR BCC $Cs38
 0x08 0x78 0x2C 0xFF 0xCF 0x18 0x90 0x30

SuperSerial BIT $FF58 BVS $Cs11 SEC BCC $Cs20
 0x2C 0x58 0xFF 0x70 0x0C 0x38 0x90 0x18

Grappler CLC BCS $Cs3B BCC $Cs11 SEC BCC $Cs20
 0x18 0xB0 0x38 0x90 0x0C 0x38 0x90 0x18

Mouse BIT $FF58 BVS $Cs20 SEC BCC $Cs20
 0x2C 0x58 0xFF 0x70 0x1B 0x38 0x90 0x18

80 Column BIT $CE43 BCS $C317 SEC BCC CLC
 0x2C 0x43 0xCE 0x70 0x12 0x38 0x90 0x18

Table II.7.1. Peripheral Slot Card Signature Bytes

 100

Slot Card 0 1 2 3 4 5 6 7

Disk][LDX #$20 LDY #$00 LDX #$03 STX $3C
 0xA2 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

SCSI][LDX #$20 LDX #$00 LDX #$03 LDX #$00
 0xA2 0x20 0xA2 0x00 0xA2 0x03 0xA2 0x00

RANA ORA #$20 LDY #$00 LDX #$03 STX $3C
 0x09 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

SIDER AND #$20 LDY #$00 LDX #$03 STX $3C
 0x29 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

RamDisk EOR #$20 LDY #$00 LDX #$03 STX $3C
 0x49 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

CFFA ADC #$20 LDY #$00 LDX #$03 STX $3C
 0x69 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

available LDA #$20 LDY #$00 LDX #$03 STX $3C
 0xA9 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

available CMP #$20 LDY #$00 LDX #$03 STX $3C
 0xC9 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

available SBC #$20 LDY #$00 LDX #$03 STX $3C
 0xE9 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

available LDY #$20 LDY #$00 LDX #$03 STX $3C
 0xA0 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

available CPY #$20 LDY #$00 LDX #$03 STX $3C
 0xC0 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

available CPX #$20 LDY #$00 LDX #$03 STX $3C
 0xE0 0x20 0xA0 0x00 0xA2 0x03 0x86 0x3C

Table II.7.2. Revised Disk Drive Peripheral Slot Card Signature Bytes

 101

III. DOS 4.1 Commands
DOS 4.1 commands comprise a set of commands in addition to the Applesoft ROM commands. As in
Applesoft commands, DOS 4.1 commands and keywords may be entered in uppercase and/or
lowercase. DOS 4.1 uses a number of data tables in order to process a valid DOS command when it is
found in the DOS Command Name Text table. This table consists of the “DCI” ASCII name for each
DOS command in the order of command index value. The Command Valid Keyword table is used to
determine which keywords if any are required or may be used in conjunction with each DOS command
index. Each command has a two-byte table entry, thus providing 16 possible bit flags indicating which
keywords are legal, or if a filename is expected, for example. The bit flag settings for the DOS
Command Valid Keywords are defined in Table III.0.1. The legal keywords have been ordered in a
more logical and useful way from the order used in DOS 3.3. Before processing a valid DOS 4.1
command, the value of the R keyword is copied to the File Manager SUBCODE variable. This allows
users of the external File Manager handler to utilize the SUBCODE in order to simulate the R keyword
as in the case of the File Manager FMCATACD command for CATALOG. The DOS INIT command,
however, overwrites the SUBCODE variable with DOSFLAGS for its own specific use as shown
previously in Figure I.9.5.

Bit Bit Position Value Flag Bit Description
15 %1000 0000 0000 0000 0x8000 Filename legal but optional
14 %0100 0000 0000 0000 0x4000 Command has no positional operands
13 %0010 0000 0000 0000 0x2000 Filename #1 expected
12 %0001 0000 0000 0000 0x1000 Filename #2 expected
11 %0000 1000 0000 0000 0x0800 Slot number positional operand is expected
10 %0000 0100 0000 0000 0x0400 MAXFILES value expected as positional operand
9 %0000 0010 0000 0000 0x0200 Command is only issued from within a program
8 %0000 0001 0000 0000 0x0100 Command creates a new file if the file is not found
7 %0000 0000 1000 0000 0x0080 C, I, O keywords are legal
6 %0000 0000 0100 0000 0x0040 S keyword is legal
5 %0000 0000 0010 0000 0x0020 D keyword is legal
4 %0000 0000 0001 0000 0x0010 V keyword is legal
3 %0000 0000 0000 1000 0x0008 A keyword is legal
2 %0000 0000 0000 0100 0x0004 L keyword is legal
1 %0000 0000 0000 0010 0x0002 R keyword is legal
0 %0000 0000 0000 0001 0x0001 B keyword is legal

Table III.0.1. DOS 4.1 Command Valid Keyword Table

 102

Command Name Index ASCII Text S/W Handler Keyword
CMDINIT 0x00 INIT DOINIT 0x317F

CMDLOAD 0x02 LOAD DOLOAD 0xA072
CMDSAVE 0x04 SAVE DOSAVE 0xA173
CMDRUN 0x06 RUN DORUN 0xA074

CMDCHAIN 0x08 CHAIN DOCHAIN 0x2274
CMDDELET 0x0A DELETE DODELETE 0x2070
CMDLOCK 0x0C LOCK DOLOCK 0x2070

CMDUNLCK 0x0E UNLOCK DOUNLOCK 0x2070
CMDCLOSE 0x10 CLOSE DOCLOSE 0x6000
CMDREAD 0x12 READ DOREAD 0x2203
CMDEXEC 0x14 EXEC DOEXEC 0x2072

CMDWRITE 0x16 WRITE DOWRITE 0x2203
CMDPOSTN 0x18 POSITION DOPSTION 0x2202
CMDOPEN 0x1A OPEN DOOPENTX 0x2374
CMDAPND 0x1C APPEND DOAPND 0x2270

CMDRENAM 0x1E RENAME DORENAME 0x3070
CMDCAT 0x20 CATALOG DOCAT 0x4072
CMDMON 0x22 MON DOMON 0x4080

CMDNOMAN 0x24 NOMON DONOMON 0x4080
CMDPRNUM 0x26 PR# DOPRNUM 0x0800
CMDINNUM 0x28 IN# DOINNUM 0x0800
CMDMXFLS 0x2A MAXFILES DOMXFLS 0x0400
CMDDATE 0x2C DATE DODATE 0x4000
CMDLIST 0x2E LIST DOLIST 0x2077

CMDBSAVE 0x30 BSAVE DOBSAVE 0x217F
CMDBLOAD 0x32 BLOAD DOBLOAD 0x207A
CMDBRUN 0x34 BRUN DOBRUN 0x2078
CMDVERFY 0x36 VERIFY DOVERIFY 0x2072
CMDLSAVE 0x38 LSAVE DOLSAVE 0x217F
CMDLLOAD 0x3A LLOAD DOLLOAD 0x207A
CMDTSAVE 0x3C TSAVE DOTSAVE 0x2173
CMDTLOAD 0x3E TLOAD DOTLOAD 0x207F

CMDDIFF 0x40 DIFF DODIFF 0x3070
CMDGREP 0x42 GREP DOGREP 0x3071
CMDMORE 0x44 MORE DOLIST 0x2077
CMDCAT2 0x46 CAT DOCAT 0x4072
CMDURM 0x48 URM DOURM 0x2070
CMDCD 0x4A CD DOCD 0x0070
CMDLS 0x4C LS DOCAT 0x4072
CMDMV 0x4E MV DORENAME 0x3070
CMDRM 0x50 RM DODELETE 0x2070
CMDSV 0x52 SV DOSV 0x0008
CMDTS 0x54 TS DOTS 0x402F
CMDTW 0x56 TW DOTW 0x2170

CMDHELP 0x58 HELP DOHELP 0x2000
CMDUSER 0x5A - DOUSER -

Table III.0.2. DOS 4.1 Command Table

 103

Table III.0.2 is a comprehensive listing of all DOS 4.1 commands in processing order showing the
command name, index, ASCII text, software handler, and valid keyword value. CMDHELP is only
available in DOS 4.1H because there is additional room in RAM Bank 1 where RWTS is located. This
additional memory seemed like an ideal location for placing a Help Command handler in order to
provide instant syntactical usage information for all DOS 4.1 commands. DOS 4.1H was using track
0x02 anyway because it needed two additional sectors for its interface and boot pages. Why not use a
few more sectors on track 0x02 for something quite useful like the Help Command handler? Another
DOS developer may choose to eliminate the Help Command handler and utilize the memory and/or the
eight disk sectors for something else entirely.

CMDUSER is designed and available to a user who needs to load DOS 4.1 into memory, initialize it,
and then have DOS 4.1 return control back to that user instead of to BASIC. After DOS 4.1 is copied
into memory, the user needs to place the address of the user’s handler at USERADR, or 0xBEEC,
place the value of CMDUSER-CMDTBL found at USERNDX, or 0xBFFA, into CMDVAL, or
0xBEEE, and then initialize DOS using an indirect “JMP” instruction to DOSBEGIN, or 0xBED7, the
address found at INITDOS, or 0xBFF8. USERADR and CMDVAL are located at index byte 0x15 and
index byte 0x17, respectively, from the address found at INITDOS. INITDOS is at the same location
in both DOS 4.1L and DOS 4.1H, so it makes no difference where USERADR, CMDVAL, and
DOSBEGIN are technically located in either DOS 4.1L or DOS 4.1H. Table I.8.7 shows where these
variables are currently located. These memory locations are subject to change, but not their index
values. Once DOS 4.1 has initialized, the command CMDUSER will be invoked which is simply an
indirect “JMP” instruction to the address found in USERADR. The user’s handler should restore the
values originally found at USERADR (address of the Monitor routine MON, or 0xFF65) and
CMDVAL (CMDRUN-CMDTBL, or 0x06) so that the DOS that is currently in memory can be used
for “pure image” disk initialization, if desired. An example assembly language routine is shown in
Figure I.9.1 that illustrates how to set up USERADR and CMDVAL.

DOS 4.1 uses the following four tables to parse valid keywords, ascertain a keyword’s bit position, and
determine if a keyword is within a minimum and a maximum value: PPARMS, PARMBITS,
KWRANGEL, and KWRANGEH. The content of these tables is summarized in Table III.0.3. Unlike
DOS 3.3, DOS 4.1 will allow up to 81 drives in order to support CFFA Volume Manager software for
up to an 8 GB Compact Flash card, to allow default Volume numbers to be 0x00, and to allow BSAVE
and LSAVE to write files greater than 0x7FFF bytes. The Bit Positions for the keywords C, I, O are
actually used to generate the MONVAL variable once the MSB of the bit position value is cleared.
The other Bit Positions are added to the variable KYWRDFND as each keyword is parsed. It is no
accident that the Bit Position of each Keyword in Table III.0.3 is the same as in the lower byte of each
command keyword shown in Table III.0.1. When DOS 3.3 checks KYWRDFND against the Keyword
of a DOS command as shown in Table III.0.2 in the “GETNXT” routine, any additional bits found set
should immediately signal a Syntax Error as it does in DOS 4.1. Instead, DOS 3.3 jumps to the
“GETFRST” routine which has nothing to do with finding wrong bits set in KYWRDFND.

The syntax of a DOS 4.1 command begins with the command, and is immediately followed by a
filename or two if they are required. All parameters whether they are required or optional follow the
filename(s) or the command if no filename is required, and usually a comma must delineate each
parameter. Optional parameters are contained in square brackets, as in [,Vv]. Commands and
keywords are shown in CAPITAL letters and keyword values are shown in lowercase letters for ease
of explanation and not how they need to be used or entered on the Apple command line. Table III.0.4
lists all keywords and keyword value items.

 104

Keyword Name Bit Position / Value Minimum Value Maximum Value
C %1100 0000 / 0xC0 - -
I %1010 0000 / 0xA0 - -
O %1001 0000 / 0x90 - -

MON/NOMON %1000 0000 / 0x80 - -
S %0100 0000 / 0x40 1 (0x01) 7 (0x0007)
D %0010 0000 / 0x20 1 (0x01) 81 (0x0051)
V %0001 0000 / 0x10 0 (0x00) 255 (0x00FF)
A %0000 1000 / 0x08 0 (0x00) 65535 (0xFFFF)
L %0000 0100 / 0x04 0 (0x00) 65535 (0xFFFF)
R %0000 0010 / 0x02 0 (0x00) 32767 (0x7FFF)
B %0000 0001 / 0x01 0 (0x00) 32767 (0x7FFF)

Table III.0.3. DOS 4.1 Keyword Name and Range Table

Keyword Name Description
S Slot Keyword followed by slot number
D Drive Keyword followed by drive number
V Volume Keyword followed by volume number
A Address Keyword followed by address number
L Length Keyword followed by length number
R Record Keyword followed by record number or nothing
B Byte Keyword followed by byte number
C Command Keyword to display or not to display DOS commands
I Input Keyword to display or not to display input data
O Output Keyword to display or not to display output data
f filename Must begin with a letter and be 1-24 characters in length
f2 2nd filename Must begin with a letter and be 1-24 characters in length
s slot number Slot number of a peripheral slot card, value range 1-7
d drive number Initialized to 1, value range 1-81 (for CFFA use)
v volume number Initialized to 0, value range 0-255
a address number Initialized to 0, value range 0-65535
l length number Initialized to 0, value range 0-65535
r record number Initialized to 0, value range 0-32767
b byte number Initialized to 0, value range 0-32767
n number Some numerical value required by some commands

Table III.0.4. DOS 4.1 Keywords and Keyword Value Items

 105

In keeping with the original DOS 3.3 documentation, DOS 4.1 commands may be grouped into the
following six categories. Remember, the command HELP is a DOS 4.1H command only.

File System Commands

CAT CATALOG CD DATE
DELETE DIFF GREP HELP

INIT LIST LOCK LS
MORE MV RENAME RM

SV TS UNLOCK URM
VERIFY

System Commands

IN# MAXFILES MON NOMON
PR#

Applesoft File Commands

CHAIN LOAD RUN SAVE

Binary File Commands

BLOAD BRUN BSAVE LLOAD
LSAVE

Sequential Text File Commands

APPEND CLOSE EXEC OPEN
POSITION READ TLOAD TSAVE

TW WRITE

Random-Access Data File Commands

CLOSE OPEN READ WRITE

 106

Command Command Syntax
CATALOG

CAT
LS

[,Ss] [,Dd] [Vv] [,R]
[,Ss] [,Dd] [Vv] [,R]
[,Ss] [,Dd] [Vv] [,R]

CD [,Ss] [,Dd] [Vv]
DATE

DELETE
RM

f [,Ss] [,Dd] [,Vv]
f [,Ss] [,Dd] [,Vv]

DIFF f, f2 [,Ss] [,Dd] [,Vv]
GREP f, f2 [,Ss] [,Dd] [,Vv] [,Bn]
HELP C
INIT f, f2 [,Ss] [,Dd] [,Vv] [,An] [,Bn] [,Ln] [,R[n]]
LIST

MORE
f [,Ss] [,Dd] [,Vv] [,Bb] [,Ll] [,R]
f [,Ss] [,Dd] [,Vv] [,Bb] [,Ll] [,R]

LOCK f [,Ss] [,Dd] [,Vv]
MV

RENAME
f, f2 [,Ss] [,Dd] [,Vv]
f, f2 [,Ss] [,Dd] [,Vv]

SV An
TS [,Ss] [,Dd] [,Vv] [,An] [,Bn] [,L] [,R]

UNLOCK f [,Ss] [,Dd] [,Vv]
URM f [,Ss] [,Dd] [,Vv]

VERIFY f [,Ss] [,Dd] [,Vv] [,R1]

Table III.1.1. DOS 4.1 File System Commands

1. File System Commands
The DOS 4.1 File System Commands manage the file system of a disk volume and display its contents.
The syntax of the File System Commands is shown in Table III.1.1.

CATALOG [,Ss] [,Dd] [,Vv] [,R]
CAT [,Ss] [,Dd] [,Vv] [,R] ; short version of CATALOG
LS [,Ss] [,Dd] [,Vv] [,R] ; UNIX version of CATALOG

Example: CATALOG S6,D2
 CAT D1

LS R

This command displays on the screen a wealth of information for the specified volume: the current
slot and drive for the volume (S= and D=), the volume number (V=), the remaining free space on the
volume (F=), the date and time the VTOC was last modified, and a list of all files on the volume. Each
file is displayed with its lock/unlock status, its file type, its size in sectors including its TSL sector(s),

 107

the first 14 characters of its filename, and the date and time of the file’s creation or last modification.
Table I.7.3 lists all file types. Figure III.1.1 shows an example of the CATALOG and the CAT
command. Notice that the asterisk shows that the files DOS4.1.46L and DOS4.1.46H are locked.
DOS 4.1 commands may be entered in lowercase.

Figure III.1.1. CATALOG and CAT Command Display

If the R keyword is included with the CATALOG command the screen displays the current version of
DOS that is currently in memory (M=), the 24 character volume title (T=), the version and build of the
DOS that created this volume (B=), the volume type (“boot” or “data”), the volume library value (L=),
and the date and time the volume was created, followed by the information above. The list of files on
the volume also includes all deleted files shown by the “x” character. Without the R keyword each file
is displayed as shown in Figure III.1.1. With the R keyword each file is displayed with its sequence
number, the track and sector of its first TSL, and all 24 characters of its filename. Figure III.1.2 shows
an example the LS R command.

 108

Figure III.1.2. LS R Command Display

CD [,Ss] [,Dd] [,Vv]

Example: CD S6,D2,V3
 CD

This command is new to DOS and it can change the default slot, drive, and volume parameters of the
specified volume. If no keywords are used with the CD command the current default slot, drive and
volume parameters are displayed on the Apple command line after the CD command. Figure III.1.3
shows two examples of using the CD command. When the CD command is used with no keywords,
two values are displayed for volume. The first comes from DISKVOL as shown in Table I.6.1 and the
second comes from VOLNUMBR as shown in Table I.10.4. DISKVOL is the actual volume number
value in the VTOC and VOLNUMBR is the volume number value used by the File Manager. When
these values differ and VOLNUMBR is not 000 then the “Volume Number Error” message is issued.

 109

Figure III.1.3. CD Command Display

DATE

Example: DATE

This command is new to DOS and it displays on the screen the current date and time as shown in
Figure III.1.4. DOS 4.1 supports three known clock cards and possibly others: Thunderclock,
TimeMaster, and the clock card I designed and built. The only difference in these clock cards is the
index into the output raw data string each card produces where the date and time data begin. Figure
III.1.4 also shows an example Applesoft program that displays the raw data string for a Thunderclock
card residing in slot 4. The index where the date and time data begin for this clock card is 0x00. My
clock card and the TimeMaster clock card both have an index of 0x03. The indexes for the DOS 4.1
supported clock cards are summarized previously in Table I.11.1. DOS 4.1 can support any clock card
having the standard signature bytes and CLKID, and a maximum index of 0x05 for its output raw data
string where the date and time data begin.

 110

Figure III.1.4. DATE Command for Thunderclock Card Display

 111

DELETE f [,Ss] [,Dd] [,Vv]
RM f [,Ss] [,Dd] [,Vv] ; UNIX version of DELETE

Example: DELETE COPYDOS
 RM COPYDOS

This command removes the filename ‘f’ from the catalog listing in the specified volume if the filename
exists by setting the most significant bit of its TSL track byte, and marking the sectors in the file’s
TSL(s) and the TSL sector(s) as available. Refer to Figure I.7.1 showing a disk catalog sector. Figure
III.1.5 shows an example of a file being deleted. It is prudent to undelete a deleted file as soon as
possible before the sectors in the file’s TSL(s) and the TSL sector(s) are utilized by another file.

Figure III.1.5. DELETE Command Display

 112

DIFF f, f2 [,Ss] [,Dd] [,Vv]

Example: DIFF TEST1,TEST2

This command is new to DOS and it compares any two files ‘f’ and ‘f2’ in the specified volume up to
the end of SECCNT-1 sectors of the second file, ‘f2’. The routine will display on the screen the
number of bytes compared on the Apple command line, and the location(s) where the files differ and
the differing bytes. The two files must reside on the same volume. The location(s) where the files
differ are the number of bytes from the beginning of each file. The first differing byte comes from the
first file, or file ‘f’, and the second differing byte comes from the second file, or file ‘f2’. Displayed
values are all shown in hexadecimal. Figure III.1.6 shows an example of three pairs of files being
compared. The first pair of files are identical and the screen shows that 0x0100 bytes were compared
even though the files themselves are only 0x0080 bytes in size. CF compares whole sectors. The
second pair of files are exactly 0x1000 bytes in size but CF compared 0x1100 bytes. Because these are
Binary files their address and length bytes occupy the first four bytes of the file making the files
actually 0x1004 bytes in length. Again, CF compares whole sectors, and the last four bytes of data
reside in an additional sector. These files differed at only one location. The third pair of files are
0x300 bytes in size and they differ at five specific locations.

Figure III.1.6. DIFF Command Display

 113

GREP f, f2 [,Ss] [,Dd] [,Vv] [,Bn]

Example: GREP HELLO,TEST
 GREP HELLO,Manage Test*,B$AA

This command is new to DOS and it searches the file ‘f’ for the single word ASCII string or the
multiple word character-terminated string ‘f2’ in the specified volume up to the end of SECCNT-1
sectors of the file. The routine will display on the screen the number of bytes searched on the Apple
command line and the location(s) where the string ‘f2’ occurs in the file. The location(s) where ‘f2’ is
found is the number of bytes from the beginning of the file up to the first character of ‘f2’. Displayed
values are all shown in hexadecimal. Figure III.1.7 shows an example of three files being searched.
The first file is an Applesoft file. The second file is a binary file. The third file is the same binary file
that uses a multiple word character-terminated string for ‘f2’. GREP searches whole sectors, and
regardless how many actual bytes are associated with the file in the last sector, the entire last sector of
the file is searched. GREP is case sensitive as shown in Figure III.1.7., and GREP masks out the MSB
as file ‘f’ is read so lower ASCII character 0x41 is the same as upper ASCII character 0xC1. DOS 4.1
expects the string contained in ‘f2’ to conform to the format and length of a filename, therefore the
first character must be an alpha character, otherwise a “?SYNTAX ERROR” will be issued by
Applesoft. The maximum length of ‘f2’ is 24 characters, which includes the termination character if it
is used. Any ASCII character may be used for the termination character as long as it is unique within
the characters comprising ‘f2’. If a termination character is used it must be defined by the B keyword
and equal to its upper ASCII value, that is, with its MSB on.

Figure III.1.7. GREP Command Display

 114

HELP C

Example: HELP HELP
 HELP CATALOG

This command is new to DOS and is only available when DOS 4.1H is booted into memory. In order
to port DOS 4.1L to the Language Card I found that it was necessary to create an “interface” page of
routines that managed some of the DOS routines vis-à-vis memory bank switching for the Language
Card. This implies having to use at least one disk sector on the next track, track 0x02, for the
Language Card version of the DOS image. Also, there was a lot of unused memory in RAM Bank 1
where I put all the RWTS routines and nibble buffers. It was an easy decision to utilize the remaining
RAM Bank 1 memory for a HELP command and use as much of track 0x02 as I needed. I created the
HELP command to provide instant syntactical usage information for all DOS 4.1 commands. Figures
III.1.8 through III.1.11 display the command HELP HELP screens.

Figure III.1.12 displays an example HELP screen for HELP INIT.

Figure III.1.8. HELP HELP Command Display 1

 115

Figure III.1.9. HELP HELP Command Display 2

Figure III.1.10. HELP HELP Command Display 3

 116

Figure III.1.11. HELP HELP Command Display 4

Figure III.1.12. HELP INIT Command Display

 117

INIT f, f2 [,Ss] [,Dd] [,Vv] [,An] [,Bn] [,Ln] [,R[n]]

Example: INIT HELLO,<title>,V123,L$101 ; creates Volume Type “B”
 INIT EXECFILE,<title>,V123,R$14 ; creates Volume Type “B”
 INIT H,<title>,V123,R ; creates Volume Type “D”

This command initializes the specified volume with the filename ‘f’ and writing DOS 4.1 on tracks
0x00 and 0x01 for DOS 4.1L or writing 10 additional sectors on track 0x02 for DOS 4.1H when the R
keyword is not included or the value of the R keyword is not equal to 0x00 (Volume Type ‘B’, or
Boot volume) as shown in Figure III.1.13. All initialized disks are titled with the required upper
ASCII string in ‘f2’. The parameter ‘v’ is assigned the volume number if the V keyword is included;
otherwise the disk is initialized with a volume number of 000. If the R keyword is included without a
value or with a value of 0x00, a data disk is initialized with a VTOC and an empty catalog structure,
and all DOS sectors are available for data storage including track 0x00 (Volume Type ‘D’, or Data
volume) as shown in Figure III.1.14. The upper ASCII string in ‘f2’ is still used for the volume Title,
but the filename ‘f’ is simply a placeholder and not utilized. If the R keyword is included with a
nonzero value, that value is copied to CMDVAL and a disk is initialized having a bootable DOS
(Volume Type ‘B’) but no Applesoft boot file is saved to the disk even if there is an Applesoft file in
memory. It is up to the user to copy an APPLESOFT file for R$06, an EXEC file for R$14, or a
BINARY file for R$34 to the disk as its “HELLO”, or ‘f’ filename. Other possible values for the R
keyword could be R$10 for CLOSE, R$2C for DATE, and R$2E for LIST, from Table III.0.2. A
complete set of initialization values is available from 0xBED7 through 0xBEFF for both DOS 4.1L
and DOS 4.1H. These values can be modified directly or with keywords before executing the INIT
command in order to tailor a DOS 4.1 volume specific to ones needs and the target hardware. See
Table I.8.7 for a list of all of the possible initialization values.

If the A and B keywords are not used or are set to 0x00, the default initialization values for SECVAL
and ENDTRK come from FIRSTCAT and LASTRACK, respectively. The default value for ENDSEC
is 0x10. The A keyword is used to specify a new ENDTRK, the number of tracks on a Disk][volume.
The B keyword is used to specify the number of Catalog sectors from 1 to 15, and to select 16-sector
tracks if its MSB is clear or 32-sector tracks if its MSB is set. The L keyword is used to specify a
Library Value (or, subject value) for the disk volume if it is included, from 0x0000 to 0xFFFF,
otherwise the Library Value is set to 0x0000. Once any other initialization parameter has been
changed, it remains equal to that value except for SECVAL, ENDTRK, ENDSEC and SUBJCT; that
is, there is no reset to “default” settings for NMAXVAL, YEARVAL, TRKVAL, VRSN, BLD,
RAMTYP, TSPARS, ALCTRK, ALCDIR, and SECSIZ as shown previously in Table I.8.7. Use
common sense when modifying these parameters.

The value in SECVAL determines the number of sectors the catalog will contain not including the
VTOC sector. The useable values for SECVAL are 0x00<SECVAL<0x80. If that value is more than
15, no more than 15 Catalog sectors will be created. Table III.1.2 shows the number of available data
sectors in a volume based on Volume Type and catalog size for a volume having 35 tracks and 16
sectors per track. A few disk drives, either physical or solid state, were manufactured to access 40
tracks for a volume. Set ENDTRK to 0x28 (or use A$28) to provide access to all 40 tracks, or to 0x30
(or use A$30) to access 48 tracks if they are available. The VTOC is designed to manage up to 50
tracks per volume as shown previously in Figure I.6.1. Table III.1.3 shows the same information as
Table III.1.2 for a volume having 32 sectors per track. Table III.1.4 shows the total number of sectors
on a volume having 35, 40, or 48 tracks with 16 or 32 sectors per track.

 118

Figure III.1.13. INIT Command Display 1

Figure III.1.14. INIT Command Display 2

 119

SECVAL Catalog
Size

4.1L Data Sectors 4.1H Data Sectors
‘B’ ‘D’ ‘B’ ‘D’

0x01 1 sector 526 558 516 558
0x02 2 sectors 525 557 515 557
0x03 3 sectors 524 556 514 556
0x04 4 sectors 523 555 513 555
0x05 5 sectors 522 554 512 554
0x06 6 sectors 521 553 511 553
0x07 7 sectors 520 552 510 552
0x08 8 sectors 519 551 509 551
0x09 9 sectors 518 550 508 550
0x0A 10 sectors 517 549 507 549
0x0B 11 sectors 516 548 506 548
0x0C 12 sectors 515 547 505 547
0x0D 13 sectors 514 546 504 546
0x0E 14 sectors 513 545 503 545
0x0F 15 sectors 512 544 502 544

Table III.1.2. Initialized Catalog Size for 35 Tracks, 16 Sectors/Track

SECVAL Catalog
Size

4.1L Data Sectors 4.1H Data Sectors
‘B’ ‘D’ ‘B’ ‘D’

0x01 1 sector 1086 1118 1076 1118
0x02 2 sectors 1085 1117 1075 1117
0x03 3 sectors 1084 1116 1074 1116
0x04 4 sectors 1083 1115 1073 1115
0x05 5 sectors 1082 1114 1072 1114
0x06 6 sectors 1081 1113 1071 1113
0x07 7 sectors 1080 1112 1070 1112
0x08 8 sectors 1079 1111 1069 1111
0x09 9 sectors 1078 1110 1068 1110
0x0A 10 sectors 1077 1109 1067 1109
0x0B 11 sectors 1076 1108 1066 1108
0x0C 12 sectors 1075 1107 1065 1107
0x0D 13 sectors 1074 1106 1064 1106
0x0E 14 sectors 1073 1105 1063 1105
0x0F 15 sectors 1072 1104 1062 1104

Table III.1.3. Initialized Catalog Size for 35 Tracks, 32 Sectors/Track

 120

Tracks/Volume Sectors/Track Total Sectors
35 16 560
35 32 1120
40 16 640
40 32 1280
48 16 768
48 32 1536

Table III.1.4. Total Sectors for Volumes

LIST f [,Ss] [,Dd] [,Vv] [,Bb] [,Ll] [,R]
MORE f [,Ss] [,Dd] [,Vv] [,Bb] [,Ll] [,R] ; UNIX version of LIST

Example: LIST EXECFILE,B8,L10,R

This command is new to DOS and it displays on the screen the contents of file ‘f ‘in the specified
volume in ASCII if the file is a Text type file or in hexadecimal for all other file types. If the R
keyword is included, the contents of a Text type file will be displayed in hexadecimal rather than in
ASCII. If the B keyword is included, that number of bytes, ‘b’, into the file will be skipped. If the L
keyword is included, that number of bytes, ‘l’, will only be displayed, or until the end of the file,
whichever occurs first. LIST displays a complete sector of data at a time, and LIST can be terminated
at any time by pressing the ESC key. Figure III.1.15 shows an example of using LIST on a Text type
file utilizing the various keywords. First, the entire file is listed. Then the first 6 bytes of the file are
listed. Then, the first 9 bytes are skipped and the next 7 bytes are listed. Finally, those same 7 bytes
are displayed in hexadecimal. Hexadecimal pairs of bytes are displayed corresponding to even/odd
bytes in the file beginning with zero when counting, so the “L” in “BLOAD” is an odd byte in the file
and is skipped, and the second “O” in “FOO” and the carriage return are added. Remember to count
the carriage return (i.e. 0x8D) as an ASCII character as well. LIST will not skip over a NULL byte
(i.e. 0x00) as found in Random Access Text Files when displayed in ASCII. These particular files
should only be displayed in hexadecimal in order to display the contents of the records contained in
those type of text files.

 121

Figure III.1.15. LIST Command Display

LOCK f [,Ss] [,Dd] [,Vv]

Example: LOCK TEST

This command sets the most significant bit of the Type byte of the file ‘f’ in the specified volume as
shown in Tables I.7.1 through I.7.3. A locked file cannot be deleted or renamed until it is unlocked,
and the lock status of a file is indicated in the volume Catalog using an asterisk, *, next to the file’s
type character as shown in Figure III.1.16. The date and time stamp for the file is also updated but not
the date and time stamp for the VTOC because nothing in the VTOC was changed.

RENAME f, f2 [,Ss] [,Dd] [,Vv]
MV f, f2 [,Ss] [,Dd] [,Vv] ; UNIX version of RENAME

Example: RENAME COPYDOS,COPYDOS.EXEC

This command changes the name of the file ‘f’ to ‘f2’ in the specified volume if the file ‘f’ exists. The
time stamp of the renamed file is also updated as shown in Figure III.1.17. A locked file cannot be
renamed until it is unlocked. The VTOC time stamp remains unchanged when a file is renamed
because nothing in the VTOC was changed.

 122

Figure III.1.16. LOCK Command Display

Figure III.1.17. RENAME Command Display

 123

SV An

Example: SV A$1234
 SV A1234

This command is new to DOS and it displays on the Apple command line the decimal and hexadecimal
value of the A keyword value whether the keyword variable is entered as a decimal or as a
hexadecimal value. Figure III.1.18 shows the use of the SV (i.e. Show Value) command. Using the
SV command is a convenient way to convert numbers from decimal to hexadecimal or hexadecimal to
decimal without having to reach for the calculator.

The DOS 3.3 Print Decimal (i.e. Base-10) routine “PRTDEC” was severely flawed, and it consumed 37
bytes for its ridiculous implementation. DOS 4.1 needs to convert 16-bit hexadecimal values to
decimal and selectively print from one to five zero-prefaced Base-10 digits. The DOS command SV is
one example where five zero-prefaced Base-10 digits are printed to the screen. The algorithm I
designed for the DOS 4.1 routine “PRTDEC” is only 32 bytes in size, but it requires five additional
bytes for the high-order bytes in the Decimal Table “DECTBLH” and one additional byte for the low-
order bytes in the Decimal Table “DECTBLL”.

TS [,Ss] [,Dd] [,Vv] [,An] [,Bn] [,L] [,R]

Example: TS
 TS A$11,B7
 TS L

This command is new to DOS and it displays on the screen the contents of the specified sector in
hexadecimal of the specified track in the specified volume. The A keyword is used to specify a track
value and the B keyword is used to specify a sector value, and if not given, their value is 0x00. The
value ‘n’ for these keywords may be entered in decimal or hexadecimal, and range checking is done
against that volume’s VTOC parameters NUMTRKS (i.e. number of tracks) and NUMSECS (i.e.
number of sectors in a track). It is critical that a relevant DOS command (i.e. CATALOG) has been
previously issued to ensure that the volume’s VTOC has been read and is currently in memory and
NUMTRKS and NUMSECS have relevant values. If the L or R keyword is included then any A or B
keyword is ignored if they happen to be included. The R keyword takes precedence over the L
keyword if both are included. The L keyword will display the previous sector (i.e. to the Left, or
down) and the R keyword will display the next sector (i.e. to the Right, or up). Figure III.1.19 shows a
typical TS view of an initialized data disk VTOC: the screen is cleared and the sector data is displayed
in hexadecimal byte pairs followed by the TS command and the specified track and sector values.

 124

Figure III.1.18. SV Command Display

Figure III.1.19. TS Command of a Data Disk VTOC Display

 125

UNLOCK f [,Ss] [,Dd] [,Vv]

Example: UNLOCK TEST

This command clears the most significant bit of the Type byte of the file ‘f’ in the specified volume as
shown in Tables I.7.1 through I.7.3. The date and time stamp of the file is also updated as shown in
Figure III.1.20. A file must be unlocked before it can be deleted or renamed. The date and time stamp
for the VTOC is not updated because nothing is changed in the VTOC.

URM f [,Ss] [,Dd] [,Vv]

Example: URM MOVEDOS

This command is new to DOS and it restores the file ‘f’ to the catalog of the specified volume by
clearing the most significant bit of its TSL track byte and marking the sectors in the file’s TSL(s) and
the TSL sector(s) as used. It is prudent to restore a deleted file as soon as possible before the sectors in
a file’s TSL(s) and the TSL sector(s) are utilized by another file. Even if a file requires multiple TSL
sectors, all data sectors and all TSL sectors are restored with the URM command. There is no harm in
attempting to undelete a file that is already displayed in the volume Catalog. Figure III.1.21 shows an
example of a deleted file being restored using the URM command. Notice the “x” before the deleted
filename is now gone after the file is restored. This command was implemented by adding the
URMHNDL handler to the File Manager Subroutine table as shown previously in Table I.9.6. The
DOS 4.1 File Manager handles this command much like the DELHNDLR hander. The date and time
stamp for the VTOC is updated because the VTOC is changed when a file is restored. The date and
time stamp for a file and for the VTOC are both updated even when the URM command is used to
restore a file that is already displayed in the volume Catalog.

 126

Figure III.1.20. UNLOCK Command Display

Figure III.1.21. URM Command Display

 127

VERIFY f [,Ss] [,Dd] [,Vv] [,R1]

Example VERIFY DOS4.1,R1

This command reads into memory each sector listed in the TSL sector(s) of the file ‘f’ in the specified
volume. The read routine in RWTS simply verifies the checksum for each sector read. No data is
changed and the date and time stamp of the file is not changed. The TSL sector(s) is indirectly verified
since it is read into a DOS buffer and used to obtain the file’s track and sector list, but it is not included
in the verified sector count. Only when a non-zero R keyword is included will the number of verified
sectors be displayed on the Apple command line as shown in Figure III.1.22. If a non-zero R keyword
is included with the DOS 4.1 commands SAVE, BSAVE, LSAVE, and TSAVE, not only is the
address and length information displayed, but also the number of verified sectors displayed as well.
The VTOC time stamp remains unchanged when a file is verified because nothing in the VTOC was
changed.

Figure III.1.22. VERIFY Command Display

 128

Command Command Syntax
IN# s

MAXFILES [n]
MON [C] [,I] [,O]

NOMON [C] [,I] [,O]
PR# s

Table III.2.1. DOS 4.1 System Commands

2. System Commands
The DOS 4.1 System Commands manage the Input/Output data streams, the display of commands and
data items, and the number of data buffers within DOS 4.1. The syntax of the System Commands is
shown in Table III.2.1.

IN# s

Example: IN#7

This command configures the KSWL interface to receive all subsequent data from the peripheral
device residing in the specified slot ‘s’ instead of from the Apple keyboard. Previously, Figure III.1.4
shows an example of using the IN# command in communicating with the Thunderclock card.

MAXFILES [n]

Example: MAXFILES 4
 MAXFILES

This command specifies the number of file buffers ‘n’ that can be active at any given time up to a
maximum of 9 buffers for DOS 4.1L and 5 buffers for DOS 4.1H. When DOS 4.1 boots, the default
number of file buffers is configured by the NMAXVAL variable at 0xBEEF as shown in Table I.8.7.
This value is set to 3 in DOS 4.1L and 5 in DOS 4.1H. Each file buffer requires 585 (or 0x249) bytes
of memory. DOS 4.1L builds its file buffers down in memory beginning at 0x9D00 whereas DOS
4.1H builds its file buffers up in memory beginning at 0xEC00. DOS 4.1H was designed this way
such that setting MAXFILES to ‘3’ will allow the MiniAssembler and its associated Monitor to be read
into memory at 0xF500 and not perturb any of the DOS file buffers. Apple][memory is very precious
so specifying more file buffers than is absolutely necessary may prevent the development of a very
large, complex Applesoft or Binary program. MAXFILES with no parameter ‘n’ will display the
current number of active file buffers on the Apple command line as shown in Figure III.2.1. In Figure
III.2.1 the difference of 150,37 (or $9625) and 147,220 (or $93DC) is 2,73, or 585 (or 0x249) bytes.

 129

The number of file buffers can never be zero. Even the CATALOG command requires a file buffer.
Table III.2.2 shows the memory locations for all file buffers in DOS 4.1L and in DOS 4.1H. Reducing
the number of file buffers in DOS 4.1H does not provide additional program space because those file
buffers reside in the Language Card memory; reducing the number of file buffers to 3 would only
allow the use of the MiniAssembler, for example. Before the MAXFILES command rebuilds the file
buffers and allow DOS 4.1 to utilize them it terminates any active EXEC file and closes all open files.
Therefore, the MAXFILES command should be issued early in a program before any files are opened
for data input or output.

Figure III.2.1. MAXFILES, MON, and NOMON Command Display

MON [,C] [,I] [,O]

Example: MON C,I,O
 MON

This command enables the display of commands, input data, and output data to a volume. If the C
keyword is included all programmatically executed DOS Commands are displayed. If the I keyword is
included all Input data from a volume is displayed. If the O keyword is included all Output data to a
volume is displayed. If no keywords are included the CSWL and KSWL pointers are initialized and

 130

DOS enters the Apple Monitor at 0xFF65. Entering a ctrl-C from the Apple Monitor re-enables DOS’s
control of the CSWL and KSWL pointers as shown in Figure III.2.1.

MAXFILES
Value

DOS 4.1L DOS 4.1H
Memory HIMEM Memory HIMEM

1 0x9AB7-0x9CFF 0x9AB7 0xEC00-0xEE48 0xBE00
2 0x986E-0x9AB6 0x986E 0xEE49-0xF091 0xBE00
3 0x9625-0x986D 0x9625 0xF092-0xF2DA 0xBE00
4 0x93DC-0x9624 0x93DC 0xF2DB-0xF523 0xBE00
5 0x9193-0x93DB 0x9193 0xF524-0xF76C 0xBE00
6 0x8F4A-0x9192 0x8F4A - 0xBE00
7 0x8D01-0x8F49 0x8D01 - 0xBE00
8 0x8AB8-0x8D00 0x8AB8 - 0xBE00
9 0x886F-0x8AB7 0x886F - 0xBE00

Table III.2.2. MAXFILES Memory Locations

NOMON [,C] [,I] [,O]

Example: NOMON C,I,O
 NOMON

This command disables the display of commands, input data, and output data to a volume. If the C
keyword is included all programmatically executed DOS Commands are no longer displayed. If the I
keyword is included all Input data from a volume is no longer displayed. If the O keyword is included
all Output data to a volume is no longer displayed. If no keywords are included the CSWL and KSWL
pointers are initialized and DOS enters the Apple Monitor at 0xFF65. Entering a ctrl-C from the Apple
Monitor re-enables DOS’s control of the CSWL and KSWL pointers as shown in Figure III.2.1.

PR# s

Example: PR#7

This command configures the CSWL interface to send all subsequent data to the peripheral device
residing in the specified slot ‘s’ instead of to the Apple display. Previously, Figure III.1.4 shows an
example of using the PR# command in communicating with the Thunderclock card.

 131

Command Command Syntax
CHAIN f [,Ss] [,Dd] [,Vv] [,Ll] [,R]
LOAD f [,Ss] [,Dd] [,Vv] [,R]
RUN f [,Ss] [,Dd] [,Vv] [,Ll]
SAVE f [,Ss] [,Dd] [,Vv] [,R[1]] [,B]

Table III.3.1. DOS 4.1 Applesoft File Commands

3. Applesoft File Commands
The DOS 4.1 Applesoft File Commands manage Applesoft files. The syntax of the Applesoft File
Commands is shown in Table III.3.1.

CHAIN f [,Ss] [,Dd] [,Vv] [,Ll] [,R]

Example: CHAIN TESTPART2, D2

This command is new to DOS and is used only from within an Applesoft program. It LOADs and
RUNs the Applesoft file ‘f’ in the specified volume. It does not clear the value(s) of any previous
variable so that file ‘f’ can use the data and results of the previous program(s), and can provide data
and results for any following CHAINing program. If the L keyword is included processing will begin
at that line number only if that line number exists in program ‘f’, otherwise an error is reported and
Applesoft processing terminates. This capability opens up a myriad of programming possibilities. If
the R keyword is NOT used CHAIN calls the Applesoft ROM routine GARBAG at 0xE484 before
moving the Simple Variables and Array Variables descriptors to their new location at the end of
program ‘f’. This allows a user to either invoke the FRE(aexpr) command or utilize another
method of string garbage collection before or after using the CHAIN command. It is critical that
simple string variables and string array variables that will be used in the next CHAINing program be
moved to the Character String Pool memory area where string data is stored. See section I.13 for a
more thorough discussion of the DOS CHAIN command.

Table I.13.1 shows the definition of the descriptor for the simple variables used in Applesoft programs.
The string descriptor consists of only the first two characters of the string name (so care must be given
in naming variables), the string length, the address in low/high byte order where the string resides in
memory, and two NULL filler bytes. String descriptors for array variables are shown in Table I.13.2
and each string element contains the string length and the address in low/high byte order where the
string resides in memory. The address in the string descriptor or string element will initially be
location where the actual string data exists within the contents of a program. Once the next CHAINing
file ‘f’ replaces that Applesoft program, the actual string data will be overwritten and lost, and its
address will become invalid. Therefore, caution must be exercised when using string variables and
CHAIN if the string variables are not moved to the Character String Pool memory area.

 132

Figure III.3.1. Listing of START and PROGRAM2 Programs Display

Figure III.3.2. Output of Programs START and PROGRAM2 Display

 133

Figure III.3.1 shows two Applesoft programs called START and PROGRAM2. START defines four
simple variables D$, AB, CD%, and EF$. The string variable EF$ is defined in such a way as to force
Applesoft to move it immediately into the Character String Pool memory area where string data is
stored. Applesoft will also move the variable D$ to the Character String Pool memory area before it is
used with the CHAIN command. All four variables will be available to the CHAINing program
PROGRAM2 as shown in Figure III.3.2 when the program START is RUN.

Figure III.3.3. LOAD and SAVE Commands Display

LOAD f [,Ss] [,Dd] [,Vv] [,R]

Example LOAD HELLO
 LOAD HELLO,R

This command reads into memory at 0x0801 the Applesoft file ‘f’ in the specified volume. Applesoft
program files are file type 0x02 as shown in Table I.7.3. This command will also process “A type”
files (i.e. 0x20) as an Applesoft file similarly as in DOS 3.3. If the R keyword is included the memory
load address (i.e. 0x0801) and the number of bytes loaded (i.e. 0x02A7) are displayed as shown in
Figure III.3.3.

 134

RUN f [,Ss] [,Dd] [,Vv] [,Ll]

Example: RUN START

This command reads into memory at 0x0801 the Applesoft file ‘f’ in the specified volume and begins
program execution. DOS pointers are first initialized, then DOS calls 0xD665 in ROM to clear
Applesoft variables, clears the prompt and ONERR flags, and finally calls 0xD7D2 in ROM to begin
program execution. If the L keyword is included processing will begin at that line number only if that
line number exists in program ‘f’, otherwise an error is reported and Applesoft processing terminates.
An example of the use of the RUN command was shown previously in Figure III.3.2.

SAVE f [,Ss] [,Dd] [,Vv] [,R[1]] [,B]

Example: SAVE HELLO2
 SAVE HELLO2,R
 SAVE HELLO2,R1

This command saves the Applesoft file ‘f’ to the specified volume. If the R keyword is included the
save address (i.e. 0x0801) and the number of bytes saved (i.e. 0x02A7) are displayed as shown in
Figure III.3.3. If a non-zero R keyword is included, the number of verified sectors is also displayed as
shown in Figure III.3.3. The B keyword can be used to implement the “File Delete/File Save”
strategy. That is, the Applesoft file ‘f’ will be deleted from the volume Catalog and then saved to the
volume in order to ensure that the file’s TSL contains the exact number of track/sector entries that are
required.

 135

Command Command Syntax
BLOAD f [,Ss] [,Dd] [,Vv] [,Aa] [,R]
BRUN f [,Ss] [,Dd] [,Vv] [,Aa]

BSAVE f [,Ss] [,Dd] [,Vv] [,Aa] [,Ll] [,R[1]] [B]
LLOAD f [,Ss] [,Dd] [,Vv] [,Aa] [,R]
LSAVE f [,Ss] [,Dd] [,Vv] [,Aa] [,Ll] [,R[1]] [B]

Table III.4.1. DOS 4.1 Binary File Commands

4. Binary File Commands
The DOS 4.1 Binary File Commands manage Binary, or assembly language files. The syntax of the
Binary File Commands is shown in Table III.4.1.

BLOAD f [,Ss] [,Dd] [,Vv] [,Aa] [,R]

Example: BLOAD RD
 BLOAD RD,R
 BLOAD RD,A$1000,R

This command reads into memory at address ‘a’ if the A keyword is included, the Binary file ‘f’ in the
specified volume. If the A keyword is not included the file is read into memory at the address the file
was originally saved. Binary files are file type 0x04 as shown in Table I.7.3. If the R keyword is
included the memory load address and the number of bytes read are displayed as shown in Figure
III.4.1.

BRUN f [,Ss] [,Dd] [,Vv] [,Aa]

Example: BRUN INSTALLL
 BRUN INSTALLL,A$1000

This command reads the Binary file ‘f’ in the specified volume into memory at address ‘a’ if the A
keyword is included, and begins program execution at that address. If the A keyword is not included,
the Binary file ‘f’ is loaded into memory at the address the file was originally saved and execution
begins at that address. In DOS 4.1 the DOSWARM address is pushed onto the stack before executing
an indirect “JMP” to ADRVAL, the Binary file memory load address, to guarantee that DOS will be in
control after the Binary program exits. An example of the BRUN command is shown in Figure III.4.2.

 136

Figure III.4.1. BLOAD and BSAVE Commands Display

Figure III.4.2. BRUN Command Display

 137

BSAVE f [,Ss] [,Dd] [,Vv] [,Aa] [,Ll] [,R[1]] [,B]

Example: BSAVE RD2
 BSAVE RD2,R
 BSAVE RD3,A$4000,L$1C00,R1

This command saves the Binary file ‘f’ to the specified volume using the memory address ‘a’ and
length ‘l’ in bytes if the A and L keywords are included. In DOS 4.1 these keywords are optional, but
if they are included they are both required. If the A and L keywords are not included, the address ‘a’
and length ‘l’ of the previous BLOAD or BSAVE command are used. If the R keyword is included the
memory save address and the number of bytes saved are displayed as shown previously in Figure
III.4.1. If a non-zero R keyword is included, the number of verified sectors is also displayed as shown
in Figure III.4.1. Also shown in Figure III.4.1 is a byte comparison of the two files RD and RD3 using
the DOS DIFF command. The DIFF command proves that both files are identical. The B keyword
can be used to implement the “File Delete/File Save” strategy. That is, the Binary file ‘f’ will be
deleted from the volume Catalog and then saved to the volume in order to ensure that the file’s TSL
contains the exact number of track/sector entries that are required.

LLOAD f [,Ss] [,Dd] [,Vv] [,Aa] [,R]

Example: LLOAD README.L
 LLOAD README.L,R
 LLOAD README.L,A$1000,R

This command is new to DOS and it reads into memory the Lisa Binary file ‘f’ in the specified volume
at address ‘a’ if the A keyword is included. If the A keyword is not included the Lisa file is read into
memory at the address the file was originally saved. Lisa files are file type 0x40 as shown in Table
I.7.3. If the R keyword is included the memory load address and the number of bytes read are
displayed as shown in Figure III.4.3.

LSAVE f [,Ss] [,Dd] [,Vv] [,Aa] [,Ll] [,R[1]] [,B]

Example: LSAVE README2.L
 LSAVE README2.L,R
 LSAVE README3.L,A$2100,L$CED,R1

This command is new to DOS and it saves the Lisa Binary file ‘f’ to the specified volume using the
address ‘a’ and length ‘l’ if the A and L keywords are included. In DOS 4.1 these keywords are
optional, but if they are included they are both required. If the A and L keywords are not included, the
address ‘a’ and length ‘l’ of the previous LLOAD or LSAVE command are used. If the R keyword is
included the memory save address and the number of bytes saved are displayed as shown in Figure

 138

III.4.3. If a non-zero R keyword is included, the number of verified sectors is also displayed as shown
in Figure III.4.3. Also shown in Figure III.4.3 is a byte comparison of the two files README.L and
README3.L using the DOS DIFF command. The DIFF command proves that both files are identical.
The B keyword can be used to implement the “File Delete/File Save” strategy. That is, the Lisa Binary
file ‘f’ will be deleted from the volume Catalog and then saved to the volume in order to ensure that
the file’s TSL contains the exact number of track/sector entries that are required.

Figure III.4.3. LLOAD and LSAVE Commands Display

 139

Command Command Syntax
APPEND* f [,Ss] [,Dd] [,Vv]

CLOSE [f]
EXEC f [,Ss] [,Dd] [,Vv] [,Rr]

OPEN* f [,Ss] [,Dd] [,Vv]
POSITION* f [,Rr]

READ* f [,Bb]
TLOAD f [,Ss] [,Dd] [,Vv] [,A] [,Bb] [,Ll] [,R]
TSAVE f [,Ss] [,Dd] [,Vv] [,R[1]] [B]

TW f [,Ss] [,Dd] [,Vv]
WRITE* f [,Bb]

Table III.5.1. DOS 4.1 Sequential Text File Commands

5. Sequential Text File Commands
The DOS 4.1 Sequential Text File Commands manage sequential Text files. The syntax of the
Sequential Text File Commands is shown in Table III.5.1. The commands shown with an asterisk
cannot be used on the Apple command line, whereas the other sequential Text file commands are
allowed to be used on the Apple command line. Sequential Text files are composed of sequential
fields of ASCII characters where a RETURN (i.e. 0x8D) character terminates each field, and a NULL
(i.e. 0x00) character terminates the file. DOS 4.1 differentiates between sequential Text files and
random-access Data files in how the file is opened. If the L keyword is not included with the OPEN
command the file is treated as a sequential Text file, and the READ and WRITE commands must not
use the R keyword as shown in Table III.5.1.

Data may be read from or saved to a sequential Text file immediately after the file is opened, after the
file pointer has been positioned to a particular byte location, or after the file pointer has been
positioned to a particular field. If the B keyword is included with the READ or WRITE command, it
will take precedence over any previous POSITION command. That is, even though the file pointer
may be at the beginning of the ‘r’th field specified by a previous POSITION command, the B
keyword, if it is included with a subsequent READ or WRITE command, will force the file pointer to
be recalculated to point to the ‘b’th byte relative to the beginning of the file.

APPEND f [,Ss] [,Dd] [,Vv]

Example: APPEND STEST.T

This command will open the sequential Text file ‘f’ in the specified volume if it is not already opened.
The APPEND command must be followed by a WRITE command to file ‘f’. The APPEND command
will read the entire file ‘f’ and position the file pointer to the first NULL (i.e. 0x00) character found in
the file. All subsequent input data will be saved to the file beginning at that location. Figure III.5.1
shows an example Applesoft program that uses the OPEN, WRITE, and CLOSE commands in order to

 140

create the sequential Text file STEST.T. Figure III.5.2 is similar in that it shows an example Applesoft
program that uses the APPEND command to add more information to the file STEST.T.

The APPEND command was flawed in several locations in DOS 3.3 requiring patches in how the
internal variable BYTOFFST and the File Manager Context Block variable RECNUM were
manipulated. DOS 4.1 manipulates these variables correctly within the File Manager driver routine
“FMDRVR”, in the Common Open routine “CMNOPN” as described in Section I.10, and in the Calculate
Position routine “CALPOSN”. The original DOS 3.3 Calculate Position routine failed to ensure that the
carry flag was clear before manipulating its variables in order to calculate the desired file position.

Figure III.5.1. OPEN, WRITE, and CLOSE Commands Display

CLOSE [f]

Example: CLOSE

CLOSE STEST.T

This command will de-allocate the file buffer associated with the sequential Text file ‘f’, thereby
closing the file from further data input or data output. If a filename is not supplied with the CLOSE
command, all open files regardless of their file type will be closed except for an open EXEC file. If a
file ‘f’ was open for data input, a CLOSE command will cause all remaining data in its file buffer to be

 141

saved to the file and then the file ‘f’ will be closed. Figures III.5.1 and III.5.2 show examples of using
the CLOSE command in an Applesoft program.

Figure III.5.2. APPEND Command Display

EXEC f [,Ss] [,Dd] [,Vv] [,Rr]

Example: EXEC ETEST.T
 EXEC ETEST.T,R3

This command opens the file ‘f’ in the specified volume with the expectation of reading either
Applesoft or DOS 4.1 commands as if the commands had been issued from the Apple command line.
There can be only one active EXEC file, but an EXEC file may transfer control to another EXEC file.
If the R keyword is included the file pointer is positioned that number of fields ‘r’ from the beginning
of the file. A field is a sequence of characters terminated by a RETURN (i.e. 0x8D) character. Figure
III.5.3 shows an example of an EXEC file in operation. In Figure III.5.4 the file pointer is positioned
at the first character after counting three RETURN characters, thus ignoring those fields, and issuing
all subsequent commands in that file. Notice that the first three commands in the EXEC file ETEST.T
are skipped. If MAXFILES is used in an EXEC file, the EXEC command processing will terminate
and close the executing EXEC file. In both Figures III.5.3 and III.5.4 command-line spacing is set to
single spacing while an EXEC file is open. Once the EXEC file is closed DOS 4.1 will return to
double spacing for displaying successive Apple command lines.

 142

Figure III.5.3. EXEC Command Display

Figure III.5.4. EXEC,Rr Command Display

 143

OPEN f [,Ss] [,Dd] [,Vv]

Example: OPEN STEST.T

This command will allocate one of the available file buffers, which is 585 (i.e. 0x249) bytes in size, for
the sequential Text file ‘f’ in the specified volume. This file buffer will be initialized to read from or
write to the beginning of this file. If this file does not exist in the specified volume, the file is created
and an entry is made in the volume Catalog. If this file is already open, the file is flushed so any
remaining data in its file buffer is saved to the file, the file is closed, and the specified file is again
opened. Figures III.5.1 and III.5.2 show examples of using the sequential Text OPEN command in an
Applesoft program. The L keyword must not be included with the OPEN command when reading and
writing sequential Text files.

POSITION f [,Rr]

Example: POSITION STEST.T,R1

This command will position the file pointer in the file ‘f’ that number of fields ‘r’ ahead relative to the
current file pointer position. A field is a sequence of ASCII characters terminated by a RETURN (i.e.
0x8D) character. Figure III.5.5 shows an example Applesoft program where the file pointer is
positioned at the first character after counting one RETURN character relative to the beginning of the
file STEST.T since this POSITION command follows an OPEN command. Otherwise the file pointer
would be positioned ahead relative to the current file pointer position.

READ f [,Bb]

Example: READ STEST.T

This command will configure the sequential Text file buffer for file ‘f’ such that all data will come
from that file. If the B keyword is included the file pointer position will be located that many actual
bytes ‘b’ from the beginning of the file before any data is read from the file. Figure III.5.6 shows an
example Applesoft program that uses the sequential Data READ command with a byte ‘b’ offset. Any
previous POSITION command will be ignored if the B keyword is included with the READ command.

 144

Figure III.5.5. POSITION and READ Commands Display

Figure III.5.6. READ,Bb Command Display

 145

TLOAD f [,Ss] [,Dd] [,Vv] [,A] [,Bb] [,Ll] [,R]

Example: TLOAD ETEST.T,L31
 TLOAD STEST,A,R
 TLOAD ETEST.T,A,B31

This command is new to DOS and it will read into memory the sequential Text file ‘f’ in the specified
volume to memory address 0x0900. If the A keyword is included in a subsequent TLOAD command,
that sequential Text file ‘f’ will be appended to the sequential Text file(s) already in memory as long as
the internal variable FILELAST+1 is not 0x00; that is, a sequential Text file must already be in
memory. If the B keyword is included, that number of bytes ‘b’ will be skipped before reading the file
into memory. If the L keyword is included, that number of bytes ‘l’ will be read into memory, or until
the end of the file if that should occur first. If the R keyword is included the start address and total
number of bytes of text data currently in memory is displayed once the TLOAD command completes.
In Figure III.5.7 the first 31 bytes of the file ETEST.T are read into memory at memory address
0x0900. The entire contents of the file STEST.T is next read into memory and appended to the
previous Text data already in memory because the A keyword was specified. The total Text data now
in memory is shown to be 89 (i.e. 0x59) bytes. Finally, the first 31 bytes of the file ETEST.T are
skipped and the remaining contents of the file ETEST.T is appended to all the previous Text data
already in memory. The complete sequential Text data is saved to the file TOTAL.T, and the entire
file is displayed using the DOS 4.1 LIST command. It is quite apparent that a complete sequential
Text file may be easily created from extracting pieces of other sequential Text files using the TLOAD
command and its keywords.

TSAVE f [,Ss] [,Dd] [,Vv] [,R[1]] [B]

Example: TSAVE TOTAL.T,R
 TSAVE TOTAL2.T,R1

This command is new to DOS and it will save the sequential Text data currently in memory to the file
‘f’ in the specified volume. The start address and total number of bytes of Text data currently in
memory is internal to DOS 4.1. If the R keyword is included the start address and total number of
bytes of sequential Text data currently in memory is displayed as shown in Figure III.5.7 once the
TSAVE command completes. If a non-zero R keyword is included, the number of verified sectors is
also displayed. The B keyword can be used to implement the “File Delete/File Save” strategy. That is,
the Text file ‘f’ will be deleted from the volume Catalog and then saved to the volume in order to
ensure that the file’s TSL contains the exact number of track/sector entries that are required.

 146

Figure III.5.7. TLOAD and TSAVE Command Display

Figure III.5.8. TW Display

 147

TW f [,Ss] [,Dd] [,Vv]

Example: TW ETEST

This command is new to DOS and it will record all keystrokes typed on the Apple command line into
the sequential Text file ‘f’ in the specified volume. If the file does not exist it is created, otherwise the
file is always opened in APPEND mode. The file is flushed and closed when the ESC key is pressed;
that is, all buffered data is saved to file ‘f’, and then the file is closed. No line editing is provided and
all keystrokes including arrow keystrokes (quasi editing) are recorded to the file as well. The TW (i.e.
Text Write) command provides a convenient and expeditious way to create or append an EXEC file as
the example shows in Figure III.5.8.

WRITE f [,Bb]

Example: WRITE STEST.TXT

This command will configure the sequential Text file buffer for file ‘f’ such that all data will be saved
to that file. If the B keyword is included the file pointer position will be located that many actual bytes
‘b’ from the beginning of the file before any data is saved to the file. Figures III.5.1 and III.5.2 show
examples of using the sequential Data WRITE command in an Applesoft program. Any previous
POSITION command will be ignored if the B keyword is included with the WRITE command.

 148

Command Command Syntax
CLOSE [f]
OPEN* f, Ll [,Ss] [,Dd] [,Vv]
READ* f, Rr [,Bb]
WRITE* f, Rr [,Bb]

Table III.6.1. DOS 4.1 Random-Access Data File Commands

6. Random-Access Data File Commands
The DOS 4.1 Random-Access Data File Commands manage random-access Data files. The syntax of
the Random-Access Data File Commands is shown in Table III.6.1. The commands shown with an
asterisk, or OPEN, READ, and WRITE, cannot be used on the Apple command line, whereas the
CLOSE command is allowed to be used on the Apple command line. Random-access Data files are
composed of specified sized records. A record may be comprised of Text fields, numerical data fields,
or both, and can be as small as 1 byte or as large as 65535 (i.e. 0xFFFF) bytes in size. The record size
is established by the OPEN command. A Text field is any number of sequential ASCII characters
terminated with a RETURN (i.e. 0x8D) character. A numerical field may be any number of digits,
either integer or floating point, in decimal or hexadecimal, or expressed in scientific notation in the
case of real and imaginary numbers. All fields must reside within the specified record size. All
records comprising a file ‘f’ do not necessarily have to contain the same number or order of fields;
however, all records must be the same size within file ‘f’. DOS 4.1 allows the R keyword ‘r’ value to
be specified up to 32767 (i.e. 0x7FFF), thus permitting up to 32768 records in a single file ‘f’. DOS
4.1 differentiates sequential Text files and random-access Data files by how the file is opened. If the L
keyword is included with the OPEN command the file is treated as a random-access Data file and the
READ and WRITE commands must use the R keyword as shown in Table III.6.1. All programs that
access a random-access Data file must open this file with the same record size ‘l’, otherwise the results
will be unpredictable and quite possibly disastrous as the file is processed.

Data sectors are created as necessary when a random-access record is supplied with data. The file
pointer is calculated based on record size ‘l’ and record number ‘r’. From the file pointer value the
necessary TSL index is determined, and if there is no track/sector entry in the respective TSL sector,
an entry is made and the data sector is created. The remainder from the TSL index calculation plus any
‘b’ index value determines the byte offset within the data sector where the record data is saved.

CLOSE [f]

Example: CLOSE RTEST.T

This command will de-allocate the file buffer associated with the random-address Data file ‘f’, thereby
closing the file from further data input or data output. If a filename is not supplied with the CLOSE
command, all open files regardless of their file type will be closed except for an open EXEC file. If a

 149

file ‘f’ was open for data input, a CLOSE will cause all remaining data in its file buffer to be saved to
the file. Figure III.6.1 shows an example of using the CLOSE command in an Applesoft program.

OPEN f, Ll [,Ss] [,Dd] [,Vv]

Example: OPEN RTEST.T, L32

This command will allocate one of the available file buffers, which is 585 (i.e. 0x249) bytes in size, for
the random-access Data file ‘f’ in the specified volume, and set the record length to the number of
bytes ‘l’ specified by the L keyword. If this file does not exist in the specified volume, the file is
created and an entry is made in the volume Catalog. If this file is already open, the file is flushed so
any remaining data in its file buffer is saved to the file, the file is closed, and the specified file is again
opened. Figures III.6.1 and III.6.3 show examples of using the random-access Data OPEN command
in an Applesoft program. The L keyword must be included with the OPEN command when reading
data from and writing data to random-access Data files.

Figure III.6.1. OPEN, WRITE, and CLOSE Commands Display

 150

Figure III.6.2. Contents of RTEST.T Display

READ f, Rr [,Bb]

Example: READ RTEST.T, R1, B12

This command will configure the random-access Data file buffer for the file ‘f’ such that all data will
come from that file. Data will be read from the specified Record ‘r’, one field at a time. If the R
keyword is not included no error will be generated and the file pointer will simply be positioned at the
beginning of the file. DOS 4.1 does not check for the presence or absence of the R keyword; it simply
utilizes its value. However, even though the R keyword is initialized to 0x00 before a DOS command
is parsed, the practice of not using the R keyword with the random-access READ command is not
advised. If the B keyword is included the file pointer will be positioned that many bytes ‘b’ from the
beginning of the specified Record ‘r’ before any data is read from the file.

Figure III.6.2 shows a hexadecimal list of the contents of RTEST.T using the DOS LIST command.
Each record is 32 bytes in size from byte 0 to byte 31. There is no data in the first record, Record 0,
data in Record 1 begins on byte 12, data in Record 2 begins on byte 6, and data in Record 3 begins on
byte 0. Figure III.6.3 shows an example of using the random-access READ command in an Applesoft
program. The file records may be specified and will be read from the file in any order, hence the
descriptive term ‘random-access’. Figure III.6.3 also shows the results of running the RTEST2
Applesoft program.

 151

WRITE f, Rr [,Bb]

Example: WRITE RTEST.T, R1, B12

This command will configure the random-access Data file buffer for file ‘f’ such that all data will be
saved to that file. Data will be saved to the specified Record ‘r’, one field at a time. If the R keyword
is not included no error will be generated and the file pointer will simply be positioned at the beginning
of the file. The practice of not using the R keyword with the random-access WRITE command is not
advised. If the B keyword is included the file pointer will be positioned that many bytes ‘b’ from the
beginning of the specified Record ‘r’ before any data is saved to the file. Figure III.6.1 shows an
example of using the random-access WRITE command in an Applesoft program. The file records may
be specified and will be saved to the file in any order, hence the descriptive term ‘random-access’.

Figure III.6.3. READ and RUN Command Display

Denis Molony, a citizen of Australia and author of DiskBrowser, provided me with an excellent
example of an Applesoft program that creates a random-access Data file that will quickly become
useless after a few records are saved to the file. Figure III.6.4 shows Molony’s Applesoft program.
His program certainly looks simple enough until you realize that the program writes to the last possible
record allowed by DOS 4.1, record 32767 (i.e. 0x7FFF). When DOS first creates a random-access

 152

Data file only the first TSL file is created as in line 400 and the value of the L keyword, 467 in this
example, is saved in the file’s workarea in the RECDLNGH parameter. When this file is reopened
sometime in the future, the file must be opened with the same L keyword value in order to accurately
locate the desired records. When Molony’s program writes to record 32767 in line 600 a file pointer is
calculated and sufficient TSL sectors are created in order to save that particular record to its data
sector. Notice how long it took DOS 4.1, running on an Apple //e at normal speed, to create BIGFILE.
The program CREATE was saved, then loaded into memory, listed, and executed. The time difference
from file save to VTOC update is 3:25 minutes: certainly a huge processing effort for DOS.

How many TSL sectors are created may seem puzzling at first though easy to determine. Each TSL
sector contains 122 (i.e. 0x7A) track/sector entries. These entries are for sectors of data, not for
records of data. Each sector of data contains 256 (i.e. 0x100) bytes. Including record 0, therefore,

{ (467 bytes/record * 32768 records) / 256 bytes/sector } / 122 sectors/TSL = 490 TSLs

When the actual data is written to the file in line 700 an entry is made in the 490th TSL sector for the
sector that is created to contain the actual data. The data is not necessarily written to the first byte of
the sector, but in this instance to byte 46, which comes at the end of record 32766, or the 32767th
record. The entire record of 467 bytes is not written to the file but only the data provided in the PRINT
command in line 700. This byte offset into the data sector is the remainder from the file pointer
calculation:

(467 bytes/record * 32767 records) / 256 bytes/sector = 59,774 sectors + 45 bytes

Figure III.6.4. Example Random-Access Data File CREATE

 153

Figure III.6.4 shows that BIGFILE is 491 sectors in size, currently composed of 490 TSL sectors and 1
data sector. There are only 61 sectors free on this DOS 4.1 data volume which originally contained
554 sectors when it was initialized. Why has DOS created all these TSL sectors? It seems rather
ludicrous, because 59,774 sectors are required to contain all the data for all 32768 records if every
record of 467 bytes contained data and were written to this file. But that would require a volume
having at least 3,736 additional disk tracks. At the very least DOS has created the minimum number of
required linked-list TSL sectors to write record 32767. It is rather obvious that the file BIGFILE is not
at all suitable to contain all the data the program CREATE intended. Therefore, it is critical that
random-access Data files are properly sized to the volumes on which they are stored.

Family Roots by Stephen C. Vorenberg and marketed by Quinsept, Inc., utilizes sequential Text files
and random-access Data files for the Family Roots data base. Each data volume contains three files:
CONTROL, NAMELIST, and FAMILY. The random-access Data file NAMELIST uses 26 sectors.
The sequential Text file CONTROL uses 2 sectors, and it contains the Start and End record numbers
that exist in the random-access Data file FAMILY whose records have been pre-initialized with a 256-
byte empty buffer. The CONTROL file also contains the size of the FAMILY file records, and a few
other parameters, so that the file FAMILY is always opened with the correct value ‘l’ for the L
keyword. Essentially, each FAMILY file contains 224 records that can utilize a record up to 512 bytes
in size. The equations required to verify whether there is sufficient disk space for this random-access
Data file when all of its records are completely filled with data can be expressed as follows:

(224 records * 512 bytes/record) / 256 bytes/sector = 448 sectors

448 sectors / 122 sectors/TSL = 4 TSLs

Since Family Roots utilizes the DOS 3.3 disk operating system, track 0x00 is unavailable and the
VTOC and Catalog require 16 sectors. This leaves 528 sectors for data. Using the above results each
data volume for Family Roots requires 26 + 2 + 448 + 4 = 480 sectors. Therefore, at least 48 sectors
should be left available on each data volume for additional files. A few data volumes did contain one
or two additional files: LASTID and DATE. These files were only two sectors in size and they
appeared transitory. Vorenberg sized his data files such that 91% of each data volume can only be
utilized giving the program Family Roots an adequate safety margin.

These examples demonstrate how important it is to consider whether a single data volume can provide
sufficient room to store the contents of a particular random-access Data file, or whether several
volumes would be required to store all the generated data by using multiple random-access Data files.
Performing the file sizing analysis upfront certainly saves much grief later on when and if a random-
access Data file should exceed its storage media. Certainly, a random-access Data file cannot grow
endlessly and it must have limits built into its design. Given “R” for number of records, “L” for size of
each record in bytes, and “S” for number of available sectors where each sector contains 256 bytes, the
general sizing equations incorporating TSL sector overhead can be expressed as follows:

S = (R * L * 123) / (256 * 122) (always round up)

R = (S * 256 * 122) / (L * 123) (always round down)

L = (S * 256 * 122) / (R * 123) (always round down)

 154

Inserting Vorenberg’s parameters:

S = (224 * 512 * 123) / (256 * 122) = 451.67 => 452 sectors

This is precisely the same value obtained above: 480 data sectors + 4 TSL sectors = 452 sectors.

For Molony’s example program, the required number of sectors for his random-access Data file is:

S = (32768 * 467 * 123) / (256 * 122) => 60,266 sectors

A single 35-track volume is hardly the appropriate medium for this random-access Data file.
Assuming this Data file can be spread over several 35-track volumes each providing 554 sectors when
using DOS 4.1, the number of records on each volume would be:

R = (554 * 256 * 122) / (467 * 123) => 302 records

And, the number of volumes required would be:

32768 records / 302 records/volume => 109 volumes (always round up)

A database of this magnitude would require quite a substantial programing effort, but easily managed
on the CFFA using DOS 4.1 and the VOLMGR. Vorenberg strongly recommended using the Sider
with Family Roots and that is exactly how my mother digitized our family tree.

 155

IV. DOS 4.1 Operational Environment
DOS 4.1 provides a far more advanced operational environment for programming tools and utilities
particularly when they make full use of its open architecture. I have developed my own programming
tools and utilities such as Applesoft Formatter, Binary File Installation (BFI), Real Time Clock (my
own hardware, too), Disk Window, EPROM Operating System (EOS), Volume Manager for the CFFA
Card (VOLMGR), and VTOC Manager (VMGR), or I have created source files for commercial
programs that include Asynchronous Data Transfer (ADT), Big Mac, PROmGRAMER, CFFA Card
firmware, File Developer (FID), Lazer’s Interactive Symbolic Assembler (Lisa), Program Global
Editor (PGE), Global Program Line Editor (GPLE), RamDisk 320 firmware, RanaSystems EliteThree
firmware, The Sider firmware, and Sourceror to utilize the features of DOS 4.1.

Because so much time has passed since these commercial programs were published, I did not consider
it necessary to request permission from the authors of this software, or object code, to “source” their
software: sadly, many of the authors have already passed on. My intent from these programs was to
learn their internal dependencies on DOS 3.3. Collectively, these dependencies partially drove my
design of DOS 4.1 to best provide enough visibility into the DOS 4.1 processing internals and data
structures these authors required.

As is said, “The proof is in the pudding.” I have successfully modified all the above-mentioned
commercial programming tools, utilities, and firmware to be fully DOS 4.1 compliant as if DOS 4.1 is
some black box with a few special access points: there should be no need to directly access any of
DOS 4.1 internal routines. To be sure I am a staunch capitalist, however, I have neither need nor
desire to sell any of the source files I have created. They were created for my own intellectual
edification and for my own use. I am simply showing the effort and time I have invested to modify
what I consider to be valuable software programs written by other brilliant Apple][software
programmers to function successfully within the operational environment of DOS 4.1, Build 46.

 156

1. Applesoft Formatter
After about six months of writing test and demonstration Applesoft programs on my new Apple][+ I
began thinking about writing a serious Applesoft program. Binary File Installation was that program,
but it became a hybrid program because it included attached assembly language routines as described
in section IV.2. I also thought I was now capable of writing a standalone assembly language program.
How an Applesoft program appeared on the screen when listed or printed by a printer appalled me and
I was determined to use assembly language to design and write an Applesoft Formatter program.
Along with aligning program line numbers and spacing all parentheses consistently, two inherent
features of this program were to optionally split multiple BASIC commands on one line to appear on
separate lines and to optionally indent BASIC commands within a FOR/NEXT loop no matter how
nested they became. Since I owned an Epson MX100 printer I could easily print up to 120 characters
on each line if I used wide paper. Basically, this was an exercise in parsing Applesoft tokens, keeping
track of FOR/NEXT loops, and counting quotes. As an interesting aside, I wrote this software to
execute at any memory address. It was certainly an intriguing exercise.

Figure IV.1.1. Applesoft Program Listing

A very simple, unimaginative test Applesoft program is shown in Figure IV.1.1 along with some
results when RUN. I have purposefully put several Applesoft commands on the same line and
embedded the FOR/NEXT loop within those lines. Even when this program is listed to a printer it
appears just as awkward and difficult to read. Needless to say a program many times this size would

 157

be exceedingly difficult to read, debug, and analyze. I am sure there must have been at least one utility
if not more available in the early 1980’s (i.e. Roger Wagner’s Apple-Doc) that could format Applesoft
programs with multiple formatting options. And I am sure those programs did their task
magnificently, too. But that was not my intention, to purchase someone else’s labors.

I wanted to understand how to parse Applesoft programs, and how to separate the Applesoft command
tokens from the variable names and the embedded ASCII text. So this exercise would require me to do
some research, study, and hard work. Figure IV.1.2 shows the output of Applesoft Formatter when the
split line and indent line options are enabled. Seriously, this listing is totally easy to read, debug, and
analyze now that the Applesoft program has been formatted in an appealing and precise way. I also
gained an exceptional understanding in assembly language programming for the 6502-microprocessor,
how to best use an assembler, and how to write relocatable software. Obviously, the lessons learned in
writing Applesoft Formatter were forever invaluable to me.

To assemble the ASLIST source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the ASLIST Source volume “ASLIST.Source” in disk drive 2, load the
“ASLIST.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. The complete binary
image will be saved to the ASLIST Source volume as “ASLIST”.

Figure IV.1.2. Applesoft Program Programmatically Formatted

 158

2. Binary File Installation (BFI)
Binary File Installation was the first totally useful Applesoft program I wrote on my Apple][+. I
began writing Applesoft programs initially, but soon explored assembly language for various sort
algorithms and disk I/O routines. If I wrote the sort algorithms and disk I/O routines such that they
could execute at any memory address then I could attach their binary code to the end of an Applesoft
program, modify some page-zero pointers, and save the composite, albeit hybrid program. Whenever I
RAN the Applesoft program, the program logic would obtain its program size from page-zero
locations and then calculate the addresses of the sort algorithm and the disk I/O routines knowing their
lengths in bytes, or that many bytes before the end of the program. A CALL could then be made
directly to the address of the sort algorithm or the disk I/O routine from any place within the Applesoft
program.

I learned I could even pass parameters to an assembly language routine and also have variables
returned to the Applesoft program. Any number of relocatable routines could be attached to the end of
an Applesoft program and CALLed as long as their location in memory could be precisely determined.
I thought a utility could more easily handle this attachment process, so I created Binary File
Installation to do just that. The user tells BFI which Applesoft program to select that would receive the
binary file attachment(s) and all the relocatable binary files to attach. BFI then modifies the size of the
Applesoft program on disk (its first two bytes in the file) and calls the File Manager to append the
binary files to the end of the program on disk after its last three null bytes: simple, clean, and efficient.
Once the attachment is done, BFI prints the order and size of all the binary files it attached. The
Applesoft program can be edited at any time using the Apple command line and cursor move routines.
However, if a tool such as GPLE or PGE is used to edit the Applesoft program, any attached binary
files will be stripped from the program when it is saved to disk. I have yet to explore how to repair this
feature in GPLE and PGE.

I have modified BFI a number of times as I increased my knowledge of the VTOC and RWTS, and the
HIRES screen and HIRES drawing routines. Sierra’s ScreenWriter used a HIRES screen font that I
adapted for BFI, and BFI uses an adaptation of the HIRES icon drawing routine I developed for
Sierra’s HomeWord Speller product. I even wrote the icon development and edit tool that I use to
create and generate the “shape table” data for all screen icons used in BFI. After the initial splash
screen, the Main Menu screen is displayed as shown in Figure IV.2.1. Selecting the Hardware icon
displays the Peripheral Selection screen as shown in Figure IV.2.2.

BFI displays the results of the binary file installation when it completes its processing, and the user can
selectively print this report as well. Figure IV.2.3 shows the report that is generated when attaching all
the binary files required by the Applesoft code comprising BFI. I probably learned more about my
Apple from this single program at a very early stage in my computer programming self-education after
having been recently graduated with a bachelor’s degree in Electrical Engineering.

 159

Figure IV.2.1. BFI Main Menu

Figure IV.2.2. BFI Peripheral Selection

 160

Binary File Installation Report

*** Applesoft File *** Length in Bytes
BFI 6337

*** Binary Files ***
CR 453
SS 336
RW 178
FA 129
MM 93
FS 78
IC 33
DI 1486
SD 1115

Total: 10238

Figure IV.2.3. BFI Installation Report on BFI

To assemble the BFI assembly language source code routines place the DOS 4.1 Tools volume
“DOS4.1.ToolsL” in disk drive 1, boot, and start Lisa. Enter the “SE” command-line command to
select the “SETUP” program in order to verify or set the “Start of Source Code” to 0x2100
and the “End of Source Code” to 0x6000. Place the BFI Source volume “BFI.Source” in
disk drive 2, load a Lisa source code file into memory, and start the assembler by entering either the
“A” command-line command or the “Z” command-line command. If a printed version of the screen
output is desired simply preface the “A” or “Z” command with the “P1” command-line command. The
object code (i.e. binary file) will be saved to the BFI Source volume. Continue to assemble all the BFI
assembly language source code routines until all the routines have been assembled. Place the BFI
Source volume “BFI.Source” in disk drive 1 and run “BFI”. Select a single drive installation and
whatever slot the printer interface slot card resides in. Select “BFI.RAW” for the Applesoft program.
Successively select the binary files shown in Figure IV.2.3. Binary files from other volumes may be
selected as well. Perform the installation and print the Binary File Installation Report if desired.

Alternatively, place the BFI Source volume “BFI.Source” in disk drive 1 and run “BFI”. Select a
double drive installation and whatever slot the printer interface slot card resides in. Place the volume
containing the target Applesoft program in disk drive 1 and the volume containing the binary files in
disk drive 2. Select the Applesoft program and the necessary binary files to install, perform the
installation, and print the Binary File Installation Report if desired.

 161

3. Apple][+ Memory Upgrade
Now that I was an Electrical Engineering graduate student in the early 1980’s, I certainly wanted to use
my Apple][+ as an opportunity to make some practical hardware modifications. First and foremost I
wanted to incorporate a shift key modification, add in keyboard repeat logic, and provide an “alt” key
circuit to the keyboard that would set or clear specific bits in the keyboard data in order to generate all
the other ASCII characters the Apple][+ keyboard could not generate. This drove me to burn my own
character generator EPROM that included lowercase characters, rather similar to what Dan Paymar
was selling as his Lowercase Adaptor Interface. Then I fixed the “glitch” I noticed when switching
modes from TEXT, LOWRES, and HIRES using a couple of additional logic gates: it was all a matter
of timing in order to alter an inherent logic delay when the display mode was switched. I reached a
level of competence when I decided to remove all 24 16 Kb DRAM chips from the motherboard and
replaced them with eight 64 Kb DRAM chips. This required cutting some foil traces, rerouting power,
and building a satellite circuit board that would generate an additional DRAM row/column address
line. The satellite circuit even included logic to model the Language Card in order to emulate the
action of certain addresses that act as soft switches. In theory it all worked perfectly in my head, of
course. The satellite circuit I developed is shown in Figure IV.3.1. I paused a very long moment
before applying power to my modified motherboard the first time. I was pleased, if not absolutely
delighted to find that my 48 KB Apple][+ was fully 64 KB functional as if a Language Card resided in
Slot 0. There was no blue smoke. Wow!

Figure IV.3.1. Apple][+ Satellite Circuit Diagram

The satellite circuit contains the eight logic chips shown in Figure IV.3.1, three LED’s, eight DIP
switches, and a 26-pin connector for the signals shown in Table IV.3.1 along with power and ground.
Either DIP switch 1 or 2 must be closed, but not both. If DIP switch 1 is closed then the 74LS175
configuration register is clocked only with a read to 0xC08n, where “n” can be 0x0 to 0xF. If DIP

 162

switch 2 is closed then the configuration register is clocked with either a read or a write to 0xC08n.
Language Card RAM is enabled if 0xC080, 0xC083, 0xC088, or 0xC08B is read, and the green LED
glows. If RAM bank 1 is enabled (i.e. 0xC088 to 0xC08F is read) the yellow LED glows. RAM is
write-enabled if 0xC081, 0xC083, 0xC089, or 0xC08B is read twice and DIP switch 3 is closed, then
the red LED glows. Opening DIP switch 3 will absolutely write-protect Language Card RAM.

Signal Location Signal Location
ø1 B1,6 (74LS175) A12 H4,3 (8T97)
AX C2,14 (74LS195) A13 H5,3 (8T97)

DevSel H2,15 (74LS138, Slot 0) A14 J1,9 (74LS257)
INH F3,18 (ROM-E8) A15 J1,12 (74LS257)
RES A7,3 (keyboard socket) A12* to C1,3 (74LS157)
R/W H5,5 (8T97) A14* to F2,14 (74LS139)
A0 H5,11 (8T97) RA7 to all 4164,9
A1 H4,5 (8T97) CE to all EPROM’s CE
A2 H5,7 (8T97) ALT to all EPROM’s A14
A3 H5,9 (8T97) CS0-CS3 to each EPROM CS

Table IV.3.1. Apple][+ Satellite Circuit Board Connections

A 27128 EPROM is the minimum size that will hold the ROM firmware from 0xD000 to 0xFFFF,
although the first 32 KB of the EPROM is not addressed. When a 27256 EPROM is used to contain
two ROM firmware images, DIP switch 4 (to pin 27, A14) can be used to select the desired image. If
DIP switch 4 is closed, the lower image is selected. DIP switches 5, 6, 7, and 8 select one of four
possible EPROMs on the Apple][+ motherboard. I removed all six 24-pin ROM sockets and installed
four 28-pin EPROM sockets making sure pins 1, 2, 27, and 28 were electrically isolated from the
motherboard. Only one of these four DIP switches should be closed, otherwise multiple EPROMs will
be enabled simultaneously. Honestly, I ended up preparing and burning only a single EPROM
containing two ROM images. Providing access to four similar EPROMs never became necessary.

Table IV.3.1 lists all the signals I required and the location on the Apple][+ motherboard where I
obtained that signal. In order to provide two banks of Language Card RAM for the 0xD000 to
0xDFFF range, address lines A12* and A14* must be derived from the outputs of the circuit’s
74LS175 configuration register, the A12 and A13 address lines, and the A14 and A15 address lines
from a 74LS257 at motherboard location J1 that also support memory data access and memory refresh.
These two derived address lines are connected directly to the pins of C1,3 and F2,14. Memory refresh
for the 4164 chips is accomplished using the current RA0 through RA6 signals on the motherboard
without regard to RA7. The derived RA7 signal simply provides the eighth row and eighth column
address in order to access 64 Kb of memory per chip. Tables IV.3.2 and IV.3.3 provide the details of
the operation of the Apple][+ Satellite Circuit Board vis-á-vis input address, the state of each LED,
whether RAM is read-enabled or write-enabled, whether ROM is read-enabled, and the effective
address generated for other motherboard logic.

 163

Input to
74LS175

Latch

Input
Address

Bus

Red
LED
State

Grn
LED
State

Yel
LED
State

Final
A12*
State

RAM
Enabled

ROM
Read

Enable

Output
Address Bus
RAM/ROM R W

0xC080
RAM2

WP

%0100

<0xC000 0 1 0 A12 1 1 0 <0xC000
0xCnnn 0 1 0 0 0 0 0 0xCnnn
0xDnnn 0 1 0 1 1 0 0 0xDnnn
0xEnnn 0 1 0 0 1 0 0 0xEnnn
0xFnnn 0 1 0 1 1 0 0 0xFnnn

0xC081
ROM2

WP

%0010

<0xC000 0 0 0 A12 1 1 0 <0xC000
0xCnnn 0 0 0 0 0 0 0 0xCnnn
0xDnnn 0 0 0 1 0 0 1 0xDnnn
0xEnnn 0 0 0 0 0 0 1 0xEnnn
0xFnnn 0 0 0 1 0 0 1 0xFnnn

0xC081
0xC081
ROM2

WE
%0011

<0xC000 1 0 0 A12 1 1 0 <0xC000
0xCnnn 1 0 0 0 0 0 0 0xCnnn
0xDnnn 1 0 0 1 0 1 1 0xDnnn
0xEnnn 1 0 0 0 0 1 1 0xEnnn
0xFnnn 1 0 0 1 0 1 1 0xFnnn

0xC082
ROM2

WP

%0000

<0xC000 0 0 0 A12 1 1 0 <0xC000
0xCnnn 0 0 0 0 0 0 0 0xCnnn
0xDnnn 0 0 0 1 0 0 1 0xDnnn
0xEnnn 0 0 0 0 0 0 1 0xEnnn
0xFnnn 0 0 0 1 0 0 1 0xFnnn

0xC083
RAM2

WP

%0110

<0xC000 0 1 0 A12 1 1 0 <0xC000
0xCnnn 0 1 0 0 0 0 0 0xCnnn
0xDnnn 0 1 0 1 1 0 0 0xDnnn
0xEnnn 0 1 0 0 1 0 0 0xEnnn
0xFnnn 0 1 0 1 1 0 0 0xFnnn

0xC083
0xC083
RAM2

WE
%0111

<0xC000 1 1 0 A12 1 1 0 <0xC000
0xCnnn 1 1 0 0 0 0 0 0xCnnn
0xDnnn 1 1 0 1 1 1 0 0xDnnn
0xEnnn 1 1 0 0 1 1 0 0xEnnn
0xFnnn 1 1 0 1 1 1 0 0xFnnn

%0001 This configuration is not possible to select, so it is not valid.

%0101 This configuration is not possible to select, so it is not valid.

Table IV.3.2. Apple][+ Satellite Circuit Board Operation Part 1

 164

Input to
74LS175

Latch

Input
Address

Bus

Red
LED
State

Grn
LED
State

Yel
LED
State

Final
A12*
State

RAM
Enabled

ROM
Read

Enable

Output
Address Bus
RAM/ROM R W

0xC088
RAM1

WP

%1100

<0xC000 0 1 1 A12 1 1 0 <0xC000
0xCnnn 0 1 1 1 0 0 0 0xDnnn
0xDnnn 0 1 1 0 1 0 0 0xCnnn
0xEnnn 0 1 1 0 1 0 0 0xEnnn
0xFnnn 0 1 1 1 1 0 0 0xFnnn

0xC089
ROM1

WP

%1010

<0xC000 0 0 1 A12 1 1 0 <0xC000
0xCnnn 0 0 1 1 0 0 0 0xDnnn
0xDnnn 0 0 1 0 0 0 1 0xCnnn
0xEnnn 0 0 1 0 0 0 1 0xEnnn
0xFnnn 0 0 1 1 0 0 1 0xFnnn

0xC089
0xC089
ROM1

WE
%1011

<0xC000 1 0 1 A12 1 1 0 <0xC000
0xCnnn 1 0 1 1 0 0 0 0xDnnn
0xDnnn 1 0 1 0 0 1 1 0xCnnn
0xEnnn 1 0 1 0 0 1 1 0xEnnn
0xFnnn 1 0 1 1 0 1 1 0xFnnn

0xC08A
ROM1

WP

%1000

<0xC000 0 0 1 A12 1 1 0 <0xC000
0xCnnn 0 0 1 1 0 0 0 0xDnnn
0xDnnn 0 0 1 0 0 0 1 0xCnnn
0xEnnn 0 0 1 0 0 0 1 0xEnnn
0xFnnn 0 0 1 1 0 0 1 0xFnnn

0xC08B
RAM1

WP

%1110

<0xC000 0 1 1 A12 1 1 0 <0xC000
0xCnnn 0 1 1 1 0 0 0 0xDnnn
0xDnnn 0 1 1 0 1 0 0 0xCnnn
0xEnnn 0 1 1 0 1 0 0 0xEnnn
0xFnnn 0 1 1 1 1 0 0 0xFnnn

0xC08B
0xC08B
RAM1

WE
%1111

<0xC000 1 1 1 A12 1 1 0 <0xC000
0xCnnn 1 1 1 1 0 0 0 0xDnnn
0xDnnn 1 1 1 0 1 1 0 0xCnnn
0xEnnn 1 1 1 0 1 1 0 0xEnnn
0xFnnn 1 1 1 1 1 1 0 0xFnnn

%1001 This configuration is not possible to select, so it is not valid.

%1101 This configuration is not possible to select, so it is not valid.

Table IV.3.3. Apple][+ Satellite Circuit Board Operation Part 2

 165

4. Real Time Clock Card
The experience I gained in building the memory upgrade for my Apple][+ led me to design and build
my own Real Time Clock peripheral slot card. I had to learn some new skills in order to build a
peripheral slot card that would fit within the dimensions allowed for a slot card in the Apple][+. I had
never etched a double-sided copper clad board that large nor had I thought about how to place TTL
components in terms of organization, data and signal flow, wire length, and clean power. I also had to
include circuitry to charge the onboard rechargeable batteries. All these ideas mattered one way or
another I am sure, but honestly, I didn’t have much of a clue. In hindsight I should have taken a class
in TTL circuit board design and layout before I was graduated with my degree in Electrical
Engineering. My garage was my ultimate laboratory and workshop! But most importantly I wanted
the hardware design to provide a simple, elegant, and thoroughly elementary software interface.

I wanted to design my Real Time Clock card around the SaRonix RTC58321 Real Time Clock
module, which I probably obtained from Jameco Electronics in the mid 1980’s. The RTC58321
incorporated an internal quartz crystal in a single 16-pin DIP package thereby eliminating the need for
an external crystal and timing circuit. This clock module provided me with everything I needed: read
and write for date and time values and an external “busy” signal. I wanted the software interface to be
as simple as possible so I put a lot of effort into the design of the hardware logic so the hardware
would negotiate with the RTC58321’s data and address setup time requirements. Unfortunately, the
6502-clock read/write period happened to be far too short for the required data and address setup time
needed for the RTC58321. Initially, I used a breadboard for the TTL logic components to figure out
how to negotiate with the RTC58321 using a full 6502-clock period by utilizing a flip-flop. Then I
wrote the slot interface firmware for the onboard 2732 EPROM. I modeled my general user Applesoft
interface from the Applied Engineering TimeMaster II Applesoft interface. Whatever commands the
TimeMaster could handle, I made sure my clock card could handle in addition to all the other
commands and capabilities I could devise and had room for in the EPROM. And I figured out how to
make use of the standard signals generated by the RTC58321 to pull the IRQ and/or NMI line low in
order to initiate a hardware interrupt. Once I had the schematic drawn and the components organized,
I drilled all the necessary holes for chip sockets and components, and etched the copper for the power,
ground, and some circuit lines. I hand-wired and soldered the remaining connections for the interface
board slot finger, chip sockets, transistors, batteries, LEDs, configuration block, resistors, and
capacitors. My Real Time Clock card is fully operational today as it was over 30 years ago. I’ve only
had to replace the rechargeable batteries a couple of times! Figure IV.4.1 shows the complete circuit
diagram for my Real Time Clock card that I had originally drawn on March 20, 1988.

Only four of the sixteen peripheral-card I/O memory locations are used for clock configuration, clock
address, clock status, clock register, clock data, and interrupt clear and set. Table IV.4.1 shows the
description of those memory locations where “s” is equals to eight plus the slot number of the Real
Time Clock card. Only Memory Address bits 0x0 and 0x1 are captured so it does not matter what is
used for Memory Address bits 0x2 and 0x3. Addresses 0xC0s4, 0xC0s8, and 0xC0sC are all valid
for 0xC0s0 in order to read and write the Real Time Clock configuration register. Table IV.4.2 shows
the description of the configuration register bits. This register retains its configuration until it is
changed by another write to 0xC0s0 or when RESET is pressed. When RESET is pressed the register
is cleared to 0x00. Before loading the clock data registers it is important to stop the clock by setting
the STOP Enable bit to one. Once the clock is loaded its previous configuration data can be restored.

 166

Figure IV.4.1. Real Time Clock Circuit Diagram

Address Operation Description
0xC0s0 read Read configuration register
0xC0s0 write Write configuration register
0xC0s1 read Read status register
0xC0s1 write Write clock register number
0xC0s2 read Read clock data register
0xC0s2 write Write clock data register
0xC0s3 read Clear interrupt flip-flop
0xC0s3 write Set interrupt flip-flop

Table IV.4.1. Real Time Clock Peripheral-Card I/O Addresses

 167

Bit Description
0 Interrupt enable, 0 = off
1 Interrupt rate select A
2 Interrupt rate select B
3 Interrupt rate select C
4 STOP enable, 0 = run
5 TEST enable, 0 = normal operation
6 NMI enable, 0 = off
7 IRQ enable, 0 = off

Table IV.4.2. Real Time Clock Configuration Register

C B A Description
0 0 0 1 Hz interrupt rate
0 0 1 4 Hz interrupt rate
0 1 0 16 Hz interrupt rate
0 1 1 64 Hz interrupt rate
1 0 0 256 Hz interrupt rate
1 0 1 1024 Hz interrupt rate
1 1 0 1 minute interrupt rate
1 1 1 1 hour interrupt rate

Table IV.4.3. Interrupt Rate Selection

Table IV.4.3 shows the description of the eight interrupt rates that are available for the generation of
IRQ and/or NMI interrupts. The selected interrupt rate is made active by setting the Interrupt Enable
bit to one as shown in Table IV.4.2. In order for interrupts to be generated either the NMI Enable bit
and/or the IRQ Enable bit must be set to one.

Table IV.4.4 lists the sixteen registers available in the RTC58321. Any time when an 0xE or 0xF
register number is latched the clock module is put into its idle state and the standard signals are
available at its data ports when the READ port of the RTC58321 is set to one. Setting the READ port
of the RTC58321 to one is accomplished by setting the Interrupt Enable bit in the configuration
register to one as shown in Table IV.4.2. The 1024 Hz signal is divided by two 74LS161 binary
counters to obtain the remaining interrupt rates that can be selected by the configuration register. Even
though the Real Time Clock card can also generate NMI interrupts, the EPROM software only has
provisions to generate and handle IRQ interrupts. Nevertheless, software can easily be written to
utilize an NMI interrupt if there is an occasion for such an interrupt to be generated. The configuration
register also provides control of the TEST enable port of the RTC58321. I no longer can locate any
documentation that describes how to test the RTC58321 using the TEST enable port. Setting data bit
D3 in register 0x5 of the RTC58321 will select 24-hour mode. Doing this will clear bit D2 of the same
register. If 12-hour mode is selected then bit D2 will select PM if that bit is set to one. The RTC58321

 168

divides the 10-year digit in register 0xC by 4 in order to determine leap year. The remainder of this
division is saved to bits D2 and D3 of register 0x8. If the remainder is zero then leap year is selected.
The RTC58321 may be reset by latching register 0xD and writing any data to the register. This sets
the WRITE port of the RTC58321 to one. The EPROM firmware does not reset the RTC58321.

Reg D3 D2 D1 D0 Name D3 D2 D1 D0 Count Notes

0 0 0 0 0 S1 s8 s4 s2 s1 0 to 9 1-second digit
1 0 0 0 1 S10 - s40 s20 s10 0 to 5 10-second digit
2 0 0 1 0 MI1 mi8 mi4 mi2 mi1 0 to 9 1-minute digit
3 0 0 1 1 MI10 - mi40 mi20 mi10 0 to 5 10-minute digit
4 0 1 0 0 H1 h8 h4 h2 h1 0 to 9 1-hour digit
5 0 1 0 1 H10 24/

12
PM/
AM

h20 h10 0 to 2
0 to 1

10-hour digit

6 0 1 1 0 W - w4 w2 w1 0 to 6 week digit
7 0 1 1 1 D1 d8 d4 d2 d1 0 to 9 1-day digit
8 1 0 0 0 D10 leap year d20 d10 0 to 3 10-day digit
9 1 0 0 1 MO1 mo8 mo4 mo2 mo1 0 to 9 1-month digit
A 1 0 1 0 MO10 - - - mo10 0 to 1 10-month digit
B 1 0 1 1 Y1 y8 y4 y2 y1 0 to 9 1-year digit
C 1 1 0 0 Y10 y80 y40 y20 y10 0 to 9 10-year digit
D 1 1 0 1 reset - - - - reset register
E 1 1 1 0 idle 1

hour
1

min.
1

sec.
1024
Hz

 standard signal
register F 1 1 1 1 idle

Table IV.4.4. Real Time Clock Registers

The Real Time Clock card utilizes two switches to control function. Closing Switch 1 disables the
frequency data selector module and blocks the output of the selected interrupt rate. Therefore, the
clock card cannot generate an interrupt even if the NMI enable bit or the IRQ enable bit is set to one in
the configuration register. Closing Switch 2 will disable the Address Write and Data Write flip-flops.
Therefore, the data in the clock module cannot be changed rendering the RTC58321 write protected.
The clock card utilizes three LEDs to indicate what function the clock card is performing. The Green
LED lights whenever the 2732 EPROM is accessed. The Yellow LED lights at the same frequency as
the selected interrupt rate if the frequency data selector module is enabled by the Interrupt Enable bit of
the configuration register and if Switch 1 is open. The Red LED lights whenever the output of the
Interrupt Flip-Flop is set to one regardless whether the NMI enable bit or the IRQ enable bit is set to
one in the configuration register. If either bit is set the base of a 2N3904 general purpose transistor is
pulled high thereby allowing its collector-emitter junction to conduct and pull the respective interrupt
line safely to ground. I placed an R/C network between the output of the 74LS133 and the data input
to the EPROM enable flip-flop in order to shift the derived CLRROM signal slightly because of the
slight delay inherent in the clock pulse to that flip-flop.

 169

Offset Name Description
0x00 MAINSELC php instruction
0x01 sei instruction
0x02 PR# and IN# DOS command handler

Issues CLRROM, branches to INITCLK
0x08 WRITSELC Issues CLRROM, branches to LOADCLK
0x10 READSELC Issues CLRROM, branches to READCLK
0x18 MODESELC Issues CLRROM, branches to SETMODE
0x20 IRQSELC Issues CLRROM, branches to SETIRQ
0x28 STRTSELLC Issues CLRROM, branches to STRTCLK
0x30 STOPSECL Issues CLRROM, branches to STOPCLK
0x38 INITCLK Saves registers, branches to HNDLINIT
0x3F LOADCLK Saves registers, branches to HNDLLOAD
0x46 READCLK Saves registers, branches to HNDLREAD
0x4D SETMODE Saves registers, branches to HNDLMODE
0x54 SETIRQ Saves registers, branches to HNDLIRQ
0x5B STRTCLK Saves registers, branches to HNDLSTRT
0x62 STOPCLK Saves registers, branches to HNDLSTOP
0x69 WRITCLK Issues CLRROM, branches to HNDLWRIT
0x71 SETRTN Issues CLRROM, branches to HNDLRTN
0x79 IRQHNDLR Issues CLRROM, branches to EXECIRQ
0x80 EXIT Restores registers, issues CLRROM, returns to caller
0x8A HNDLINIT Gets slot, processes input command
0x93 HNDLLOAD Gets slot, writes clock buffer at 0x2F0-0x2FC to clock
0x9C HNDLREAD Gets slot, reads clock to clock buffer at 0x2F0-0x2FC
0xA5 HNDLMODE Gets slot, stores mode value 0x21-0x3E to MODE, 0x478
0xAE HNDLIRQ Gets slot, sets IRQ 0-7, clears IRQBUF, 0x2FD-0x2FF
0xB7 HNDLSTRT Gets slot, updates clock config, puts SETRTN address in KSWL
0xC0 HNDLSTOP Gets slot, stops clock, puts SETRTN address in KSWL
0xC9 HNDLWRIT Saves registers, gets slot, stop clk, write clk register, start clk
0xD7 HNDLRTN Saves registers, gets slot, puts “<rtn>” at 0x200-0x201
0xE5 EXECIRQ Saves registers, gets slot, updates IRQBUF, restores registers,

issues CLRROM, returns with “rti” instruction
0xFA upper ASCII “41”
0xFC upper ASCII “RTC”
0xFF CLKID (0x03)

Table IV.4.5. Clock Firmware Entry Points

The first half of the 2732 EPROM is used for eight copies of the same interface software for the
peripheral-card ROM address space, one copy for each possible slot in which the Clock card could
reside. The second half of the EPROM maps into the peripheral-card expansion ROM address space.
Whenever the 6502-microprocessor fetches an instruction only in the first half of the peripheral-card
ROM memory, 0xCs00 to 0xCs7F, where “s” is the slot number of the Clock card, the peripheral-

 170

card expansion ROM memory, 0xC800 to 0xCFFF, is enabled. This allows the CLRROM address,
0xCFFF, to disable the expansion ROM memory when CLRROM is used in the second half of the
peripheral-card ROM memory, a hardware design trick I learned from the hardware design of the
RamDisk 320 peripheral slot card. Table IV.4.5 shows all the entry points in the EPROM slot
firmware for the Real Time Clock card. This firmware conforms to the clock card protocol where the
first two instructions are ‘php’ and ‘sei’, and the last byte, the clock ID, is “0x03”. Clock ID “0x07”
can also be used. DOS 4.1 accepts either value as valid.

The program Set Clock utilizes some of the special features I designed into the Real Time Clock card.
Its primary purpose is to set the clock card with the current date and time, of course. The program also
displays the current date and time that is stored in its registers, and those values may be automatically
selected or new values entered for each of the registers. The surprising feature of this program is that it
utilizes an interrupt handler. The clock card is configured to generate an IRQ interrupt every second.
Every time the interrupt handler executes it reads the clock card and displays its date and time data.
Once the correct date and time data is displayed that data can be written to the clock card. The
interrupt handler will continue to display the current date and time data of the clock card while the real
time clock continues to update its internal registers. Before the Set Clock program exits it restores the
data originally found at MASKIRQ (i.e. 0x3FE) as shown in Table I.9.1. and sets the clock card
configuration register as shown in Table IV.4.2. to 0x00.

The Set Clock program first issues the ‘sei’ instruction to the 6502 microprocessor to inhibit all
interrupts. During initialization it copies the address found at MASKIRQ to a safe location and sets
MASKIRQ to the address of the interrupt handler in Set Clock. Set Clock then sets the clock card
configuration register to #%10000001 in order to enable interrupts and to enable the IRQ interrupt
specifically. Once the initialization routine issues the ‘cli’ instruction to the 6502 microprocessor, the
Set Clock interrupt handler will be able to field all IRQ interrupts while the user is setting the various
values for the date and time. When the interrupt handler is invoked it first issues the ‘cld’ instruction
to the 6502 microprocessor, pushes the X and Y registers onto the stack, clears the IRQ interrupt on the
real time clock card, reads the real time clock card, displays the current date and time data, restores the
X and Y registers from the stack, restores the A-register from the page-zero location 0x45, and issues
the ‘rti’ instruction to the 6502 microprocessor. It is amazing how simple it is to use interrupts for this
program. Of course, the well thought out hardware design of the Real Time Clock card makes
utilizing interrupts on the Apple computer easy and fun.

To assemble the Clock EPROM firmware source code place the DOS 4.1 Tools volume
“DOS4.1.ToolsL” in disk drive 1, boot, and start Lisa. Enter the “SE” command-line command to
select the “SETUP” program in order to verify or set the “Start of Source Code” to 0x2100
and the “End of Source Code” to 0x5800. Place the Clock Source volume “CLOCK.Source”
in disk drive 2, load the “CLOCK.L” file into memory, and start the assembler by entering either the
“A” command-line command or the “Z” command-line command. If a printed version of the screen
output is desired simply preface the “A” or “Z” command with the “P1” command-line command. The
complete binary image will be saved to the Clock Source volume as “CLOCK”.

To assemble the Set Clock source code follow the same procedure as above, load the “SETCLOCK.L”
file into memory and start the assembler. The complete binary image will be saved to the Clock
Source volume as “SETCLOCK”.

 171

5. Disk Window
I have no doubt Don Worth and Pieter Lechner inspired thousands of computer hobbyists with their
Example Programs found in their book “Beneath Apple DOS,” for these authors certainly inspired me.
The learning curve was a bit steep if I recall, diskettes were expensive at that time, and I had some
preconceived underlying fear that I would destroy something precious, be it hardware or software, if I
started messing around with RWTS. Patience was certainly a virtue, and when one is examining the
sectors and tracks of a diskette, it was like peering through some sort of digital microscope. The idea
of reading a specific sector on a diskette and displaying that data was awe-inspiring. Furthermore,
having a utility that could edit those data bytes and write those edits back to that same sector, or any
other sector for that matter, was totally mind blowing: what can of worms would that capability open?
Worth’s and Lechner’s utility Zap did inspire me to design Disk Window, what I call my fancy zap
program. It is like having a digital window focused on any device, track, sector, or Logical Block
Address (LBA) of my choosing.

The current version of Disk Window now supports the reading and writing of any valid LBA sector on
a CFFA card. If a CFFA card is detected in the selected slot, LBA mode will be used for reading and
writing block data. If a Disk][interface or similar slot card is detected in the selected slot, track-sector
mode will be used for reading and writing sector data. Regardless of which mode is used to read and
write volume data, the appropriate LBA for the selected volume-track-sector will be displayed
according to the conversion algorithm I developed. The startup screen for Disk Window is displayed
as shown in Figure IV.5.1. The four commands at the bottom of the screen “Configure”, “Select
LBA”, “Select D/V”, and “Select T/S” utilize the respective variables at the top of the screen.
The commands “Forward” and “Backward” simply increment or decrement the track/sector if in
track-sector mode or LBA if in LBA mode. The commands “Edit”, “Write”, and “Print” display
a respective screen for their function.

Figure IV.5.2 shows the display of the VTOC data for the diskette in a Disk][whose interface card
resides in Slot 6, and Drive 1 is selected. The data is displayed both in hexadecimal and in ASCII,
unless it is a control character. The hexadecimal values from 0x00 to 0x1F and 0x80 to 0x9F are
displayed as a period. Lower ASCII values from 0x20 to 0x7F are displayed in inverse text and upper
ASCII values from 0xA0 to 0xFF are displayed in normal text. If “Edit” is selected the same VTOC
data is displayed as shown in Figure IV.5.3, where the cursor is initially placed on row 0x70 and
column 0x07. After all edits have been applied the “Write” command will write the sector data to
the selected sector or to any other sector (or LBA) as shown in Figure IV.5.4. It must be noted that
LBA blocks are 512 bytes in size. “Page 0” refers to the first 256 bytes and “Page 1” refers to the
second 256 bytes. Thus, CFFA sectors 0x00-0x0F reside on “Page 0” and CFFA sectors 0x10-0x1F
reside on “Page 1”. The 256-byte sector data may be saved to any available LBA, either on “Page
0” or on “Page 1”. “Page 0” is selected by pressing the “L” key and “Page 1” is selected by
pressing the “H” key. The contents of the screen can also be printed using the “Print” command as
shown in Figure IV.5.5. The command “Configure” in Figure IV.5.5 allows the user to change the
“Printer Slot” value if desired without having to return to the main menu screen as shown in
Figure IV.5.1. If an RWTS error should occur it is prominently printed in the center of the
hexadecimal data display window as shown in Figure IV.5.6. I purposefully opened the Disk][door
for drive 1 to cause a disk drive error. According to Table I.9.4 an error value of 0x40 is an RWTS
Drive error. The error message will remain until any key is pressed on the keyboard.

 172

Figure IV.5.1. Disk Window Startup Screen

Figure IV.5.2. Select T/S Mode

 173

Figure IV.5.3. Edit Data Screen

Figure IV.5.4. Write Sector Data Screen

 174

Figure IV.5.5. Print Sector Data Screen

Figure IV.5.6. Disk Window Error Message Display

 175

Disk Window is certainly a giant leap from Worth’s and Lechner’s utility Zap, but they are the giants
whose shoulders I stood on in utilizing their insight and their enthusiasm for everything Apple][.

To assemble the Disk Window source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in
disk drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP”
program in order to verify or set the “Start of Source Code” to 0x2100 and the “End of
Source Code” to 0x6000. Place the Disk Window Source volume “DISKWINDOW.Source” in
disk drive 2, load the “DW.L” file into memory, and start the assembler by entering either the “A”
command-line command or the “Z” command-line command. If a printed version of the screen output
is desired simply preface the “A” or “Z” command with the “P1” command-line command. Five
object code files will be created on the Disk Window Source volume: “SEG01” to “SEG05”. The
five object code files can be combined in memory sequentially starting at 0x0900 using the “ctrl-P”
command. The complete binary image can be saved to the Disk Window Source volume, or any other
volume, as “DW”.

 176

6. EPROM Operating System (EOS) for quikLoader
Southern California Research Group’s (SCRG) quikLoader as well as their PROmGRAMER were
must-have peripheral slot cards when they first appeared in the early 1980’s. Without question data
can be read many, many times faster from the Disk][than data read from cassette tape. But data can
be read many, many times faster from EPROM than data read from the Disk][. Literally in a fraction
of a second DOS can be read into memory from EPROM and begin its command-line processing. I
attended a Los Angeles computer convention where I bought the quikLoader after seeing several
demonstrations in what it could do. Essentially, it is a very simple, though elegant peripheral slot card
that can hold up to eight 2716 to 27512 EPROMs, and it has some hardware logic that maps the
selected EPROM to the 0xC100 to 0xFFFF address space. The software SCRG provided with the
quikLoader resides in the first EPROM, or EPROM 0, along with room for a few additional programs.
Their documentation explained how to organize the contents of programs and utilities in an EPROM
and build a catalog for those contents. Once an EPROM was “burned” with its catalog and its
contents, and seated in the quikLoader, a selected primary program would be read into memory after
pressing its EPROM number followed by the RESET key. The EPROM Catalog was displayed when
the letter “Q” followed by RESET was pressed. I built several EPROMs using the SCRG software
interface, but I found the process to be tedious and cumbersome, and I thought I might be able to
design a better interface. Once I sourced the SCRG “firmware” code, I realized their software
interface could have been perhaps better thought out. And I saw there was absolutely no way to
programmatically access any of the EPROM contents using the current SCRG hardware interface
unless I included a lot of their software routines within my software.

Peripheral slot cards for the Apple][typically incorporate and utilize firmware code in its peripheral-
card ROM address space, that is, 0xCs00 to 0xCsFF where “s” is the slot number of the peripheral
slot card. Also, a peripheral slot card can use its peripheral-card expansion ROM address space,
0xC800 to 0xCFFF, for additional firmware code when the slot card is enabled. As an aside, putting
0xCFFF onto the address bus should turn off all peripheral-card expansion ROMs so another
peripheral slot card, enabled by accessing its own peripheral-card ROM address space, can select and
utilize its own peripheral-card expansion ROM without causing memory contention with another
peripheral slot card. The quikLoader could not, so did not, utilize its peripheral-card ROM address
space and, therefore, could not utilize any peripheral-card expansion ROM address space for any of its
interface software. This inability is simply a hardware design choice, but I viewed it as a hardware
design deficiency. I did find one unused 74LS08 AND gate on the quikLoader. That single AND
gate allowed me to modify the quikLoader hardware logic just enough such that it was now possible to
access its peripheral-card ROM address space that was mapped to a page of EPROM data in the
quikLoader’s address space. Now I had something physical I could work with, and this led me to
develop the EPROM Operating System, or EOS. In addition to this minor hardware logic modification
I added an LED to glow when the quikLoader was enabled and an SPDT switch to mechanically turn
off the quikLoader without having to physically remove it from its slot. The complete circuit of the
quikLoader with my modifications is shown in Figure IV.6.1.

Fortunately I had acquired the “improved” quikLoader, the model capable of addressing a 27512
EPROM. A 74LS74 dual D flip-flop was added to capture the state of the 6502 A1 address line when
writing to the quikLoader’s 74LS174 control register, and to ever so slightly delay the 6502 clock edge
for latching EPROM data. The control register data byte can be saved to any of the sixteen I/O address
space locations dedicated to the quikLoader’s slot: 0xC0s0 through 0xC0sF, where “s” is equal to
eight plus the slot number of the quikLoader. However, only the first four addresses (or their relatives)
do anything different since the control register also latches the state of address line A0 as the 74LS74

 177

latches the state of address line A1. The state of address lines A2 and A3 are not latched, so they are
not utilized.

Figure IV.6.1 quikLoader Circuit Diagram with Modifications

 178

Data lines D0, D1, and D2 of the control register select one of eight EPROMs, data line D3 is the USR
bit, and data line D4 turns the quikLoader ON and OFF where 0 is ON; data lines D5, D6, and D7 are
not utilized. The SCRG documentation describes how an area of EPROM memory at a given offset is
mapped to the Apple][’s 0xC100 to 0xFFFF address space, but I found using the first half of this
address space confusing and strange, and not very amenable to programmatic utilization. Rather, I
found that I could access an entire 27512 EPROM by using eight 8-KByte banks, where each bank
uses the upper 0xE000 to 0xFFFF address space. The described function of the USR bit was also
confusing and strange, as well as the role it was to perform according to the SCRG documentation, as a
master/slave flag when multiple quikLoaders are used in the same computer. For the moment I have
quite a few programs that I routinely use, and those programs and EOS fit comfortably into two 27512
EPROMs and one-half of a third 27512 EPROM. I cannot imagine needing more than one quikLoader
in my computer, so my vision of EOS became even more tailored when I limited EOS to manage a
single quikLoader. Table IV.6.1 lists the six EPROM sizes the quikLoader can address, their
associated memory banks, and the latched control register data values necessary for USR, A0, and A1
to access those banks.

Bank EPROM EPROM Offset Memory Access A1 A0 US
R

0 2716 0x0000-0x07FF 0xF800-0xFFFF 0 0 0
0 2732 0x0000-0x0FFF 0xF000-0xFFFF 0 0 0
0 2764 0x0000-0x1FFF 0xE000-0xFFFF 0 0 0
0 27128 0x0000-0x1FFF 0xE000-0xFFFF 0 0 0
1 0x2000-0x3FFF 0xE000-0xFFFF 0 0 1
0 27256 0x0000-0x1FFF 0xE000-0xFFFF 0 0 0
1 0x2000-0x3FFF 0xE000-0xFFFF 0 0 1
2 0x4000-0x5FFF 0xE000-0xFFFF 0 1 0
3 0x6000-0x7FFF 0xE000-0xFFFF 0 1 1
0 27512 0x0000-0x1FFF 0xE000-0xFFFF 0 0 0
1 0x2000-0x3FFF 0xE000-0xFFFF 0 0 1
2 0x4000-0x5FFF 0xE000-0xFFFF 0 1 0
3 0x6000-0x7FFF 0xE000-0xFFFF 0 1 1
4 0x8000-0x9FFF 0xE000-0xFFFF 1 0 0
5 0xA000-0xBFFF 0xE000-0xFFFF 1 0 1
6 0xC000-0xDFFF 0xE000-0xFFFF 1 1 0
7 0xE000-0xFFFF 0xE000-0xFFFF 1 1 1

Table IV.6.1. quikLoader Bank Switching

 179

Offset Name Description
0x00 QLASEOS Applesoft interface entry, parses command variables
0x5F EXIT10 Return unknown command error, 0x10
0x62 EXIT20 Return wrong number of parameters error, 0x20
0x65 EXIT30 Return search range invalid error, 0x30
0x68 EXIT40 Return file not found error, 0x40
0x6B EXIT00 Return no error, 0x00
0xA6 QLEXIT If ZipChip present flush cache and enable it, fall into QLEXIT2
0xC2 QLEXIT2 Turn quikLoader off, jump to QBMEXIT at 0x0118
0xD0 QLUSER1 Return from DOS USERCMD, entry #1
0xD8 QLUSER2 Return from DOS USERCMD, entry #2
0xE0 QLBINEOS Turn quikLoader on, load QBMCODE, jump to BINEOS
0xF0 QLEOS Turn quikLoader on, jump to EOS at 0xE800
0xF8 QLBINTXT ASCII “QLBINEOS” used to find which slot a quikLoader is in

Table IV.6.2. quikLoader Firmware Entry Points

Bank Offset Memory Size Contents
0 0x0000 0xE000 0x0004 Sync bytes
 0x0004 0xE004 0x00FC Catalog
 0x0100 0xE100 0x0100 Slot 1 ASEOS/BINEOS interface
 0x0200 0xE200 0x0100 Slot 2 ASEOS/BINEOS interface
 0x0300 0xE300 0x0100 Slot 3 ASEOS/BINEOS interface
 0x0400 0xE400 0x0100 Slot 4 ASEOS/BINEOS interface
 0x0500 0xE500 0x0100 Slot 5 ASEOS/BINEOS interface
 0x0600 0xE600 0x0100 Slot 6 ASEOS/BINEOS interface
 0x0700 0xE700 0x0100 Slot 7 ASEOS/BINEOS interface
 0x0800 0xE800 0x17FA EOS software
 0x1FFA 0xFFFA 0x0002 NMI vector, address of EOS
 0x1FFC 0xFFFC 0x0002 RESET vector, address of EOS
 0x1FFE 0xFFFE 0x0002 IRQ/BRK vector, address of EOS
1 0x2000 0xE000 0x2000 DOS4.1L
2 0x4000 0xE000 0x2A00 DOS4.1H
3 0x6A00 0xEA00 0x3000 Lisa 1 code segment
4 0x9A00 0xFA00 0x1000 Lisa 2 code segment
5 0xAA00 0xEA00 0x08D0 LED code segment
5 0xB2D0 0xF2D0 0x1900 RamDisk
6 0xCBD0 0xEBD0 0x12B8 FID
6 0xDE88 0xFE88 0x0DAD ADT
7 0xEC35 0xEC35 0x0418 Volume Copy
7 0xF04D 0xF04D 0x0647 Set Clock
7 0xF694 0xF694 0x096C unused

Table IV.6.3. EPROM 0 Containing EOS and Programs

 180

When RESET is pressed the 74LS174 and 74LS74 data control registers are cleared in order to select
EPROM 0, force Bank 0 to be mapped into memory from 0xE000 to 0xFFFF, and turn the quikLoader
ON. The 6502-microprocessor automatically loads the RESET vector at 0xFFFC/0xFFFD into the
program counter and continues fetching instructions from there. As an aside, the NMI vector is at
0xFFFA/0xFFFB and the IRQ/BRK vector is at 0xFFFE/0xFFFF. These three vectors point to the
start of EOS which begins at 0xE800 in Bank 0. Therefore, EOS must reside within the remaining
0x17FA bytes of memory in Bank 0 of a 2764 EPROM, at a minimum, otherwise some sort of bank
switching would need to be utilized in order to extend EOS processing into another EPROM bank, an
option I did not wish to employ. Table IV.6.2 shows the firmware entry points of one of seven copies
of the firmware that is mapped to the peripheral-card ROM address space of the quikLoader by
incorporating that single, unused 74LS08 AND gate as shown in Figure IV.6.1.

Fortunately there is enough room for EOS to process the 26 commands shown in Figure IV.6.2 and
room for the EPROM Catalog function, the Applesoft interface (ASEOS), the assembly language
interface (BINEOS), the ZipChip configuration software to support a ZipChip if one is present, and the
software to manage Primary files. Unlike the SCRG interface, EOS does not capture the state of the
keyboard at the moment the RESET key is pressed. Instead, EOS displays an “EOS Main Menu”,
and any of the displayed options may be selected. I simply chose those programs and utilities I liked
best to display in the “EOS Main Menu”. Someone else may display a different set of favorite
utilities. The way I have organized EPROM 0 is so simple that all one needs to do is model their
EPROM 0 after mine. The remaining seven banks on EPROM 0 contain DOS 4.1L and DOS 4.1H,
ROM Copy, Set Clock, Volume Copy, Lisa and LED, RamDisk Installation, FID, and ADT. Table
IV.6.3 shows the contents of EPROM 0 that contains EOS. Both Disk Window and Volume Manager
reside on other EPROMs. EOS uses the power and flexibility of BINEOS to load and run those
utilities without regard to a specific EPROM number. An example EOS Catalog screen is shown in
Figure IV.6.3 and continues in Figure IV.6.4.

Later in the discussion concerning the ASEOS interface, Table IV.6.4 shows the definition of the file
types used in EOS, how each file type is displayed in the EOS Catalog screen, and the hexadecimal
value of each file type. Notice in Figure IV.6.3 that DOS.4.1.46H is file type “S” having a value of
0x5C. This value is derived from the logical OR of System file, Binary file (main memory), Binary
file (Bank 1), and Binary file (Bank 2) because parts of DOS.4.1.46H reside in all these memory
locations. Mathematically, the file type for the DOS.4.1.46H file is:

 File Type = 0x40 ∨ 0x04 ∨ 0x08 ∨ 0x10 = 0x5C

EOS provides Applesoft users with three commands when using the ASEOS interface: Load file, Run
file, and Catalog. In order to access ASEOS, the quikLoader control register must be initially
configured to EPROM 0, Bank 0, and turned OFF. For example, if the quikLoader resides in slot 4,
the program must “POKE 49344, 16” (i.e. POKE 0xC0C0,0x10) to initially configure the
quikLoader hardware before making the CALL to ASEOS. In this example “CALL 50176” (i.e.
CALL 0xC400) will begin ASEOS processing. The CALL command must be followed by some
required arguments, and there are some optional arguments as well. These arguments must be integer
variables, integer arrays, ASCII strings, or ASCII string arrays where indicated. Real variables and
real arrays must never be used in an ASEOS CALL statement because those numbers are floating point
values and they are not supported by the ASEOS routines.

 181

Figure IV.6.2. EOS Commands at RESET

Figure IV.6.3. EOS Catalog for EPROM 0, Part 1

 182

Figure IV.6.4. EOS Catalog for EPROM 0, Part 2

The following shows how to use the ASEOS interface:

LOAD file command. In order to load a file into memory from an EPROM using ASEOS:

 QL = quikLoader slot number
 OFF = 16 ; 0x10
 DEV = QL * 16 + 49280 ; QL * 0x10 + 0xC080

EOS = QL * 256 + 49152 ; QL * 0x100 + 0xC000
 C% = 1 ; LOAD file command
 S% = -1 ; init Status to error

E% = EPROM search range
F$ = Filename (1 to 24 upper ASCII characters)
A% = Alternate load address (optional)

 POKE DEV, OFF

CALL EOS, C%, S%, E%, F$ [, A%]

RUN file command. In order to run a file in memory loaded from an EPROM using ASEOS:

 QL = quikLoader slot number
 OFF = 16 ; 0x10

 183

 DEV = QL * 16 + 49280 ; QL * 0x10 + 0xC080
EOS = QL * 256 + 49152 ; QL * 0x100 + 0xC000

 C% = 2 ; RUN file command
 S% = -1 ; init Status to error

E% = EPROM search range
F$ = Filename (1 to 24 upper ASCII characters)
[A%] = Alternate load address (optional)

 POKE DEV, OFF

CALL EOS, C%, S%, E%, F$ [, A%]

CATALOG command. In order to catalog the EPROMs residing in a quikLoader using ASEOS:

 QL = quikLoader slot number
 OFF = 16 ; 0x10
 M% = Maximum number of anticipated entries
 DEV = QL * 16 + 49280 ; QL * 0x10 + 0xC080

EOS = QL * 256 + 49152 ; QL * 0x100 + 0xC000
 C% = 3 ; CATALOG command
 S% = -1 ; init Status to error

E% = EPROM search range
 N% = Number of entries returned (not initialized)

F$(N%) = Filename array (1 to 24 upper ASCII characters)
[P%(0,N%)]= Parameter Array returned (optional)

 DIM F$(M%), P%(4,M%)
 POKE DEV, OFF
 N% = 0 ; start index

CALL EOS, C%, S%, E%, N%, F$(N%) [, P%(0,N%)]

Returned Status values:

 S% = 0 no error
 S% = -1 number of parameters exceeded ; 0xFF
 S% = 16 unknown command ; 0x10
 S% = 32 number of parameters invalid ; 0x20
 S% = 48 search range invalid ; 0x30
 S% = 64 file not found ; 0x40

EPROM search range:

 E% = 0-7 for a single, specific EPROM
 E% = 0-7:0-7, or (last EPROM) * 16 + (start EPROM)

 184

Optional Parameter Array returned:

 P%(0,N%) = EPROM number
 P%(1,N%) = file type
 P%(2,N%) = EPROM offset
 P%(3,N%) = file size in bytes
 P%(4,N%) = destination memory address

Parameter Value Catalog Description
P%(1,N%) 0x01 T Text file, NULL terminated, like an EXEC file
P%(1,N%) 0x02 A Applesoft file
P%(1,N%) 0x04 B Binary file, main memory
P%(1,N%) 0x08 B Binary file, Bank 1 Language Card memory
P%(1,N%) 0x10 B Binary file, Bank 2 Language Card memory
P%(1,N%) 0x20 R Reserved file
P%(1,N%) 0x40 S System file
P%(1,N%) 0x80 P Primary file

Table IV.6.4. EOS File Types Used in Optional Parameter Array

EOS file types are shown in Table IV.6.4 with their optional Parameter Array index, their value, and
their display designation in the EOS Catalog function. EOS currently uses two Reserved type files:
the ROM code from 0xD000 to 0xFFFF and the four Catalog sync bytes. Primary files are Binary files
that may be activated directly by the EOS EPROM Catalog function and they load or run System files.
The EOS EPROM Catalog function cannot directly load or run System files. System files may be
Text, Applesoft, or other Binary files. System files may be attached to a Primary file, or loaded or run
by activating its associated Primary file either using the EOS Catalog function, ASEOS, or BINEOS.
EOS is not designed to handle Integer BASIC type files because DOS 4.1 does not support Integer
BASIC type files. A DOS image and the software tool Sourceror are examples of System type files.
The program that loads Sourceror into memory for execution is an example of a Primary file. System
and Primary files used in EOS are different in function and concept than those files used in the SCRG
interface.

In EOS an EPROM Catalog for the files contained in that EPROM is prefaced with four sync bytes,
0xC4, 0xB8, 0x90, and 0xED. The actual catalog begins at offset 0x0004 and it may contain any
number of entries, where each entry is a variable size depending on the length in bytes of its filename.
An EPROM catalog filename is a character string that uses lower ASCII for all its bytes except for the
last byte in the string which is in upper ASCII. The Lisa assembler calls this use of lower and upper
ASCII as “DCI” format. The catalog is terminated with a NULL (i.e. 0x00) character. An example
catalog file entry structure is shown in Table IV.6.5.

 185

Offset Length Variable Description
0 1 FILETYPE File type as defined in Table IV.6.4
1 2 SRCVAL EPROM source address (offset)
3 2 LENVAL File length or size in bytes
5 2 DSTVAL Destination memory address
7 1-24 FILENAME Filename, 1 to 24 ASCII bytes (“DCI” format)

Table IV.6.5. EOS Catalog File Entry Structure

EOS provides assembly language users with three commands when using the BINEOS interface: Load
file, Run file, and Catalog. A Data Context Block, or DCB is used for the input variables and returned
status. The structure of the DCB is command specific. Any assembly language program like Primary
files can use QLBINEOS to load and run System files. QLBINEOS is located at the 0xE0th byte in the
peripheral-card ROM memory of the quikLoader as shown in Table IV.6.2. For example, if the
quikLoader resides in slot 4, QLBINEOS is at memory address 0xC4E0. The following code shows
how to utilize the BINEOS interface:

0800 1 ttl "QLBINEOS Utilization, QLBINEOS.L"
0800 2 ;
0800 3 ;
0800 4 ; QLBINEOS.L
0800 5 ;
0800 6 ;
002A 7 SRCPTR epz $2A
002E 8 DSTPTR epz $2E
0800 9 ;
0000 10 ZERO equ $00
00FF 11 NEGONE equ $FF
0800 12 ;
0000 13 QLON equ $00
0010 14 QLOFF equ $10
0800 15 ;
0020 16 CHKNUM equ $20
0800 17 ;
C080 18 QLSELC equ $C080
0800 19 ;
C0E0 20 QLBINEOS equ $C0E0
C0F8 21 QLBINTXT equ $C0F8
0800 22 ;
C700 23 PAGEC7 equ $C700
E700 24 PAGEE7 equ $E700
0800 25 ;
CFFF 26 CLRROM equ $CFFF
0800 27 ;
0800 28 ;
0800 29 org $800
0800 30 obj $800
0800 31 usr
0800 32 ;
0800 33 ;
0800 20 0C 08 34 jsr FINDQL ; find quikLoader

 186

0803 B0 07 35 bcs FINDERR
0805 36 ;
0805 A0 71 37 ldy #EOSDCBL ; address of
0807 A9 08 38 lda /EOSDCBL ; Load DCB
0809 39 ;
0809 20 63 08 40 jsr QLBINJMP ; Load the file
080C 41 ;
080C 42 ; :::
080C 43 ;
080C 44 FINDERR:
080C 45 ; :::
080C 46 ;
080C 47 ;
080C 48 FINDQL:
080C A0 00 49 ldy #PAGEC7 ; get address
080E A9 C7 50 lda /PAGEC7 ; of 0xC700
0810 51 ;
0810 84 2A 52 sty SRCPTR ; store address at
0812 85 2B 53 sta SRCPTR+1 ; source pointer
0814 54 ;
0814 A9 E7 55 lda /PAGEE7 ; bank 0 slot address
0816 56 ;
0816 84 2E 57 sty DSTPTR ; store address at
0818 85 2F 58 sta DSTPTR+1 ; destination pointer
081A 59 ;
081A A9 07 60 lda #7 ; initialize
081C 8D 66 08 61 sta QLSLOT ; for slot 7
081F 62 ;
081F AD 66 08 63 ^1 lda QLSLOT ; get slot number
0822 64 ;
0822 0A 65 asl ; multiply by 16
0823 0A 66 asl
0824 0A 67 asl
0825 0A 68 asl
0826 69 ;
0826 AA 70 tax ; use as index
0827 71 ;
0827 A9 00 72 lda #QLON ; turn quikLoader ON
0829 9D 80 C0 73 sta QLSELC,X
082C 74 ;
082C 2C FF CF 75 bit CLRROM ; detach expansion ROM memory
082F 76 ;
082F A0 20 77 ldy #CHKNUM ; initialize index
0831 78 ;
0831 B1 2A 79 ^2 lda (SRCPTR),Y ; compare slot memory
0833 D1 2E 80 cmp (DSTPTR),Y ; and EPROM bank 0
0835 D0 1E 81 bne >4
0837 82 ;
0837 88 83 dey
0838 D0 F7 84 bne <2
083A 85 ;
083A A9 10 86 lda #QLOFF ; turn quikLoader OFF
083C 9D 80 C0 87 sta QLSELC,X
083F 88 ;
083F A0 F8 89 ldy #QLBINTXT ; point to QLBIN text
0841 90 ;
0841 B1 2A 91 ^3 lda (SRCPTR),Y ; compare slot memory
0843 D9 71 07 92 cmp QLTEXT-NEGONE&QLBINTXT,Y ; and text
0846 D0 0D 93 bne >4
0848 94 ;
0848 C8 95 iny

 187

0849 D0 F6 96 bne <3
084B 97 ;
084B A5 2B 98 lda SRCPTR+1 ; get slot memory address
084D 8D 68 08 99 sta QLBINADR+1 ; save to vector
0850 100 ;
0850 2C FF CF 101 bit CLRROM ; detach expansion ROM memory
0853 102 ;
0853 18 103 clc ; quikLoader found
0854 104 ;
0854 60 105 rts
0855 106 ;
0855 C6 2B 107 ^4 dec SRCPTR+1 ; next slot memory
0857 C6 2F 108 dec DSTPTR+1 ; next EOS slot
0859 109 ;
0859 CE 66 08 110 dec QLSLOT ; next slot
085C D0 C1 111 bne <1
085E 112 ;
085E 2C FF CF 113 bit CLRROM ; detach expansion ROM memory
0861 114 ;
0861 38 115 sec ; no quikLoader
0862 116 ;
0862 60 117 rts
0863 118 ;
0863 119 ;
0863 6C 67 08 120 QLBINJMP jmp (QLBINADR)
0866 121 ;
0866 122 ;
0866 123 QLSLOT dfs 1,ZERO
0867 124 ;
0867 E0 C0 125 QLBINADR adr QLBINEOS
0869 126 ;
0869 D1 CC C2 127 QLTEXT asc "QLBINEOS"
086C C9 CE C5
086F CF D3
0871 128 ;
0871 129 ;
0871 130 EOSDCBL equ *
0871 131 ;
0871 01 132 DCBLCMD hex 01 ; Load command
0872 07 133 DCBLEP hex 70 ; search all EPROMs
0873 00 00 134 DCBLOAD hex 0000 ; no alternate Load address
0875 FF 135 DCBLSTAT hex FF ; return status
0876 0F 136 DCBLFLEN byt FILENDL-FILNAML ; filename length
0877 79 08 137 DCBLFADR adr FILNAML ; filename address
0879 138 ;
0879 C1 F0 F0 139 FILNAML asc “Apple File List”
087C EC E5 A0
087F C6 E9 EC
0882 E5 A0 CC
0885 E9 F3 F4
0888 140 FILENDL equ *
0888 141 ;
0888 142 ;

BSAVE QLBINEOS,A$0800,L$0088
0888 143 usr QLBINEOS
0888 144 ;
0888 145 ;
0888 146 end 000

*** End of Assembly

 188

LOAD file. In order to load a file from an EPROM using BINEOS, the DCB is:

 EOSDCBL equ * ; Load file DCB
 DCBCMDL hex 01 ; Load command
 DCBEPNL hex 70 ; search all EPROMs
 DCBFALTL hex 0000 ; no alternate Load address
 DCBSTATL hex FF ; return status
 DCBFLENL byt FILENDL-FILNAML ; filename length
 DCBFADRL adr FILNAML ; filename address

 FILNAML asc “Applesoft File List”
 FILENDL equ *

RUN. In order to run a file from an EPROM using BINEOS, the DCB is:

 EOSDCBR equ * ; Run file DCB
 DCBCMDR hex 02 ; Run command
 DCBEPNR hex 70 ; search all EPROMs
 DCBFALTR hex 0000 ; no alternate Run address
 DCBSTATR hex FF ; return status
 DCBFLENR byt FILENDR-FILNAMR ; filename length
 DCBFADRR adr FILNAMR ; filename address

 FILNAMR asc “Volume Copy”
 FILENDR equ *

CATALOG. In order to catalog the EPROMs residing in a quikLoader using BINEOS, the DCB is:

 EOSDCBC equ * ; Catalog EPROMs DCB
 DCBCMDC hex 03 ; Catalog command
 DCBEPNC hex 70 ; Catalog all EPROMs
 DCBCALT hex 0000 ; not used
 DCBSTATC hex FF ; return status
 DCBCNUM hex 00 ; number of Catalog entries found
 DCBCADR adr CATBUFR ; address of Catalog buffer

 CATBUFR dfs 32*n,ZERO ; buffer with ‘n’ 32-byte entries

The call to QLBINEOS will return one of the following Status values:

 0x00 = no error
 0x10 = unknown error
 0x20 = filename length invalid

 189

 0x30 = search range invalid
 0x40 = file not found

Offset Length Variable Description
0 1 FILEPNUM EPROM number containing file
1 1 FILETYPE File type
2 2 SRCVAL EPROM source address (offset)
4 2 LENVAL File length or size in bytes
6 2 DSTVAL Destination memory address
8 24 FILENAME Filename, space padded, upper ASCII

Table IV.6.6. BINEOS Catalog File Entry

The EPROM search range and file types are the same in BINEOS as they are in ASEOS. The Catalog
buffer will contain the number of entries given by DCBCNUM, and each entry will be 32 bytes in size
regardless of the length of the filename in bytes, and padded with the upper ASCII SPACE (i.e. 0xA0)
character. A BINEOS Catalog file entry is structured as shown in Table IV.6.6.

EOS makes extensive use of the 6502-microprocessor stack page from 0x110 to 0x19F for QLJMP,
QLCONFIG, QLMOVE, QLJSR, QLRTN, and QLEXEC. When EOS is activated it initializes the
stack pointer to 0xFF to ensure that these stack routines are safe. And, it is extremely unlikely that the
ASEOS interface will load these stack routines over a stack pointer in this memory region because
Applesoft tightly controls this pointer. The same argument can be made for software using the
BINEOS interface as long as that software is mindful of the stack pointer location. EOS also makes
extensive use of the text input page from 0x0280 to 0x02EF. It is extremely unlikely that a lengthy
Applesoft DOS command will ever be issued during ASEOS or BINEOS processing. EOS uses the
stack and input pages so that Page 0x03 (i.e. 0x0300 to 0x03CF) is still available for program loaders.
The loader for SOURCEROR (a Primary file) is one example of a very short binary program that uses
Page 0x03 to load SOURCEROR (a System File) from EPROM to memory address 0x8900 using a
DCB. It also sets MAXFILES to 1. The possibilities are virtually endless in how EOS can be utilized
to obtain information and data from an EPROM or EPROMs residing in a quikLoader.

To assemble the EOS source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive
1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program in
order to verify or set the “Start of Source Code” to 0x5000 and the “End of Source
Code” to 0x7000. Place the EOS Binaries volume “EOS.512.Binaries” in disk drive 1. Place
the EOS Source volume “EOS.512.Source” in disk drive 2, load the “EOS.L” file into memory,
and start the assembler by entering either the “A” command-line command or the “Z” command-line
command. If a printed version of the screen output is desired simply preface the “A” or “Z” command
with the “P1” command-line command. Eight object code files will be created on the EOS Binaries
volume: “SEG01” to “SEG08”. Place the EOS Image volume “EOS.512.Image” in disk drive 2,

 190

load the “MOVE.L” file into memory from the EOS Binaries volume, and start the assembler using the
“Z” command-line command. The eight object code files will be copied from the EOS Binaries
volume to the EOS Image volume. The first four object code files on the EOS Image volume can be
combined in memory sequentially starting at 0x1000 using the “ctrl-P” command. The complete
binary image can be saved to the EOS Image volume as “EOS1” as shown in Figure IV.14.5. The last
four object code files on the EOS Image volume can be combined in memory sequentially starting at
0x1000 using the “ctrl-P” command. The complete binary image can be saved to the EOS Image
volume as “EOS2” as shown in Figure IV.14.6. I also place a copy of the utility “BURNER” on the
EOS Image volume before I transfer the volume to an Apple //e using A2V2 on the Mac and ADT on
the Apple //e. Now, the utility “BURNER” can easily burn a 27512 EPROM using the “EOS1” and
“EOS2” binary images as binary source files. “EOS1” must be burned to the first half of the EPROM
and “EOS2” must be burned to the second half of the EPROM.

To assemble the PGM1 source code with Lisa already running, place the PGM1 Binaries volume
“PGM1.512.Binaries” in disk drive 1. Place the PGM1 Source volume “PGM1.512.Source”
in disk drive 2, load the “PGM.L” file into memory, and start the assembler using either the “A”
command-line command or the “Z” command-line command. If a printed version of the screen output
is desired simply preface the “A” or “Z” command with the “P1” command-line command. Eight
object code files will be created on the PGM1 Source volume: “SEG01” to “SEG08”. Place the
PGM1 Image volume “PGM1.512.Image” in disk drive 1, load the “MOVE.L” file into memory
from the PGM1 Source volume, and start the assembler using the “Z” command-line command. The
eight object code files will be copied from the PGM1 Source volume to the PGM1 Image volume. The
first four object code files on the PGM1 Image volume can be combined in memory sequentially
starting at 0x1000 using the “ctrl-P” command. The complete binary image can be saved to the
PGM1 Image volume as “PGM1”. The last four object code files on the PGM1 Image volume can be
combined in memory sequentially starting at 0x1000 using the “ctrl-P” command. The complete
binary image can be saved to the PGM1 Image volume as “PGM2”. I also place a copy of the utility
“BURNER” on the PGM1 Image volume before I transfer the volume to an Apple //e using A2V2 on
the Mac and ADT on the Apple //e. Now, the utility “BURNER” can easily burn a 27512 EPROM
using the “PGM1” and “PGM2” binary images as binary source files. “PGM1” must be burned to the
first half of the EPROM and “PGM2” must be burned to the second half of the EPROM.

To assemble the PGM2 source code with Lisa already running, place the PGM2 Source volume
“PGM2.256.Source” in disk drive 2, load the “PGM.L” file in memory, and start the assembler
using either the “A” command-line command or the “Z” command-line command. If a printed version
of the screen output is desired simply preface the “A” or “Z” command with the “P1” command-line
command. Four object code files will be created on the PGM2 Source volume: “SEG01” to
“SEG04”. These four object code files can be combined in memory sequentially starting at 0x1000
using the “ctrl-P” command. The complete binary image can be saved to the PGM2 Source volume
as “PGM1”. I also place a copy of the utility “BURNER” on the PGM2 Source volume before I transfer
the volume to an Apple //e using A2V2 on the Mac and ADT on the Apple //e. Now, the utility
“BURNER” can easily burn a 27256 or a 27512 EPROM using the “PGM1” binary image as the binary
source file. “PGM1” must be burned to the first half of a 27512 EPROM if that EPROM size is used.

 191

7. VTOC Manager (VMGR)
The Volume Table of Contents (VTOC) Manager, or VMGR, is a utility I developed while I was
designing the enhancements to the DOS 4.1 VTOC and Catalog. VMGR provides the user the ability
to display and change the contents of a volume’s VTOC for any given slot, drive, and volume number.
Figure IV.7.1 displays the Option Menu for VMGR. When the program first starts, it displays the
current slot, drive, and volume number values. You can change those values using Option 1. Option 2
reads the VTOC for the selected slot, drive, and volume number as shown in Figure IV.7.2. Option 3
displays the same VTOC contents as in Figure IV.7.2 except that you can edit, or change the
information. Great harm can easily be done to a volume, even making the volume unusable, if the
VTOC information is changed inappropriately. It is critical that you understand the effect of any
change you make to the VTOC and accept the consequences. Options 4 and 5 show and edit the sector
bitmap, respectively. Figure IV.7.3 displays the sector bitmap contents of the same volume.

Each track of a DOS 4.1 volume may contain either 16 or 32 sectors depending on the hardware media.
The VTOC can support up to 50 tracks. Figure I.6.1 shows the complete sector bitmap that begins at
byte 0x38 in the VTOC. The sector bitmap allocates four bytes, or 32 bits, for every track to determine
if a sector in that track is available or not. If a sector is available its respective bit is set to 1. Table
I.6.2 shows the sector order from left to right: sectors 0x0F to 0x00 for the left two bytes followed by
sectors 0x1F to 0x10 for the right two bytes. DOS 4.1 indirectly interacts with the VTOC bitmap by
means of the variable NEXTSECR exclusively OR’d with the value 0x10. Therefore, if a volume only
supports 16 sectors per track, the right two bytes will be set to 0x00. In Figure IV.7.3, for example,
track 24 contains five free sectors and track 28 contains twelve free sectors.

Figure IV.7.1. VMGR Option Menu

 192

Figure IV.7.2. VTOC Contents

Figure IV.7.3. VTOC Sector Bitmap Contents

 193

To assemble the VMGR source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the VMGR Source volume “VMGR.Source” in disk drive 2, load the
“VMGR.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. Four object code
files will be created on the Big Mac Source volume: “SEG01” to “SEG04”. The four object code
files can be combined in memory sequentially starting at 0x1000 using the “ctrl-P” command. The
complete binary image can be saved to the VMGR Source volume, or any other volume, as “VMGR”.

 194

8. Asynchronous Data Transfer (ADT)
I have done a serious amount of software development for the Apple][using a MacBook Pro running
the Virtual][emulation program by Gerard Putter. Virtual][can launch a utility called A2V2 that can
transfer a 140 KB diskette image to and from an Apple][that is concurrently running a program called
Asynchronous Data Transfer, or ADT by Paul Guertin and enhanced by Gerard Putter. My Apple //e
uses a Super Serial slot card connected to a Keyspan serial to USB adapter that is connected to the
MacBook Pro using a USB cable. Only 140 KB disk images are currently permitted. Because the
RamDisk 320 supports up to 40 tracks and I typically use it to receive disk images, I would like to see
the 140 KB restriction removed from A2V2 and ADT. I would even like to have Virtual][support 48
track diskettes, too, but Mr. Putter rejected that request. Regardless, I did source ADT so I could add
an Update command to its repertoire as shown in Figure IV.8.1. After configuring ADT, Update will
save ADT with its new configuration set as its default. The ADT Configuration screen is shown in
Figure IV.8.2, which uses lowercase characters to assist in making the Apple screen text easier for me
to read in my opinion. If and when 160 KB and 200 KB disk images are supported I will be ready.
But let’s not stop there! My RanaSystems EliteThree drive can support 40 tracks with each track
having 32 sectors, so 320 KB disk images are possible, too. In order to process 320 KB disk images
ADT may need to utilize the 80-column display. Finally, a CFFA volume having 48 32-sector tracks
would require a 400 KB disk image. Now, that would be a seriously fun project: using an 80-colum
display to show the transfer of volumes having up to 48 32-sector tracks.

The “?” command displays credits to Paul Guertin, Gerard Putter, and myself for adding enhancements
to ADT as shown in Figure IV.8.3.

Figure IV.8.1. ADT Window

 195

Figure IV.8.2. ADT Configuration

Figure IV.8.3. ADT Software Credits

 196

To assemble the ADT source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive
1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program in
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the ADT Source volume “ADT.Source” in disk drive 2, load the “ADT.L”
file into memory, and start the assembler by entering either the “A” command-line command or the “Z”
command-line command. If a printed version of the screen output is desired simply preface the “A” or
“Z” command with the “P1” command-line command. The complete binary image will be saved to
the ADT Source volume as “ADT2”.

 197

9. Big Mac
I first started using Big Mac by Glen E. Bredon on my Apple][+ as soon as I took an interest in
writing assembly language programs. Also, Sourceror was designed as a subsidiary tool to Big Mac
that created Big Mac source files from assembly language code. The main menu for Big Mac is shown
in Figure IV.9.1 and this is another example where I have used lowercase characters to assist in
making the Apple][screen text easier for me to read. When I started working at Sierra On-Line the
programmers there only used Lisa, not Big Mac. But whenever I used Sourceror I was still dependent
on Big Mac to edit Sourceror’s output source files into files resembling Lisa source files using the
ED/ASM mode, and then saving those files as TEXT files. Lisa was able to EXEC the Big Mac TEXT
files into its format quickly. And this is precisely the procedure I still use today.

Figure IV.9.1. Big Mac Main Menu

Big Mac made frequent use of DOS 3.3 internal routines so it was not at all compatible with DOS 4.1.
I needed to know every instance where Big Mac utilized DOS 3.3 internals, and then modify those
dependencies to use the DOS 4.1 interface. Big Mac was certainly a challenge because it packed a
huge wallop of a program into the limited space of the Language Card. Creating source code for Big
Mac that could be modified required a huge effort. It is one thing to have source code that assembles
to object code which compares perfectly to the original object code. It is quite another thing to turn
that source code into routines whose addresses may change as some code is modified, deleted, and
added, and still assemble into a working program. I did remove the “ASSEM” re-entry command

 198

because DOS 4.1 provides no visibility into its commands, their handler addresses, and the companion
keyword table. (A seasoned Big Mac user may wish to add the “ASSEM” command to DOS 4.1 in lieu
of one of the other DOS commands, assemble this unique version of DOS 4.1, and create a bootable
Big Mac volume having that version of DOS 4.1.) DOS 4.1 does provide access to structures for drive
number, start address, and file length, though. I am satisfied that my sourced and modified version of
Big Mac is fully DOS 4.1L compliant and, as a utility, is still providing me with a terrific interface
between Sourceror and Lisa.

Sourceror is able to source object files that use 6502, 65C02, and Sweet 16 instructions. Unfortunately
Big Mac is only able to assemble source files having just 6502 and Sweet 16 instructions. Big Mac
cannot assemble the new 65C02 instructions. Furthermore, Big Mac’s Monitor can only display 6502
instructions and not 65C02 instructions. The task to update Big Mac’s Monitor was easy compared to
updating its ability to parse, process, and assemble the new 65C02 instructions. The Big Mac tables
from 0xF339 to 0xF4DD contained the addresses and rules for parsing 6502 instructions, and the
support code using these tables was exceedingly dense. I slowly began to understand how Mr. Bredon
designed his Instruction Set processor and I began adding in the remaining 65C02 instructions.
Recognizing the instructions was one thing; checking the addressing mode for the added instructions
was difficult and tedious. Eventually I was able to fit the additional logic I required within the limited
space. However, in order to add the STZ, TRB, and TSB instruction to the end of the table data
starting at 0xF481, I had to move two ASCII tables. One table was at 0xF4E8 and the other was at
0xF4EF. Combined they were 15 bytes and I needed 12 bytes for the three new instructions.
Fortunately, I had an 18-byte gap in the code at 0xE407 and this where I moved those two ASCII
tables. The 10-byte table at 0xF4DE simply moved down to 0xF4EA.

To the best of my ability I have verified that Big Mac can assemble all 65C02 instructions and
increment its program counter correctly for all addressing modes. Furthermore, the Big Mac Monitor
can display all 65C02 instructions correctly with opcode, value, address, and displacement.

To assemble the Big Mac source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x5800. Place the Big Mac Source volume “BIGMAC.Source” in disk drive 2, load the
“BIGMAC.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. Six object code files
will be created on the Big Mac Source volume: “SEG01” to “SEG06”. The six object code files can
be combined in memory sequentially starting at 0x1000 using the “ctrl-P” command. The complete
binary image can be saved to the Big Mac Source volume, or any other volume, as “BIGMAC”.

 199

10. PROmGRAMER
The SCRG quikLoader is of little value without a means to easily burn (i.e. program) EPROMs. So
SCRG also marketed the PROmGRAMER, designed by Bob Brice, which could burn EPROMs for the
quikLoader, the character generator ROM, and the Apple firmware ROMs, for example. The
PROmGRAMER is designed to be configurable using DIP switches in order to access 2716, 2716A,
2732, 2732A, 2764, 27128, 27128A, 27256, and 27512 type EPROMs. The PROmGRAMER
software by Bob Sander-Cederlof resides in memory beginning at 0x0803, and the program cannot
extend beyond 0x0FFF because the desired EPROM image start address is set to 0x1000. This is
necessary particularly in order to burn a 27256 or a 27512 EPROM. For a 27256 EPROM its entire
0x8000 byte image must reside in memory for convenience, and if 0x1000 is its start address, then
0x8FFF will be its end address, and that is very close to the beginning of the third DOS file buffer.
When MAXFILES is 3, HIMEM is set to 0x9625. To program a 27512 EPROM a 0x10000 byte
image must be divided into two or more parts, and the EPROM must be burned in two or more
sessions. It is for this reason that I highly recommend finding the midpoint for the contents of a 27512
EPROM so it can be programmed in only two burn sessions where each session programs 0x8000
bytes.

In my discussion of EOS as shown in Table IV.6.3, the 27512 EPROM image needs to be split at the
0x8000 byte halfway point. The source code is designed to have the Lisa assembler do all the work of
splitting the image at the correct place. Therefore, only two burn sessions will be required. The
software Mr. Sander-Cederlof provided for the PROmGRAMER allowed the user to enter a command
such as “F” (for Fast burn) and the default parameters would be entered and used to burn a 27256 or
the first half of a 27512 EPROM image. There was no command with default parameters to burn the
second half of a 27512 EPROM image, so the parameters had to be entered manually. I found this to
be unfortunate after I ruined one too many 27512 EPROM burn sessions when I mistakenly entered the
wrong parameters when I attempted to burn the second half. So I sourced the PROmGRAMER
software and I added all the additional commands that I thought would support a 27512 EPROM.

Figure IV.10.1 shows the PROmGRAMER software being configured and Figure IV.10.2 shows the
available commands to the user that fully support the 27512 EPROM with the added commands “S”,
“T”, “G”, and “A”. I had to heavily modify the original code in order for it and the additional code
that supports the new commands to fit within the required space. It works. I’m happy.

To assemble the BURNER source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the BURNER Source volume “BURNER.Source” in disk drive 2, load the
“BURNER.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. The complete binary
image will be saved to the BURNER Source volume as “BURNER”.

 200

Figure IV.10.1. PROmGRAMER Configuration

Figure IV.10.2. PROmGRAMER Command Menu

 201

11. CFFA Card
The CompactFlash For Apple, or CFFA card is an Apple II peripheral slot card that is able to read
from and write to a CompactFlash memory card seated in an on-board CF card socket or to a hard
drive by means of a 40-pin IDE header socket. This slot card is able to present the onboard flash
storage as either a hard drive or a stack of floppy disks when using Disk][emulation firmware.
Richard Dreher of R&D Automation created the CFFA card, and the first production run was released
in 2002. I purchased my card in 2006, CFFA Version 2.0, revision B. It is my understanding that the
CFFA card was most likely designed to be more compatible with ProDOS. Unfortunately I never
participated in the ProDOS movement when my software interests became redirected to UNIX based
high-end professional workstations manufactured by SGI (running IRIX) and SUN (running SunOS).
In view of my recent development of DOS 4.1 I began working on my own Disk][emulation firmware
for the CFFA card. I simply want a means to archive my hundreds of 5.25-inch diskettes, and the
CFFA card is the ideal platform.

It is my understanding, however, that Mr. Dreher has enhanced the CFFA card in many ways since my
purchase in 2006. I have no idea if the hardware interface of the current version of the CFFA card
resembles that of the past and whether or not my firmware will even function on the current version of
hardware. I strongly suspect my CFFA card firmware will function on the current hardware design
just fine.

Table IV11.1 shows the entry points of the firmware interface I developed for the CFFA card that is
mapped to the peripheral-card ROM address space of the CFFA card.

Offset Name Description
0x00 CFBOOT Entry point for DOS PR# command to boot selected DOS
0x10 ROMHOOK Entry point to connect the CFFA to DOS 3.3 or DOS 4.1
0x18 ROMUHOOK Entry point to disconnect the CFFA from DOS 3.3 or DOS 4.1
0x20 USRBOOT Boot selected DOS image
0x30 VOLBOOT Boot selected volume DOS image
0x3B DISKRWTS DOS 3.3 RWTS entry if DOS 3.3 is active
0x4B CFRWTS DOS 4.1 RWTS entry if DOS 4.1 is active
0x5C VOLBOOT2 Simulate Disk][entry point for boot stage 1 code at 0x0801
0x64 CFRWTS2 Convert DVTS to LBA to seek, read, write, and format CF volumes
0xF3 MODOS3 Entry point to modify DOS 3.3 during boot stage 2 for CFFA use

0xFE/FF VERSION Version number for CF firmware (0x14), that is, Version 1, Build 4

Table IV.11.1. CFFA Card Firmware Entry Points

The CFFA firmware interface allows access to each of the 512-byte blocks on a CompactFlash
memory card up to eight GBs in size. Each block has a Logical Block Address (LBA) that is 24-bits in
size, divided into three bytes, and saved to three of the sixteen peripheral-card I/O memory locations.

 202

Even the Master Boot Record (MBR) can be read and saved. Only three processing commands are
necessary to utilize the CFFA: ID, READ, and WRITE. The ID command reads the IDENTIFY
DEVICE block of the CompactFlash card. That block provides the card’s serial number, model
number, and capacity in LBA addressable blocks as well as other useful information. I approached my
design of the CFFA firmware interface as a way to communicate with a massive data storage device.
In that end, I devised an equation to convert Drive/Volume/Track/Sector (DVTS) to LBA and an
algorithm to perform the reverse conversion. The range allowed for the variables Drive, Volume,
Track, and Sector are:

 Drive = 1:81 to support an 8 GB CompactFlash card
 Volume = 0:255 already supported by the DOS 4.1 VTOC
 Track = 0:47 already supported by the DOS 4.1 VTOC
 Sector = 0:31 already supported by the DOS 4.1 VTOC

The equation to convert DVTS to LBA is given by:

 block = Sector & 0x0F
 page = Sector & 0x10
 offset1 = 0x100

 LBA = ((Drive-1) * 0x30000) + (Volume * 0x300) + (Track * 0x10) + block + offset1

This equation implies that each Drive contains 0x30000 LBA blocks and each Volume contains 0x300
LBA blocks. A Volume can consist of up to a maximum of 48 tracks and each track has 16 LBA
blocks. Since an LBA block contains 512 bytes, the block is partitioned by the page variable such that
DOS sectors 0x00 to 0x0F reside on page 0 (the lower half of the LBA block) and DOS sectors 0x10 to
0x1F reside on page 1 (the upper half of the LBA block). I agree that forcing a Volume to be 768 LBA
blocks (i.e. 1536 Disk][sectors) in size rather than 560 Disk][sectors in size is wasting a lot of space
on the CompactFlash card. DOS 4.1 has the potential to utilize a volume having up to 50 tracks in
size, but I considered 48 to be the better upper limit for mathematical reasons and for ease of
calculation. Because the VTOC can support 32 sectors per track and an LBA block is 512 bytes in
size, it makes sense to me to split an LBA block into a lower 256-byte Disk][sector and an upper 256-
byte Disk][sector. The algorithm to calculate an LBA for a given DVTS using the above equation is
very fast because all the multiplication is done by using the addition of values obtained from three
lookup tables. The complete firmware interface fits comfortably in the peripheral-card ROM memory
and expansion ROM address space of the CFFA card. The peripheral-card ROM memory has the
normal slot boot entry at byte 0x00, a CFFA unique byte, my standard DOS 3.3 and DOS 4.1
connection on/off at bytes 0x10 and 0x18, respectively, a user boot entry at byte 0x20, and a volume
boot entry at byte 0x30. The user can boot one of six versions of DOS where 32 LBA blocks are
provided for each DOS image. The first three DOS images include DOS 3.3, DOS 4.1L, and DOS
4.1H. Thus, there is room for three User Defined DOS images that may be installed. Additionally, the
CFFA firmware can boot any bootable volume on any drive within the CF whether the boot tracks
contain DOS 3.3 or DOS 4.1.

 203

Connecting the CFFA to DOS 4.1 is trivial because DOS 4.1 contains a reserved address location for
each slot that contains a peripheral slot card that is a Disk][-like I/O device that has an RWTS
interface address. When the CFFA is booted with an installed default DOS, DOS 4.1L for example,
boot stage 1 is monitored for ROMSECTR to become 0x00 and BOOTPGS to become negative.
Unlike DOS 3.3, boot stage 1 in DOS 4.1 reads sectors 0x06 to 0x00 on track 0x00 in descending order
into memory from 0xB900 to 0xBF00 in ascending order. After sector 0x00 is read into memory at
0xBF00, all of DOS 4.1 RWTS is now available to read into memory the remaining pages of DOS 4.1.
Normally a Disk][-like I/O device only boots from drive 1 of two possible drives (or four in the case
of the Rana Interface card) regardless of the volume’s volume number. However the CFFA must be
able to boot from any of its volumes and from any of its drives, so this puts a special burden on
monitoring the boot stage 1 process. In addition to the boot variables BOOTADR and BOOTPGS
common to all varieties of DOS, and the DOS 4.1 disk address table shown in Table I.8.1, there is a
variable called BCFGNDX that is an index on page 0xBF00. This index points to the BOOTCFG table
of variables that is used to initialize the RWTS IOCB and used by the routine RWPAGES which is
called during boot stage 2. It is at this time when boot stage 1 completes, but before boot stage 2
begins, that the BOOTCFG table must be updated with the current CF drive and volume that is
currently booting. The values for DNUM and VOLEXPT will be utilized by boot stage 2 and pushed
onto the CFRWTS interface using the RWTS IOCB so that the correct LBA will be calculated from
the booting DVTS. Unfortunately, the situation for a booting DOS 3.3 volume is a horrible mess for
any firmware, and the CFFA firmware is no exception, but certainly not impossible to monitor and to
manage.

Boot stage 1 for DOS 3.3 reads sectors 0x09 to 0x00 on track 0x00 in descending order to memory
from 0xBF00 to 0xB600 in descending order. After sector 0x00 is read into memory at 0xB600, all of
DOS 3.3 RWTS is now available to read into memory the remaining pages of DOS 3.3. During boot
stage 2 DOS 3.3 initializes the RWTS IOCB with DNUM=1 and VOLEXPT=0x00, which allows any
volume to boot in disk drive 1. These values must be overwritten in order for the CF firmware to
calculate the correct LBA from the booting DVTS. Once the routine RWPAGES has read in the
remaining pages of DOS from the correct drive and volume, the DOS 3.3 code must be patched yet
again in order for it to function properly within the CF environment. The prime issue with DOS 3.3 is
how DOS 3.3 manages (or mismanages in my opinion) volume number. In the CF environment
volume number cannot be ascertained from a sector header because there are no sector headers to read.
Therefore, a DOS 3.3 routine such as CATHNDLR that handles the DOS CATALOG command must
not presuppose any value for volume number. Similarly, the SETDFLTS routine must not initialize or
change the current value for volume number so that other DOS 3.3 commands will work properly
when the V keyword is not included with a DOS 3.3 command. In order for DOS 3.3 to read into
memory any DOS 4.1 file, the filename length must be adjusted to 24. Before any CF volume is
initialized with DOS 3.3 all patches like the ones just described probably should be removed. A
simple tool can do this, of course, but in order for DOS 3.3 to communicate with the CF firmware and
perform volume initialization, its CALLRWTS routine must remain patched. I believe a better
solution is to leave DOS 3.3 patched and totally useable in the CF environment, initialize a CF volume
as desired, and overwrite the DOS image on tracks 0x00, 0x01, and 0x02 with whatever “pure” DOS
3.3 image you wish knowing full well that it may not boot or function properly in the CF environment.
There may be other equally viable solutions. Table IV.11.2 documents all the patches that are applied
to DOS 3.3 before and after boot stage 2 by the CF firmware.

 204

Address Old New Boot Stage 2 Description
0xB707 0x01 drive before update for DNUM
0xB7EB 0x00 volume before update of VOLEXPT
0xB748 0x84 #modos3 before replace address of DOSSTRT with

MODOS3 at 0xB748/0xB749 0xB749 0x9D cfpage before
0xAA66 VOLVAL volume after update for VOLVAL
0xB7EB VOLEXPT volume after update of VOLEXPT
0xA0DA 0x66 0x65 after bypass initialization of VOLVAL
0xA95B 0x02 cfmaxdrv after update KWRANGE for DRIVE
0xAD9E 0xF9 0xFE after bypass setting VOLNUMBR to

0xFF in CATHNDLR
0xB203 0x1E 0x18 after compare 24 character filenames
0xB707 drive 0x01 after restore original value
0xB748 #modos3 0x84 after restore address of DOSSTRT at

0xB748/0xB749 0xB749 cfpage 0x9D after

Table IV.11.2. DOS 3.3 Patches for CFFA

Referring to Table IV.11.2 all variables listed that are in lowercase reside in CF firmware. The
uppercase variables reside in DOS 3.3 source code. The first four substitutions are made just after boot
stage 1 completes. The address for the entry point MODOS3 shown in Table IV.11.1 is used to
replace the address for DOSSTRT, or 0x9D84, at 0xB748/0xB749. Once boot stage 2 completes DOS
3.3 will enter the CF firmware to install the remaining patches and code replacements for DOS 3.3.
After the patches have been made the CF firmware simply jumps to the intended DOSSTRT address at
this time. I fondly recall meeting many software engineers, particularly at Sierra Online, who I refer to
as “DOS 3.3 Purists.” “Thou shalt not modify DOS 3.3.” Only when it was demonstrated to Ken
Williams that we were able to make DOS 3.3 smarter, faster, and safer did Ken remove the DOS 3.3
Purity Shield. Now, from my current vantage point, I see that DOS 3.3 contained a lot of crappy code
based on some very silly ideas, like how volume number was handled, and mishandled, and
complimented, and substituted. Hopefully, DOS 4.1 will demonstrate how simple and powerful using
volume number in the CF environment can be; that is, using volume number like any other number
including slot number, drive number, track number, and sector number.

To assemble the CFFA Firmware source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL”
in disk drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP”
program in order to verify or set the “Start of Source Code” to 0x2100 and the “End of
Source Code” to 0x6000. Place the CFFA Firmware volume “CFFA.Firmware” in disk drive 2,
load the “CFFA.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. The binary images
will be saved to the CFFA Firmware volume as “CFFA_SLOT_BUILD14” and
“CFFA_ROM_BUILD14”. The utility “COPYCFFA” can be used to copy these two binary files to the
CFFA Programs volume “CFFA.Programs”. Simply follow the directions on the screen and press
any key to begin the copy.

 205

The CFFA Tools volume “CFFA.Tools” contains the utilities “DOS3.3_TOOLS” and
“DOS4.1_TOOLS” to process the DOS binary files DOS3.3, DOS4.1.46L, and DOS4.1.46H. Using
the DOS3.3 binary file, “DOS3.3_TOOLS” creates the binary files DOS3.3-4.1 and DOS3.3 IMAGE.
Using the DOS4.1.46L and the DOS4.1.46H binary files, “DOS4.1_TOOLS” creates the binary files
DOS4.1L IMAGE and DOS4.1H IMAGE. The utility “INSTALL33” can install DOS3.3 (a pure
DOS 3.3 image), DOS3.3-4.1 (a patched image of DOS 3.3 suitable to work with DOS 4.1 files), or
DOS3.3 IMAGE (a patched image of DOS 3.3 suitable to work with the CFFA firmware), onto tracks
0x00, 0x01, and 0x02 of a volume in disk drive 1. The utility “INSTALL46L” can install
DOS4.1.46L (a pure DOS 4.1L image) or DOS4.1L IMAGE (a patched image of DOS 4.1L suitable to
work with the CFFA firmware) onto tracks 0x00 and 0x01 of a volume in disk drive 1. Similarly, the
utility “INSTALL46H” can install DOS4.1.46H (a pure DOS 4.1H image) or DOS4.1H IMAGE (a
patched image of DOS 4.1H suitable to work with the CFFA firmware) onto tracks 0x00, 0x01, and
0x02 of a volume in disk drive 1.

To assemble the CFFA Tools source code with Lisa already running, place the CFFA Tools volume
“CFFA.Tools” in disk drive 2. Load each Lisa file into memory, and start the assembler using either
the “A” command-line command or the “Z” command-line command. If a printed version of the
screen output is desired simply preface the “A” or “Z” command with the “P1” command-line
command. The complete binary image for each Lisa file will be saved to the CFFA Tools volume.
The utility “COPYTOOLS” can be used to copy all the utilities and DOS images from the CFFA Tools
volume “CFFA.Tools” to the CFFA Programs volume “CFFA.Programs”. Simply follow the
directions on the screen and press any key to begin the copy.

Along with the CFFA Firmware object code files and the CFFA Tools utilities and DOS images, the
CFFA Programs volume “CFFA.Programs” contains the executable object code for VOLMGR,
BOOTVOL, and BOOTDOS. The next section discusses these programs. It is the CFFA Programs
volume that I transfer from my MacBook Pro to a diskette in an Apple //e Disk][using A2V2 on the
Mac and ADT on the Apple //e since the CFFA card in resident in the Apple //e, not in the Mac. Now,
VOLMGR can easily install the new CFFA firmware image and all three DOS images. There is
sufficient disk space remaining on the CFFA Programs volume for additional DOS images.

 206

12. Volume Manager (VOLMGR)
The Volume Manager is a utility I have developed to manage the CFFA firmware interface, manage
the CFFA CompactFlash card utilization and identity, manage the CF Drives, manage the CF Volumes
of a CF Drive, and manage the CF User DOS Images. The following eight figures show a few menu
screens from VOLMGR as well as an example display of the Device Identity contents of a
CompactFlash card. Additionally, the utilities BOOTDOS and BOOTVOL can be used to boot any of
the six DOS images on the CF card or boot any bootable volume on any of the CF volumes and drives.

Boot stage 1 and boot stage 2 cannot be monitored when loading any of the six selectable DOS images.
Therefore, the DOS image must be modified before it is saved to CF DOS Image memory in at least
two locations: CMDVAL (a boot initialization value) and SNUM16 (located in the IOCB for RWTS).
I prefer to use the CLOSE command (i.e. 0x10) in place of the RUN command for CMDVAL and
0x50 in place of 0x60 for SNUM16 since my CFFA card typically resides in slot 5. These
modifications are simply for convenience for my particular installation. In the previous section the
utilities “DOS3.3_TOOLS” and “DOS4.1_TOOLS” performed this function.

VOLMGR will detect a previously unmodified CFFA card by inspecting the first eight firmware bytes
known as the signature bytes, and continue processing. This will allow the user to save the new CFFA
firmware to the CFFA card. After VOLMGR installs the new CFFA firmware these signature bytes
will be changed to those listed for the CFFA card in Table II.7.2.

Figure IV.12.1. VOLMGR Product Warning Screen

 207

Figure IV.12.2. VOLMGR Command Menu

Figure IV.12.3. VOLMGR Manage Firmware Menu

 208

Figure IV.12.4. VOLMGR Manage CompactFlash Menu

Figure IV.12.5. VOLMGR Device Identity Contents

 209

Figure IV.12.6. VOLMGR Manage Drives Menu

Figure IV.12.7. VOLMGR Manage Volumes Menu

 210

Figure IV.12.8. VOLMGR Manage User DOS Images Menu

To assemble the VOLMGR source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the VOLMGR Source volume “VOLMGR.Source” in disk drive 2, load the
“VOLMGR.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. Five object code
files will be created on the VOLMGR Source volume: “SEG01” to “SEG05”. The five object code
files can be combined in memory sequentially starting at 0x0900 using the “ctrl-P” command. The
complete binary image can be saved to the VOLMGR Source volume, or any other volume, as
“VOLMGR”.

To assemble the BOOTVOL and the BOOTDOS source code with Lisa already running, load each
Lisa file into memory, and start the assembler using either the “A” command-line command or the “Z”
command-line command. If a printed version of the screen output is desired simply preface the “A” or
“Z” command with the “P1” command-line command. The complete binary image for each Lisa file
will be saved to the VOLMGR Source volume. The utility “COPYVOLMGR” can be used to copy
VOLMGR, BOOTVOL, and BOOTDOS from the VOLMGR Source volume to the CFFA Programs
volume “CFFA.Programs”. Simply follow the directions on the screen and press any key to begin
the copy.

 211

13. File Developer (FID)
File Developer (FID) was an original Apple][assembly language utility found on the DOS 3.3 System
Master diskette I received with my Apple][+. I suspect it was the most widely used DOS utility of all
time. Instead of writing my own similar utility for DOS 4.1 having Volume number included as an
input parameter, I decided to source FID and add what I needed to that software. Anytime I start
tearing into someone else’s software I find it to be a real, sometimes rare educational experience. FID
utilizes RWTS and the File Manager interfaces as noted elsewhere in this manual, which gave me a
good insight in how the “Apple Experts” made use of those interfaces. I received the most grief from
FID’s hardcoded insistence that track 0x00 could never be used for data storage, that it was a track
never to be utilized except for booting DOS. There were several locations in the FID software where I
had to insert the parameter TRKZERO (i.e. 0x40) so that FID would accommodate track 0x00
properly, as a data track, as it is accommodated in DOS 4.1.

Figure IV.13.1. FID Main Menu

The most essential task was to implant the use of Volume number because I wanted FID to work with
the CFFA hardware whose Disk][emulation firmware can access up to 81 Drives (for an 8 GB
CompactFlash card) each having 256 Volumes. Actually, I derived this dependency on Volume
number from the Sider firmware that utilized Volume number to calculate the sector number for the
start of each DOS 3.3 volume on its hard drive. And, of course, I wanted FID to include my new DOS
URM command in order to undelete files because that capability exists in DOS 4.1 by means of the

 212

File Manager. FID also makes use of the Catalog command’s SUBCODE to display the current list of
files on a volume with or without listing the deleted files as well. Finally, FID had to use the free
sector bitmap in the VTOC properly, as it is used properly in DOS 4.1, and not how it is used
improperly in DOS 3.3. The main menu for FID modified for DOS 4.1 is shown in Figure IV.13.1.

Because FID uses the File Manager to copy files from one volume to another, there are certain
limitations that one needs to be aware of. Whatever sectors that are associated with a file that are listed
in a file’s TSL are copied from the source volume to the destination volume. The File Manager has no
idea whether all or some of those sectors are actually being used by that file. For example, if a Binary
file is created with the DOS “BSAVE TEST1,A$1000,L$6000” command, a file having 98 sectors
will be created, 97 sectors for the data sectors and 1 sector for the TSL sector. Then, if the DOS
“BSAVE TEST1,A$1000,L$1000” command is issued, the DOS catalog will still show 98 sectors
and FID will blindly copy all 97 data sectors even though only the first 17 data sectors have valid data.
This same situation can occur with Applesoft files as well. If the original Applesoft file utilizes 41
sectors, then edited to nearly half its size and saved, the Applesoft file will continue to utilize 41
sectors and not, say, 25 sectors unless the file is saved with a new name. There is no way for FID to
know whether a file uses all or some of the sectors listed in its TSL. If disk space is a premium then
FID should not be used to copy files; the files should be copied manually.

Why does DOS potentially waste valuable disk space when one is saving less data to a file that already
exists? There are probably many reasons, some of which are valid and some are merely cosmetic. I
believe the most valid reason is safety. In order to guarantee that a file only uses the disk space it truly
requires when that file already exists would be to first delete the existing file, create a new file with the
same name, and finally save the requested data to the new file. But would this procedure be entirely
safe? What if something causes an error after the file was deleted but before the new file was created
or before the requested data could be saved? Is having a DOS URM command enough insurance if
such a problem like this should ever occur? Perhaps the requested data should be saved to a
“XXTEMPXX” file first, then the original file could be safely deleted before the “XXTEMPXX” file is
renamed? There may not be enough disk space to have two copies of the file or there may not be
enough room in the Catalog for an additional file entry. This procedure would also rearrange the order
of files in the Catalog which may not be appealing to some. I believe the best alternative is to save the
requested data to an existing file using that file’s TSL entries, and if there are more entries in the TSL
than needed, those entries should be marked as unused sectors in the volume’s VTOC. Of course I
would only use this algorithm for the DOS SAVE, BSAVE, LSAVE, and TSAVE commands. It
would be a moderately interesting exercise to implement this algorithm, and certainly cause for the
release of yet another DOS 4.1 build.

To assemble the FID source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive
1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program in
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the FID Source volume “FID.Source” in disk drive 2, load the “FID.L”
file into memory, and start the assembler by entering either the “A” command-line command or the “Z”
command-line command. If a printed version of the screen output is desired simply preface the “A” or
“Z” command with the “P1” command-line command. The complete binary image will be saved to
the FID Source volume as “FID”.

 213

14. Lazer’s Interactive Symbolic Assembler (Lisa)
I have to say that I have spent a considerable amount of time adjusting and fine tuning Lazer’s
Interactive Symbolic Assembler (Lisa) to my every whim and need. It truly has been a joy. First and
foremost my task was to modify Lisa to use the DOS 4.1 interface in order for Lisa to obtain various
parameters it required for some of its special functions. Next, I wanted to eliminate the need for Lisa
to save the first file of a multiple-file program as “.TEMP” before it completed its Pass 1 processing.
That task required adding a new directive. I wanted the sort algorithm used to build and optionally
print the Symbol Table to be part of Lisa. I wanted to add an additional new directive to define the text
for a Symbol Table title. I wanted LED to be an integral part of Lisa and always be included whenever
Lisa was activated. I wanted an easier way to enter a PR# and a ctrl-D command. I wanted an
additional command-line command besides “A” to assemble source code that forces the “PRNTFLAG”
to be OFF as if the “NLS” directive was the first directive in the source code. I wanted Lisa to obtain
the date and time from DOS 4.1. And I wanted to fix some of the quirkiness Lisa sometimes
displayed. I also found a few coding errors in Lisa.

Figure IV.14.1. Lisa Startup Screen

As in the case for Big Mac, Lisa fills the entire Language Card memory (both banks, actually) and
LED, written by Bob Rosen of RSQ Software Products, occupies the address space below DOS from
0x91E0 to 0x9AB0. Lisa uses only one DOS buffer. The momentous task of sourcing Lisa took many
hours, not just for the conversion of the assembly language object to source code, but the laborious

 214

task of understanding the idiosyncrasies of how Randall Hyde designs and writes software. The
optimal desire is to understand the newly generated source code so that 1) it assembles and perfectly
matches the original, and 2) it can be modified and all structures and tables and their lengths and sizes
will remain unaffected. Quite frequently an author may pass the address of a structure or data table in
a register or two, or as an index into a table of addresses, and initially the source code appears like that
address or that table of addresses is hardcoded. What needs to be done is to assign a variable to the
structure or data table so that if the structure or table shifts up or down in memory, the registers will
always contain the variable’s correct address location. It is necessary to find all such occurrences in
order to reach that optimal state of perfectly sourced code. Sourceror can only do so much! Figure
IV.14.1 shows the Lisa initial startup screen.

Command Context Description
USR after OBJ $$ uses OBJ address to save start address for BSAVE

USR FN end of code will BSAVE current code to file FN; follow with another USR
USR .FN BLOAD file will BLOAD the file FN to the current object code pointer

Table IV.14.1. Lisa USR Command

Figure IV.14.2. Lisa Setup Utility

 215

I give full credit to Robert Heitman who I met at Sierra On-Line for the USR and ctrl-P routines
contained in both User (0xDF00) pages of Lisa. I may have adjusted them slightly for my own
particular needs, but essentially the USR functionality are Heitman’s. The USR directive has a number
of important uses depending on how it is utilized and which arguments are used with the directive. Its
syntax is shown in Table IV.14.1. The combination of “ORG $$/OBJ $$/USR/some code/USR FN” is
a very powerful set of directives. The first use of USR, alone, at the top of a program after the ORG
and OBJ directives, saves the current address of the object code pointer set by the OBJ $$ directive,
where $$ is some hexadecimal address. After some source code has been assembled, the generated
object code can be saved to some Filename using the “USR FN” directive. “USR FN” uses the
beginning address saved by the first USR, calculates the length of the code segment knowing the
current address in the object code pointer, and constructs a DOS BSAVE command. The “USR .FN”
(that is, ‘period’ + FN) directive is useful in order to read a Binary file into memory at the current
address in the object code pointer. The object code pointer then needs to be incremented using the
DFS directive, for example, knowing the size of the included file. I use the “USR .FN” directive
chiefly when I build an EPROM image in order to BLOAD into memory every object file that is to be
contained in that image.

Source code for programs such as Big Mac or Lisa or DOS 4.1 cannot possibly fit in the Apple][
memory along with its generated object code, its symbol table, DOS, and the assembler. Large
software programs need to be segmented into manageable sizes and their assembled outputs saved to
multiple object files that will be ultimately linked to form the complete executable program. Lisa,
DOS, and some program source code with its complete symbol table must reside in memory at a
minimum. Therefore, judicious values must be chosen for the beginning address of the symbol table
memory area so that it is large enough to hold all the variable names and parameters along with their
values, the beginning address of the source code memory area, and the beginning address of the object
code memory area. It is amazing what can be accomplished in such a small amount of memory as
found in the Apple computer. Lisa utilizes a utility called Setup that can be used to set these memory
area addresses as shown in Figure IV.14.2. The settings shown provide about 63 pages or disk sectors
for source code, room for about 1060 variables and parameters, and about 25 pages or disk sectors for
object code. Of course, not every source code segment will require this much memory.

The source code files that comprise DOS 4.1H are shown in Figure IV.14.3. Several source files are
processed before their collective object code is saved to a file. The convention used to name these
object code files is to begin the filename with a “SEG” prefix and end the filename with a two digit
number suffix beginning with “01”. The reason will become apparent shortly. It makes no difference
how many “SEG” files are created; remembering, of course, that each file created also requires an
additional disk sector for its TSL. In the case of DOS 4.1H there are only two volume sectors
remaining, so there is little volume space left to make any substantial changes to this source code.
When all the “SEG” files are sequentially read into memory the entire image for DOS 4.1H will be
created. I have the convention, if not the habit, to begin the load of an object code file at address
0x1000. Loading the first “SEG” file is easy, as in “BLOAD SEG01,A$1000”. To what address is
“SEG02” loaded next? If the R keyword is used with the BLOAD command the length of “SEG01”
will be given, and one can simply “BLOAD SEG02” at “0x1000 + length” and so forth. There is an
easier method built into Lisa: a ctrl-P user function that will sequentially load “SEG” files.

Lisa provides software hooks to the two 0xDF00 pages where a user can add any routine(s) of their
choosing. The USR function mentioned earlier is found at 0xDF00 when Bank 2 is selected using BIT
0xC080. The ctrl-P user function is also found at 0xDF00 when Bank 1 is selected using BIT 0xC088.

 216

Figure IV.14.3. DOS 4.1H Source Code Volume

Figure IV.14.4. EOS Image Segment Files

 217

Figure IV.14.5. EOS1 Image Creation

Figure IV.14.6. EOS2 Image Creation

 218

The ctrl-P function allows the user to enter the number of segments to be loaded, the segment start
number, the object code start address, and optionally the filename to save the composite image
comprised of all the object code segments. If the filename is not entered, the length of the image and
its final memory address are displayed. Figure IV.14.4 shows all the “SEG” files that were created
when the EOS source code was assembled. These “SEG” files need to be linked into two 0x8000 byte
files that will be used to burn a 27512 EPROM. In order to do that most efficiently “SEG” files 1 to 4
are linked into one file and “SEG” files 5 to 8 are linked into the second file. The ctrl-P user function
is the perfect way to perform the linking function. Figure IV.14.5 shows how “SEG” files 1 to 4 are
linked into the first EOS image, EOS1, and Figure IV.14.6 shows how “SEG” files 5 to 8 are linked
into the second EOS image, EOS2. Now, the two binary image files “EOS1” and “EOS2” are ready to
be burned into a blank 27512 EPROM. In fact, the utility “BURNER” is conveniently located on the
same volume as these two image files. This makes the process of preparing and burning an EPROM
very simple, very reliable, and very accurate.

Lisa makes three passes through all source code files for its input in order to create object code for its
output. The first pass can be terminated using the “ENZ” directive, or “ENd of page-Zero” parameter
definitions. Pass 2 and Pass 3 must process all source code. In order to return to the first, or initial file
when an “ICL”, or include “filename”, directive is encountered, Lisa has always saved the initial
file as an additional file named “.TEMP” so that processing can begin with a known first file for the
next pass. Certainly this method is the easiest to implement but comes with an unfortunate price: it
wastes some valuable disk space. In the example above for the volume containing the DOS 4.1H
source code, Figure IV.14.3, there is no disk space for a “.TEMP” file having the same contents, thus
the same size as the file “DOS4.1H.L”. Lisa had a few unused opcodes available, so I added the
“SRC” directive that requires a filename. The complete syntax is “SRC ‘filename’”. I gave LED
some additional memory at its beginning, where I moved the “.TEMP” filename, and that is where the
“SRC” directive copies its filename. Naturally if the “SRC” directive is not used and there is at least
one use of the ICL directive, Lisa will create a “.TEMP” file as usual. The filename specified in the
“SRC” directive should be the filename of the file the directive is found in, but this does not
necessarily have to be the case. Referring to Figure IV.14.3, if the “SRC” directive in the
“DOS4.1H.L” file was “SRC ‘INCL.L’”, the file “DOS4.1H.L” would not be processed during
Pass 2 and Pass 3, thus saving some processing time, but at the expense of not including the
“DOS4.1H.L” file as part of the complete print listing, if such a listing is desired. Personally, I like to
place the “SRC” directive on line 2, right after the “TTL” directive, in the very first file when there are
several source code files comprising a program. Even if all the source code resides in a single file,
using the “SRC” directive will do no harm.

I challenged myself to make room in Lisa to include the sort algorithm and the code used in the
program called “SYMBOLS”. If “SYMBOLS” were activated immediately after Lisa processes some
source code, it would print out the complete symbol table alphabetized, and then again with the
symbols ordered by value. I liked what “SYMBOLS” did but not well enough to fumble around
locating a copy of it, even if I did have it in EPROM, especially after processing a huge project like
DOS4.1H. Fortunately, “SYMBOLS” is a little program and it did not take much effort to source. Now
I had some idea how much room I needed within Lisa. Of course, I could always make LED larger,
thus rob memory from the symbol table, source, and object code memory areas. I know Randall Hyde
used good sense when he developed his routines for each opcode for the Pass 2 implementation and
separately for the Pass 3 implementation. Regardless of good sense, I studied those routines and found
a number of ways to compact a rather large amount of code giving me more than enough code space

 219

for “SYMBOLS”. Now that Lisa was headed down this path I thought it would be exemplary to provide
a means to give the symbol table listing a name in the page titles. I replaced the “CSP” directive with
the “STT” directive (Symbol Table Title) whose syntax is “STT ‘title’”. This directive copies
the string “title” to the buffer currently used by the “TTL” directive during Pass 3. If the symbol table
is printed its pages contain the new title. If this directive is not used the symbol table pages are printed
with the same title from the “TTL” directive.

To complete this challenge required one further modification, and that was to the “END” directive.
This directive provided the perfect location to control which of three symbol tables to print after the
assembled code listing: no symbol tables, unsorted symbols, alphabetically sorted symbols, and
numerically sorted symbols. Regardless of which or all listings are desired, if at least one is selected
the listing includes the memory address where the symbol table begins and where the symbol table
ends. From Figure IV.14.2 the absolute physical end of the symbol table is set at 0x91D0. If there is
substantial memory not used from the End of Symbol Table as reported in the assembled code listing
and 0x91D0, the End of Source Code in Figure IV.14.2 could be adjusted to allow for larger source
code files. It’s always good to have visibility in how effectively Lisa is configured particularly when
problems due to source code file size begin to generate errors during assembly. Therefore, to sum up
this discussion, the “END” directive now allows a three-digit binary parameter to control which of the
three symbol tables to list in the order stated above. The syntax for the directive is “END nnn” where
“n” can be a “0” or a “1” for OFF and ON, respectively.

I prefer to keep the default setting of the “PRNTFLAG” variable ON during Pass 3 in order to obtain a
printed listing of the assembly, particularly when I am using Virtual][. Rarely do I use the “LST” and
“NLS” directives anymore. However, when I am debugging software using real Apple][hardware and
the RamDisk 320, leaving the “PRNTFLAG” variable ON greatly impacts assembly throughput, even
with the ZipChip enabled. And it is a nuisance having to insert and then delete the “NLS” directive in
the source code during the debugging process. So I added the “Z” command-line command to Lisa
that functions like the “A” command-line command to start the assembly process, except the “Z”
command sets the “PRNTFLAG” variable to OFF instead of to ON as if a “NLS” directive is the first
directive in the source code.

Many times it is necessary to enter a DOS command directly on the Lisa command line. In order to do
so a CTRL-D must precede the command so that Lisa will know to send the command to DOS rather
than parsing the command for itself. I found it cumbersome for me to enter a CTRL-D before a DOS
command every time I needed some information from DOS. So I added another Lisa command-line
command, “/”, which is so much easier for me to enter before a DOS command. For example, to
display the contents of the VTOC sector, the following can be entered on the Lisa command line:

 !/TS A17

In Figure IV.14.2 the ‘E’, ‘F’, and ‘G’ options select the clock slot number, its 0xCs05 value, and its
0xCs07 value, respectively, where “s” is the clock slot number. However, when Virtual][is running
Lisa, Lisa obtains the date and time information similarly in how DOS 4.1 obtains that information, so
Lisa also requires a value for the current year because the Thunderclock lacks a year register. Instead
of having a duplicate date and time algorithm and a duplicate “YEARVAL” variable to manage in Lisa,
I removed the date and time algorithm and “YEARVAL” variable from Lisa and utilized the DOS 4.1
“RDCLKADR” vector at 0x3E8. I placed the “CLKBUFF” buffer conveniently at 0x3C8. Whenever

 220

Lisa requires the current date and time it requests that information from DOS 4.1. The utility Setup no
longer configures the clock slot, its 0xCs05 value, or its 0xCs07 value since Lisa no longer requires
that information.

It is always an unspoken goal whenever sourcing someone else’s software to never introduce new and
unwanted problems. On the other hand there is always a very good chance of finding and repairing
someone else’s mistakes because of the intensity of concentration required to understand every single
line of code. I suspect there might be some mistakes in Lisa that I have yet to uncover, but for the
moment Lisa is rock solid stable and it is providing me with object code output files true to their
source code input files. Whether the source code input files are necessarily perfect is quite another
question.

To assemble the Lisa source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive
1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program in
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the Lisa Source volume “LISA.Source” in disk drive 2, load the
“LISA.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. Three “SEG” object
code files will be created on the Lisa Source volume: “SEG01” to “SEG03” along with the
“LISA.2” and “LED” object code files. The three “SEG” object code files can be combined in
memory sequentially starting at 0x1000 using the “ctrl-P” command. The complete binary image
can be saved to the DOS 4.1 Tools volume, or any other volume, as “LISA.1”. The “LISA.2” and
“LED” object code files need to be copied the DOS 4.1 Tools volume as well. The utility
“LISA1TO2” can be used to copy the three object code files “LISA.1”, “LISA.2”, and “LED” to
another volume in disk drive 2.

 221

15. Program Global Editor (PGE)
When I received my Apple][+ in the early 1980’s I spent my first few months writing Applesoft
programs. I was fortunate to obtain the Program Global Editor (PGE) written by C. A. Greathouse and
Garry Reinhardt. PGE certainly made programming Applesoft much easier when one has excellent
tools at their disposal. I have to say that there is one particular problem when writing Applesoft
programs, and that is dealing with program line numbers. So many commands depend on program line
numbers making them essentially a highly critical part of any Applesoft program. There are not many
ways to partition an Applesoft program into functions and subroutines except by using large,
incrementing sections of program line numbers or by using many “REM ***” statements, but they
consume program line numbers as well as memory, which impacts program execution. Here is where
PGE’s forte provided me the most assistance: PGE had a program line renumbering capability. Upon
initialization PGE remaps the ampersand vector to its “READY [“ prompt. The renumber command
“R” requires four parameters for start number, end number, new start number, and increment. PGE
scours the entire Applesoft program and changes every occurrence of every program line number
within the specified range to the new program line number based on the new start number and some
program line number increment, say 5 or 10 or 100. To say the results were marvelous would be an
understatement. As one’s Applesoft programming capabilities mature, better choices for line numbers
are usually made, and it becomes easier to create sections of code that resemble a function or a
subroutine. In these instances being able to renumber a small section of code is quite powerful.

PGE requires the ability to modify the “WARMADR” and “RESETADR” vectors, and to obtain the value
found at “ADRVAL” within DOS. PGE simply modified those vectors and read the “ADRVAL”
parameter directly knowing the location of these vectors and parameter within DOS 3.3. DOS 4.1 has
these vectors and parameter, of course, and a set procedure to read and write them. As shown in Table
I.8.1 the address of “INITDOS” is 0xBFF8. The address at 0xBFF8 points to the table of address
vectors shown in Table I.8.7. “KEYVLADR”, at offset 0x07, points to the table of “KEYVALS” shown
in Table I.10.3 where “ADRVAL” is found at offset 0x06. In the same table where “KEYVLADR” is
found, Table I.8.1, the vectors “WARMADR” at offset 0x0F and “RESETADR” at offset 0x13 are also
found. This procedure of finding vectors and parameters is the same in both DOS 4.1L and DOS 4.1H.
Naturally the vector addresses are different in each of these versions of DOS, but their offsets and
contents and the procedure to locate their values are the same. As long as a program like PGE does not
utilize the Language Card for any purpose it may safely employ these procedures under DOS 4.1H.
After I adjusted the PGE software to locate the vectors and parameters it needed from DOS 4.1 using
the procedures just outlined, PGE executes its commands flawlessly under both DOS 4.1L and DOS
4.1H.

To assemble the PGE source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive
1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program in
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the PGE Source volume “PGE.Source” in disk drive 2, load the “PGE.L”
file into memory, and start the assembler by entering either the “A” command-line command or the “Z”
command-line command. If a printed version of the screen output is desired simply preface the “A” or
“Z” command with the “P1” command-line command. The complete binary image will be saved to
the PGE Source volume as “PGE”. Also, the LOADPGE source code is assembled using the same
procedure.

 222

16. Global Program Line Editor (GPLE)
Another invaluable Applesoft editing tool that I was fortunate enough to obtain was Global Program
Line Editor (GPLE). Neil Konzen published GPLE in 1982, and I obtained version V3.4. GPLE uses
the entire Bank 1 of the Language Card beginning at 0xD000, so it is obviously not compatible with
DOS 4.1H. GPLE does not utilize any vectors or parameters within DOS so I did not have to adjust
GPLE whatsoever in order for it to execute under DOS 4.1L. What I liked about GPLE was that it
worked very much like a word processor for Applesoft programming. It had the ability to globally
search and replace any variable, word, or character with any other variable, word, or character within
an Applesoft program. And GPLE does its work extremely fast.

The GPLE loader first verified that the Apple][computer contains 48 KB of memory and that a
Language Card is available. Then the loader write-enables Bank 1 of the Language Card and issues a
DOS BLOAD command to load GPLE to memory address 0xD000. Finally, the GPLE loader copies a
set of routines comprised of the ctrl-Y entry location, the ampersand entry location, the KSWL entry
location, and the CSWL entry location to 0xB6B3, a small, unused area within DOS 3.3, up to
0xB6F9. These routines also control the bank switching of the Language Card as well as providing the
entry location for a modifiable ‘jsr’ instruction used in GPLE processing. Of course, DOS 4.1 does
not have 70 bytes free at 0xB6B3, or 70 bytes free at any other address, for these routines. I chose to
leave these routines where they were on Page 0x03, just after the upper ASCII data of the GPLE
loader, and just before the DOS vectors at 0x3D0. I modified the GPLE code to utilize the Page 0x03
location for these routines instead of using the Page 0xB6 location. There was a total of six addresses
comprising the Page 0xB6 routines that I needed to change to Page 0x03. As long as GPLE is used to
edit an Applesoft program, using Page 0x03 for GPLE processing possess no problems whatsoever.
However, if the Applesoft program is tested using the RUN command and if the program loads a small
routine into Page 0x03, the KSWL/CSWL handlers for GPLE will be destroyed. This is the only
downside in using GPLE with DOS 4.1L.

To assemble the GPLE source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the GPLE Source volume “GPLE.Source” in disk drive 2, load the
“GPLE.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. The complete binary
image will be saved to the GPLE Source volume as “GPLE”. Also, the LOADGPLE source code is
assembled using the same procedure.

 223

17. RamDisk 320
I first became aware of the Axlon RamDisk 320 when I was self-employed and working under contract
for Sierra On-Line around 1985. Living in Oakhurst, California, was really fabulous, and being able to
work at home was even better. Except when the thunderstorms came and electrical power was
temporarily interrupted, otherwise it was heavenly to live and work in Oakhurst. Uninterrupted Power
Supplies, or UPS battery backups were not easy to obtain and were not very affordable at that time.
But when I was in the middle of a massive software development session and the power went out, and
I lost hours of work, the cost of a UPS seemed trivial. That was the time when I decided to purchase a
RamDisk. Actually, I purchased two because a friend of mine wanted a RamDisk, too. The RamDisk
emulates two 40-track disk drives using DRAM memory, and it has its own built-in power supply and
backup lead-acid battery. As long as a power outage did not last more than four hours, all my files
were safe on the RamDisk. My software development pace vastly improved as well because files were
assembled from RAM, not diskette. And when the RamDisk was mated with the ZipChip, large
projects could be assembled and linked in seconds rather than in many, many minutes.

Axlon provided excellent software utilities with the RamDisk. Their RamDisk initialization software
could transfer an entire diskette to one of the RAM drives in the time it took the Disk][(revolving at
300 rpm) to make 35 revolutions, 1 revolution per track, in 35 * (60 / 300) = 7 seconds. That is
impressive. From their software and from the design of their peripheral slot card I truly learned the
importance of reading the “CLRROM” address in order to detach expansion ROM memory. Whenever
the 6502-microprocessor fetches an instruction in the peripheral-card ROM memory, 0xCs00 to
0xCsFF, where “s” is the slot number of the peripheral slot card, the peripheral slot card typically
enables its peripheral-card expansion ROM address space, 0xC800 to 0xCFFF. And that is true for the
RamDisk peripheral slot card only in the address range 0xCs00 to 0xCs7F. Interesting. Software
residing in the upper half of its peripheral-card ROM memory can read the “CLRROM” address without
re-enabling its expansion ROM address space. That was indeed a very, very impressive design. I
made good use of that hardware design in all my versions of RamDisk firmware while I employed
DOS 3.3. Another interesting design of the RamDisk peripheral slot card was their use of a static
RAM chip, a 6116, for their firmware. The static RAM chip had to be initialized only once when
power was first turned on, and regardless how many times the Apple][was powered off and back on,
the static RAM chip retained its data because it derived its operating power from the RamDisk, not the
Apple][. One of the static RAM chip pages was mapped to the peripheral-card ROM memory address
space (0xCs00 to 0xCsFF), the 0xC800 page was mapped to the selected page of RamDisk DRAM,
and the remaining static RAM chip pages were mapped to the peripheral-card expansion ROM address
range, 0xC900 to 0xCFFF. I made use of the idea of utilizing a static RAM chip instead of an EPROM
when I was testing my new firmware for the Sider peripheral slot card. It was amazing how much
easier it was to test different software algorithms for the Sider without having to burn yet another, and
another EPROM.

I no longer remember when and where I became an owner of a 128K RAM peripheral slot card, or
RamCard. It may have been left inside a used Apple][e I purchased at a garage sale. Regardless, I
have no idea who manufactured this RamCard. This RamCard is designed to operate like a Language
Card in any peripheral slot card slot in an Apple][+ or in an Apple][e, and it can be easily configured
as one of eight Language Card blocks. Since Address Bit A02 is ignored when configuring the
Language Card using its soft switches, the RamCard utilizes Address Bit A02 to select a Language
Card block. Table IV.17.1 shows the memory management soft switches used by the RamCard.

 224

Simply reading address 0xC084 selects RamCard block 1 or reading address 0xC08D selects RamCard
block 6.

Address Access Name Description
0xC080 R RAM2WP Select Bank 2; write protect RAM
0xC081 R || RR ROM2WE Deselect Bank 2; enable ROM || write enable RAM
0xC082 R ROM2WP Deselect Bank 2; enable ROM; write protect RAM
0xC083 R || RR RAM2WE Select Bank 2 || write enable RAM
0xC084 R RCBLK1 Select RamCard block 1
0xC085 R RCBLK2 Select RamCard block 2
0xC086 R RCBLK3 Select RamCard block 3
0xC087 R RCBLK4 Select RamCard block 4
0xC088 R RAM1WP Select Bank 1; write protect RAM
0xC089 R || RR ROM1WE Deselect Bank 1; enable ROM || write enable RAM
0xC08A R ROM1WP Deselect Bank 1; enable ROM; write protect RAM
0xC08B R || RR RAM1WE Select Bank 1 || write enable RAM
0xC08C R RCBLK5 Select RamCard block 5
0xC08D R RCBLK6 Select RamCard block 6
0xC08E R RCBLK7 Select RamCard block 7
0xC08F R RCBLK8 Select RamCard block 8

Table IV.17.1. RamCard Memory Configuration Soft Switches

The hardware circuit of the RamCard is shown in Figure IV.17.1. The circuit utilizes an Intel 3242
address multiplexer and refresh counter in order to periodically refresh the sixteen dynamic RAM
chips on board. This address multiplexer is designed to refresh 16K dynamic RAMs, not 64K dynamic
RAMs like those found on this RAM card. Therefore, the RamCard circuit derives Row Address 7
from the selected RamCard block number. Data that is read from or written to the RamCard is latched
in the 0xD000 to 0xFFFF memory address range so the RamCard must pull the INH line low in order
to disable the Apple ROMs appropriately according to the memory configuration soft switches shown
in Table IV.17.1. In order to utilize the RamCard for anything useful software must be specifically
designed to access the RamCard as eight individual Language Cards, or an interface driver must reside
somewhere else in memory to provide RamCard memory access. Neither of these ideas appealed to
me, and I wanted to use the 128K memory of the RamCard in a more generic fashion.

The hardware of the RamDisk responds only to the first two of the sixteen peripheral-card I/O address
space locations dedicated to the RamDisk’s slot in order to select sector and track, so Address Bit A02
will always be low. The RamCard is designed to latch Address Bits A00, A01, and A03 when Address
Bit A02 of its sixteen peripheral-card I/O address space locations is high. Thus, the active peripheral-
card I/O address space locations for the RamDisk and the RamCard are mutually exclusive in selecting
RamDisk sector and track versus RamCard block number. For example, if the RamDisk resides in slot
7, sector number is saved to 0xC0F0 and track number is saved to 0xC0F1. If the RamCard resides in
slot 7, block number is selected by reading 0xC0F4 to 0xC0F7 or 0xC0FC to 0xC0FF. Once I

 225

understood the hardware circuit of the RamCard in view of its software utilization I thought perhaps
the circuit could be easily re-engineered. I also had plenty of room for additional software within the
RamDisk peripheral-card expansion ROM address space and some room left within the RamDisk
peripheral-card ROM memory address space. From within the RamDisk peripheral-card ROM
memory address space, I knew I could turn off the RamDisk peripheral-card expansion ROM address
space and use that address space to possibly access eight continuous pages of the RamCard. Therefore,
instead of accessing RamCard data in the 0xD000 to 0xFFFF memory address range, RamCard data
would be accessed in the peripheral-card expansion ROM address space from 0xC800 to 0xCFFF.

Figure IV.17.1. Original RamCard Hardware Circuit Diagram

It was around 1992 when I worked out a way to physically modify the RamCard in order to allow the
firmware of the RamDisk to control it, and to access it as if it was a RAM disk drive having 32 tracks.

 226

This modification required me to connect the RamCard to the RamDisk using a single wire, however.
I found that Slot 3 was the perfect slot for the RamCard because the RamCard no longer needed to
respond to its own “DEVICE SELECT” signal, but rather responded to the simulated “DEVICE
SELECT” signal generated by the RamDisk. When the RamDisk connects to DOS 4.1 it puts the
address of its disk handlers in the disk address table “DISKADRS”, one for the RamDisk and one for
the RamCard. To be sure, the RamDisk firmware is handling all the RWTS IOCB traffic to and from
the RamDisk as well as the traffic for the RamCard. Regardless which slot the RamCard occupies, the
RamDisk saves the track and sector from the RWTS IOCB to the 0xC0s4 (where “s” is equal to eight
plus the slot number of the RamDisk) peripheral-card I/O memory location on behalf of the RamCard.
Formatting either the RamDisk drives for 40 tracks or the RamCard for 32 tracks is easy in DOS 4.1
because the DOS INIT command can set the “ENDTRK” variable to those specific values using the A-
keyword.

Figure IV.17.2. Modified RamCard Hardware Circuit Diagram

 227

Figure IV.17.2 shows the modified RamCard hardware circuit diagram. The 74LS175 quad D flip-
flops latch the data bus bits except for Data Bit D6. Data Bits D0 to D5 hold the desired sector/track
number and Data Bit D7 is used to enable the RamCard. The desired 6-bit sector/track number is
calculated as follows:

 N = (track number * 2) + (sector number / 8)
 P = sector number ^ 7

The selected page “P” within the RamCard peripheral-card expansion ROM address space is
determined from the first three bits of the sector number. The modified RamCard circuit does not
bring the INH line low because it is now unnecessary to disable the Apple ROMs. Figure IV.17.3
shows the actual modifications made to Figure IV.17.1 to obtain Figure IV.17.2. One 74LS00 gate
was available to use in order to clock the 74LS175 control registers.

Figure IV.17.3. RamCard Hardware Modifications

In Figure IV.17.3 the Control Byte is latched into the two control registers on the RamCard only when
Address Bit A02 is high as in “STA 0xC084,X” where register X contains the slot number of the

 228

RamDisk times 16. The RamDisk hardware does not respond to any value saved to its peripheral-card
I/O memory location when Address Bit A02 is high, but it generates a suitable “DEVICE SELECT”
signal for the RamCard. Before the RamCard is enabled the “CLRROM” address is read in order to
disable the peripheral-card expansion ROM address range 0xC800 to 0xCFFF. The moment the
RamCard is enabled the peripheral-card expansion ROM address range is instantly mapped to eight
selected pages of RamCard memory. Bit 0x0 of the Control Byte contains bit 0x3 of the desired sector
number. Therefore, the peripheral-card expansion ROM memory will display sectors 0x0 to 0x7 when
Control Byte bit 0x0 is zero and sectors 0x8 to 0xF when Control Byte bit 0x0 is one. Bits 0x1 to 0x5
of the Control Byte contain the desired track number. Bit 0x6 of the Control Byte is not used and bit
0x7 is used to enable or disable the RamCard. The RamCard can no longer function as a Language
Card after having had these hardware modifications.

Table IV.17.2 shows the firmware entry points for the RamDisk and for the RamCard for the firmware
that is mapped to the peripheral-card ROM address space of the RamDisk.

Offset Name Description
0x00 RDBOOT Entry point for PR# DOS command to boot DOS in drive 1
0x10 ROMHOOK Entry point to connect the RamDisk and RamCard to DOS
0x18 ROMUHOOK Entry point to disconnect the RamDisk and RamCard from DOS
0x20 RDENTRY Entry for DOS 4.1 RamDisk RWTS processing
0x2B RDBOOT2 Continuation of RDBOOT
0x30 RDRWTS3 Entry for DOS 3.3 RamDisk RWTS processing
0x50 RCENTRY Entry for RamCard RWTS processing
0x5C ROMBOOT Simulate Disk][entry point for boot stage 1 code at 0x0801
0x66 TOGGLE Connect/disconnect continuation code
0x70 MODOS3 Patch DOS 3.3 after boot stage 2
0x80 BOOTEXIT Issue CLRROM, jump to 0x0801
0x87 RCEXIT Turn RamCard off, fall into RDEXIT
0x90 RDEXIT Update RWTS error code, issue CLRROM, return to caller
0x97 HOOKEXIT Exit for ROMHOOK and ROMUHOOK
0xA1 EXIT3 Exit for MODOS3
0xA7 RCRDWRT Turn on RamCard, read/write RamCard, branch to RCEXIT
0xCD RCFORMT Issue CLRROM, turn on RamCard, clear all sectors, branch to

RCEXIT

Table IV.17.2. RamDisk 320 Firmware Entry Points

To assemble the RamDisk source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the Big Mac Source volume “BIGMAC.Source” in disk drive 2, load the

 229

“RD.L” file into memory, and start the assembler by entering either the “A” command-line command
or the “Z” command-line command. If a printed version of the screen output is desired simply preface
the “A” or “Z” command with the “P1” command-line command. Five object code files will be
created on the Big Mac Source volume: “SEG01” to “SEG05”. The five object code files can be
combined in memory sequentially starting at 0x4000 using the “ctrl-P” command. The complete
binary image can be saved to the RamDisk Source volume, or any other volume, as “RD”.

 230

18. RanaSystems EliteThree
I met a very knowledgeable engineer at Hughes Aircraft Company a year or so after I was hired in
1986. She provided consulting services to small companies for the design of proprietary databases. In
order to keep track of her services, she used a database system of her own design hosted on an Apple][
using a regular Disk][disk drive and a RanaSystems Elite Three disk drive as a massive database data
storage container. She preferred the large storage capacity of the Rana and she thought the access time
was a bit faster than the Disk][. When she sold her consulting business she offered to sell me the Rana
drive for pennies what it originally cost her. Obviously, the Rana was used, but certainly not dead. Of
course, I jumped at the offer. My first investigations into the Rana and its installation software
revealed how tightly coupled it was to DOS 3.3. I didn’t much care for all the modifications the
installation software had to make to DOS 3.3 in order to provide the various configurations the
hardware was capable of supporting. These modifications were provided by Rana Enhancement
Utilities and were specifically designed to modify DOS and FID on a Master DOS diskette. I basically
left it at that, and put the Rana away for another time to explore its capabilities: read and write either
side of a diskette, create tracks half the size of Disk][tracks, that is, 80 tracks on each side of a
diskette, and capable of supporting up to four disk drives of any manufacture.

Well, that time is now to have another look at the RanaSystems EliteThree vis-à-vis DOS 4.1. Any
configuration utilizing the hardware capabilities of the Rana needs to address the current VTOC
structure, and how it can be possibly expanded to provide for more than 50 tracks for a disk volume.
The Rana can seek up to 80 tracks on a double-sided, double-density diskette. The Rana can also
access both sides of a diskette without having to flip the diskette over to access the backside, thereby
providing direct access to 160 tracks. The Rana peripheral slot card can control up to four disk drives
of any manufacture, that is, Rana or Disk][or any other manufacture.

I recall fondly the time in 1968 when I sat in the Audio Music Library in Schoenberg Hall at UCLA
listening to magnetic tape recordings for my class on Johann Sebastian Bach. The library used an
array of Viking 80 magnetic tape recorders to playback audio assignments for music students. I
happened to own a Viking 880. The only difference is that the 880 came installed in a suitcase with
two 2x6 inch speakers and a small stereo audio amplifier. This recorder had the ability to physically
adjust the erase, record, and playback heads in order to playback magnetic tapes recorded in half-track
mode as well as magnetic tapes recorded in quarter-track mode. The signal-to-noise ratio for half-track
tapes was obviously far superior to quarter-track tapes because twice as much magnetic material was
used to contain the recorded signal. Even though the Viking was using a quarter-track playback head
to read a half-track recording, the increased signal-to-noise ratio was still apparent. Why I mention
half-track and quarter-track magnetic audio recording is that the concepts are quite similar when
applied to magnetic disk recording using a Disk][recorder versus a Rana recorder. The recording
head gap, or track size in the Rana is half the width of the recording head gap in the Disk][, so
recordings made by the Rana would have a smaller signal-to-noise ratio than those made by the Disk
][; that is, half as much magnetic material is used to contain the recorded signal in the Rana. Pure
havoc would occur if the Disk][tried to read a Rana disk recorded in 80 track mode.

It is possible to differentiate between diskettes recorded using the standard prologue to the Address
Field header and the Data Field header of a sector and those diskettes using other address and data
marks for the prologue bytes. This simply makes this diskette readable by one computer and not
another. The Rana could certainly use such a protocol but I believe there is simply not enough code
space in the peripheral-card expansion memory to make this work for more than one or two
configurations regarding number of tracks, number of sectors per track, and VTOC expansion of its

 231

bitmap data. Whatever is decided on how to use the full capabilities of the Rana is most likely not
going to be compatible with the Disk][. The only place to use the compatibility argument for the Rana
and the Disk][must be derived from the DOS 4.1 VTOC structure. Whatever can fit in that VTOC is
what should be used to decide how best to utilize the Rana. Considering the lessons learned from half-
track and quarter-track magnetic audio recording, and in view of the rather limited availability of
double-sided, double-density magnetic media, I chose to implement full-track stepping for the Rana,
thus providing 40 tracks on each side of the diskette knowing full well that the physical width of the
recording head gap in the Rana is half that of the Disk][. I also chose to implement recording sectors
0x00 to 0x0F on the notched side of the diskette and recording sectors 0x10 to 0x1F on the un-notched
side of the diskette. The VTOC can fully accommodate this configuration. The Rana EPROM can
also accommodate this configuration within its available code space and implement all the RWTS
commands for both DOS 4.1L and DOS 4.1H. This configuration will provide 40 tracks, each track
having 32 sectors, for a total of 1280 sectors. If the VTOC and Catalog use 8 of those sectors, a Data
disk would have 1272 sectors for storage, a rather massive amount of disk space accessible on a single
diskette. This is precisely the configuration I chose to implement. Table IV.18.1 shows the firmware
entry points of the firmware that is mapped to the peripheral-card ROM address space of the Rana
peripheral slot card.

The signal-to-noise ratio for the Rana drive is still very much a concern because the Rana RWTS
FORMAT algorithm rejects many of the double-sided/double-density diskettes I recently purchased as
not safely recordable, but they are perfectly useable on the Disk][. Diskettes having previously been
recorded by a Disk][will still contain residual and problematic magnetic information even after the
Rana overwrites such a diskette using FORMAT due to its smaller head gap size. It was the successful
formatting of several virgin diskettes that allowed me to test the Rana firmware I designed when I
started to learn more about how DOS was originally designed to use a free sector bitmap for a volume
that consisted of tracks having 32 sectors. These bitmap findings are thoroughly discussed in Section
I.14 of this manual. Needless to say, a CFFA volume having 48 tracks where each track can have 32
sectors is just a minor extension to what I designed and implemented for a Rana volume. Truth be
said, the education I received from exploring the Rana and its capabilities proved to be absolutely
invaluable in the design of DOS 4.1. Perhaps a future enhancement to DOS 4.1 would be an extension
to the VTOC bitmap area.

Offset Name Description
0x00 RDBOOT Entry point for PR# DOS command to boot DOS in drive 1
0x10 ROMHOOK Entry point to connect the Rana to DOS
0x18 ROMUHOOK Entry point to disconnect the Rana from DOS
0x20 RANARWTS Issue CLRROM, enter RWTS processing
0x5C BOOTFW Simulate Disk][entry point for boot stage 1 code at 0x0801
0x5D BOOTFW2 Locate address or data header prologue
0x83 FNDADR Read address field header for volume, track, and sector
0xA6 FNDDATA Read 342 disk nibbles and post nibblize to memory on a page

boundary, jump to 0x0801

Table IV.18.1. Rana Disk Firmware Entry Points

 232

To assemble the Rana source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk drive
1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program in
order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the Rana Source volume “RANA.Source” in disk drive 2, load the
“RANA.L” file into memory, and start the assembler by entering either the “A” command-line
command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. The complete binary
image will be saved to the Rana Source volume as “RANA”.

 233

19. The Sider
Around the year 1985 my mother asked me to build her a computer system to store her genealogy
records and data. She was becoming overwhelmed with ancestry information, and knew and
understood how invaluable a computer would be to store and link all this information. I knew of a
product called Family Roots by Stephen C. Vorenberg and marketed by Quinsept, Inc., that would give
my mother the power and flexibility she needed to contain and organize her ancestry data information.
Her Family Roots database initially filled four data diskettes besides the three program diskettes when
she asked me if there was a better alternative than swapping diskettes in order to generate a family
member’s report. In its documentation Family Roots suggested using the Sider from First Class
Peripherals, a fixed disk drive subsystem featuring 10 MB of hard drive disk storage partitioned mostly
as DOS 3.3 volumes. And, to tell the truth, I had been very interested in the Sider when I first heard
about it but I just didn’t have the reason or the bankroll to afford such a luxury. Mom had both. When
I inherited my mother’s Apple //e computer system she had filled more than 16 DOS 3.3 volumes with
genealogy data. The Sider proved to be the perfect data storage system for that era.

The Sider consists of a peripheral slot card connected to an external housing by means of an IDE cable.
The housing contains a Xebec 1410A controller board and a 10 MB Winchester hard drive. The
peripheral slot card contains a 2716 EPROM and uses only two of its sixteen peripheral-card I/O
memory locations to communicate with the Xebec controller. Essentially the firmware transfers an 8-
byte Data Context Block, or DCB to the controller. The DCB contains the command, a 24-bit Logical
Block Address (LBA), a block count, a step option, and a buffer address to write 256 bytes of data
from computer memory or read 256 bytes of data into computer memory. Therefore, an LBA address
specifies one 256-byte page of data, and a complete DOS 3.3 volume would require 560 of those
pages. Even though a Sider may be configured not to use CP/M or ProDOS or Pascal formatted
sectors, some sectors are still set aside for those partitions. The Sider is partitioned only once to
establish the sizes of the DOS 3.3, CP/M, ProDOS, and Pascal partitions. In the case of my mother’s
Sider, we partitioned it for the maximum number of DOS 3.3 partitions and the minimum number of
CP/M, ProDOS, and Pascal partitions. Her 10 MB Sider contained 69 DOS 3.3 volumes beginning
with Volume 0. Family Roots utilizes volume number to locate all system programs and all genealogy
data. Of course, I was fascinated to learn how the Sider modified DOS 3.3 to “tame” volume number
such that programs like Family Roots could utilize this valuable parameter.

Table IV.19.1 shows the logical structure of the Sider based on LBA number. The Xebec controller
determines how this LBA number, or sector number is mapped to the physical hard drive. It is
important to note that a volume is a contiguous group of sectors where each volume follows the
previous volume, or group of sectors. Table IV.19.2 show the modifications I made to the Sider
Logical Structure to support DOS 4.1. The new Sider peripheral-card ROM firmware I designed boots
the DOS 4.1L image starting at sector 264. Alternately, the DOS 4.1H image can be booted by
entering 0xCs20, where “s” is the slot number of the Sider’s peripheral slot card, typically slot 7.
Either image will insert the Sider’s RWTS handler address, 0xCs70, into the DOS 4.1 disk address
table. Table IV17.3 shows all the other firmware entry points of the firmware that is mapped to the
peripheral-card ROM address space for the Sider.

There is a mathematical relationship between LBA and volume, track, and sector found in the RWTS
IOCB. The first volume is Volume 0 and it begins at LBA address 464, or 0x01D0. There are 35
tracks in a Sider volume and 16 sectors in a track. Each volume is 560 sectors, or 0x0230 sectors.

LBA = (volume * 0x230) + (track * 0x10) + sector + 0x01D0

 234

LBA Range Description
Start End

0 0 Sider boot block
1 1 Sider parameter block
2 36 DOS 3.3 boot image

37 84 RAM card image (DOS)
85 135 CP/M boot image point #1
136 255 Reserved for future use
256 258 CP/M boot image point #2
259 463 Free area for any application
464 1023 DOS 3.3 volume 0xFD (BU volume)

1024 ???? User data area
???? ???? 12 alternate tracks

Table IV.19.1. Sider Logical Structure

LBA Range Description
Start End

0 0 Sider boot block
1 1 Sider parameter block
2 36 DOS 3.3 boot image

37 84 RAM card image (DOS)
85 135 CP/M boot image point #1
136 255 Reserved for future use
256 258 CP/M boot image point #2
259 263 Free sectors
264 295 DOS 4.1L boot image
296 299 Free sectors
300 341 DOS 4.1H boot image
342 463 Remaining Free area for any application
464 1023 Volume 0

1024 39103 Volumes 1 to 68
39136 39136 Park heads address

Table IV.19.2. Modified Sider Logical Structure

In order to calculate the LBA efficiently and with great speed, lookup tables are used that essentially
do all the multiplication by using simple addition. There is sufficient room in the 2716 EPROM for
these tables. The RWTS IOCB volume, track, and sector values are range-checked before the track
and volume are used as indexes into the track and volume tables, and the extracted values are added to

 235

the sector value. The offset 0x1D0 is already incorporated within the data of the volume tables. I put
the address of the DOS 4.1L image at index 69 and the address of the DOS 4.1H image at index 70 in
the volume tables. Either of these DOS images or a selected DOS image using the BOOTVOL entry
point from Table IV.19.3 at 0xCs30 can be used to boot the Sider. The track and sector values are set
to 0x00 and the regular boot sequence is initiated. If the boot image is a DOS 3.3 image, the
SDRWTS3 address is used to replace the RWTS address found at 0xB7B8 and 0xB7B9. Otherwise, if
the boot image is a DOS 4.1 image, the SDRWTS address is copied into the DOS disk address table.

Offset Name Description
0x00 BOOTLR Entry point for PR# DOS command to boot DOS 4.1L
0x10 ROMHOOK Entry point to connect the Sider to DOS
0x18 ROMUHOOK Entry point to disconnect the Sider from DOS
0x20 BOOTHR Entry point to boot DOS 4.1H
0x30 BOOTVOL Entry point to boot DOS from requested volume on Sider
0x40 PARK Entry point to call ROMUHOOK and park the disk heads
0x5C ROMBOOT Simulate Disk][entry point for boot stage 1 code at 0x0801
0x70 SDRWTS RWTS handler in DOS 4.1 disk address table
0x80 SDRWTS3 RWTS handler for DOS 3.3
0xA0 SDRIVER Read/write a Sider LBA using an 8-byte DCB in regs Y,A
0xCO GETSTAT Get Sider status in C-flag
0xD0 READSTAT Read Sider status into a 4-byte buffer
0xF0 MODOS3 Patch DOS 3.3 after boot stage 2

Table IV.19.3. Sider Firmware Entry Points

Family Roots utilizes Diversi-DOS in order to speed up the loading of its humungous Applesoft
programs, and it also utilizes Diversi-DOS’s DDMOVER to relocate most of DOS 3.3 to the Language
Card. Still, Family Roots requires four file buffers, and in Diversi-DOS’s implementation these
buffers remain in lower memory. Family Roots chains from program to program keeping all of its
global values in memory. This technique certainly makes Family Roots appear to seamlessly transfer
control from one program to the next particularly with the disk speedup routines in Diversi-DOS. I
have to say that I derived my inspiration from Diversi-DOS to incorporate speedup routines native to
DOS 4.1, and to move an early version of DOS 4.1, perhaps Build 32 or Build 33, to the Language
Card. Diversi-DOS moves pieces and parts of DOS 3.3 to the Language Card and it has to modify the
addresses of all ‘jmp’ and ‘jsr’ instructions. Diversi-DOS has to create a software interface between
the routines it leaves in lower memory and the routines it moves to the Language Card in order to
perform all necessary Language Card bank switching. Designing DDMOVER was a momentous effort
to be sure, and having most of DOS 3.3 in the Language Card certainly gives Family Roots the
“breathing room” it needs in view of the size of its Applesoft programs and the size of its variable and
ASCII data arrays. And yet the Language Card was less than fully utilized.

 236

I certainly understood how Diversi-DOS by Bill Basham at Diversified Soft Research was able to
speed up the File Manager’s I/O routines, as well as understanding how SPEEDOS from Applied
Engineering worked for its RamWorks products. I also looked at David DOS by David Weston and
TurboDOS used for Lisa. I’m sure there were others who had forsaken the DOS INIT command and
utilized that software space for their particular ingenious speedup algorithm. Even Don Worth and
Pieter Lechner went so far as to suggest modifying the sector interleave table to speed up the reading
of large Applesoft and Binary program. None of these algorithms seemed to be the very best solution
for managing disk I/O in DOS 3.3. At Sierra On-Line a software engineer colleague of mine (a
gentleman from the United Kingdom, actually) did provide an additional BLOAD keyword that
provided a Page parameter. This keyword provided a parameter to an additional and new “read pages”
subcode for the File Manager. It certainly was fast and, if I recall correctly, was used on the first
version of King’s Quest. I decided that my goal was not to rewrite the File Manager, but to add the
idea of reading pages of a file when I could. For example, the first two bytes of an Applesoft file must
be read in order to calculate the end of its program address before the rest of the file is read into
memory. The remaining 0xFE bytes in its file buffer are copied to memory, 1 byte at a time.
However, the remaining sectors of the file, except for the last sector most likely, can be read into
memory 1 page at a time. If there is a last sector that contains some bytes, the sector can be read into
its file buffer and the remaining bytes copied to memory 1 byte at a time. Binary files are handled in
the same way except the first four bytes are copied into the DOS parameter space from its file buffer;
that is, the file’s target memory address and the file’s size in bytes. The remaining 0xFC bytes in its
file buffer are copied to memory, 1 byte at a time.

I am quite sure that if DSR, Inc., had access to Apple’s source code for DOS 3.3, it could have
generated a native Language Card version of DOS 3.3 that did not require software like DDMOVER.
My vision of having DOS 4.1 in the Language Card was that it must boot directly into the Language
Card, therefore be wholly resident in the Language Card for the most part. It is one thing to cobble
together a system from pieces of a previous system, but quite another thing when a complete system is
fully designed from the ground up. I designed DOS 4.1H to occupy the Language Card natively. It
has all of the functionality of DOS 4.1L and more. All file buffers, up to five, are fully contained in
the Language Card, too. There is even code space to provide a DOS HELP command that provides the
syntax for all DOS commands. Regardless of the number of file buffers, HIMEM is set at 0xBE00, the
highest possible address perfect for an Applesoft environment for monster programs like those found
in Family Roots. Furthermore, DOS 4.1H contains the same CHAIN algorithm found in DOS 4.1L.
Preliminary tests have shown that DOS 4.1H and CHAIN function beautifully with Family Roots.
There are empty volumes on the Sider that could be used to conduct further tests with DOS 4.1H and
Family Roots. Or, the programs and data for Family Roots could be moved to a drive on the CFFA
and tested there with DOS 4.1H. Either location would certainly verify the migration of Family Roots
to DOS 4.1H. I believe my mother would have certainly been very impressed, and she would have
certainly provided me with hours of hands-on testing.

 237

20. Sourceror
I first “sourced” Sourceror so I could modify its source code in order to create a more pleasing display
of its available commands using uppercase and lowercase ASCII before processing object code files.
Sourceror, like Big Mac, was written by Glen Bredon, and is a Binary program that executes at 0x8900
after MAXFILES is set to 1. I found only one error in Sourceror, a missing ‘clc’ instruction where the
software handles 65C02 instructions. Occasionally, not always, the program counter came up 1 byte
too large because a software routine assumed that the C-flag would always be clear on the return from
a call to GETNUM at 0xFFA7. Obviously, the C-flag was not always clear.

Sourceror already had a number of built-in equates it would refer to in order to build an equate listing
at the end of the source code it generated as per Big Mac convention. I added a number of equates to
its list that includes CLRROM, RAM2WP, ROM2WE, ROM2WP, RAM2WE, RAM1WP, ROM1WE,
ROM1WP, RAM1WE, STROBE, LATCH, DATAIN, and DATAOUT. Figure IV.20.1 shows the
initialization screen after LOADSRCRR has launched SOURCEROR. Figure IV.20.2 shows the
startup, or Help screen Sourceror displays with its command-line prompt “$”. Figure IV.20.3 shows
the Monitor source listing of code after the first ‘L’ instruction is issued to Sourceror.

I have used Sourceror to provide visibility and complete insight into DOS 3.3 first, and recently,
insight into the CFFA firmware, and everything that came in between those two projects in the last 35
years. Because of Sourceror I understand a fair amount of what there is to know about Apple][
hardware architecture and Apple][software that is used to manage that hardware architecture.

Figure IV.20.1. Sourceror Initialization

 238

Figure IV.20.2. Sourceror Startup/Help Screen

Figure IV.20.3. Sourceror Monitor Source Listing

 239

To assemble the Sourcerror source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in disk
drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP” program
in order to verify or set the “Start of Source Code” to 0x2100 and the “End of Source
Code” to 0x6000. Place the Sourceror Source volume “SOURCEROR.Source” in disk drive 2, load
the “SOURCEROR.L” file into memory, and start the assembler by entering either the “A” command-
line command or the “Z” command-line command. If a printed version of the screen output is desired
simply preface the “A” or “Z” command with the “P1” command-line command. The complete binary
image will be saved to the Sourceror Source volume as “SOURCEROR”. Also, the LOADSRCRR
source code is assembled using the same procedure.

 240

21. Parallel Printer Buffer
When I saw the advertisement in one of my 1985 Apple magazines for the JFD Parallel Printer Buffer I
just had to have one. As I recall there were two, perhaps more Buffer configurations one could choose:
one set of parallel input/outputs or two sets of parallel input/outputs or perhaps a combination of these
two configurations. Always budget minded I chose the Buffer with one set of parallel input/outputs. If
I had more than one computer or more than one printer I may have chosen differently. The Buffer
came with 256 KB of dynamic RAM, and once an ASCII listing or a page of graphics had printed, the
Buffer had a Copy pushbutton to select the number of additional copies (up to 255) to print if desired.
I had spent so much time waiting for my computer and printer to print hundreds of pages of code that I
was more than ready to put this Buffer to work: I could work on the computer while the Buffer was
supplying the printer with data, especially data from large graphic files. The Buffer connected to the
Grappler+ Printer Interface slot card in the computer and to my Epson MX100 printer. A large wall
transformer supplying 9 volts DC powered the Buffer. Besides the Copy pushbutton there was a Reset
pushbutton. The Reset pushbutton caused the Buffer software to initialize and force the input of the
next new listing to the beginning of Buffer memory if I needed multiple copies of only that listing, for
example. Otherwise, if I used the Copy pushbutton after printing multiple items the Buffer would print
everything in its memory again.

The manual that came with the Buffer did not discuss what happened when input data overflowed
memory. I had already seen some bizarre behavior like not printing some paragraphs when I used the
Buffer to print many listings, and I did not press the Reset pushbutton prior to printing each listing.
Momentarily pressing the Copy pushbutton put the Buffer into Pause Mode such that the Buffer could
still accept input data; it just did not send that data to the printer. Momentarily pressing the Copy
pushbutton again took the Buffer out of Pause Mode and data, once again, was output to the printer. I
took advantage of Pause Mode and input a known, and very large amount of data to the Buffer. Then I
took the Buffer out of Pause Mode and sent another known, and very large amount of data to the
Buffer. When Buffer memory was filled it appeared to me the Buffer was accepting 256 byte chunks
of data after it printed approximately 256 bytes of data for a period of time. Then the Buffer started to
drop chunks of data, perhaps 256 bytes in size, but I wasn’t absolutely sure. I could force this bizarre
behavior every time I forced the Buffer memory to overflow. It appeared to me the firmware had some
sort of software bug. I saw a challenge waiting to happen.

I opened the Buffer and found a voltage regulator, an 8035-microprocessor, a 2716 EPROM, eight
1257-15 NMOS dynamic RAM chips, and an assortment of eight-bit latches and logic chips. There
were PCB locations for an additional input parallel connector and for an additional output parallel
connector. The Ready LED was inconveniently located on the rear apron of the Buffer. I moved this
LED to the front apron since there was only one input parallel connector and plenty of space next to it.
Ideally, I would have liked to have moved that input parallel connector to the rear apron alongside the
output parallel connector. At that time I worked at Hughes Aircraft and I had access to virtually any
data book available, and I was able to obtain data sheets on the microprocessor and the RAM.

Being able to source and compile the MCS-8048 Instruction Set was certainly going to be a challenge,
but I had already had some experience doing that very thing for an external keyboard that used a 6802
microprocessor on its interface board. My technique was to set up a series of equates within Lisa, one
equate for each MCS-8048 instruction. I had to keep in mind which instructions required additional
parameters. Actual coding within Lisa simply required the “BYT” directive followed by the MCS-
8048 instruction equate, followed by any required parameter. I put a comment on each line

 241

documenting what the “BYT” directive and instruction equate were actually doing. The next step was
to reverse engineer the code contained in the Buffer’s EPROM.

Dumping the data contained in the 2716 Buffer EPROM was easy using the PROmGRAMER.
Sourcing that data was also made easy using an Applesoft program I wrote that translated the MCS-
8048 instructions into a Text file using the “BYT” directive Lisa could easily Exec into its memory.
Analyzing that sourced code took the most time and effort because I had to fully understand the
architecture of the 8035-microprocessor, the operation of the 1257-15 dynamic RAM for data access
and RAM refresh requirements, and the hardware function of the eight-bit latches and supporting logic
chips. The Grappler+ and the Epson printer also had handshake and data acknowledgement
requirements as well. Slowly I plowed my way through the code finding all the necessary logic to
access RAM data, refresh RAM, read Input data, and write Output data as well as perform system
initialization, print diagnostic status information, read the Reset and Copy pushbuttons, and control the
LED. Unfortunately, I could not locate an error in the software logic that would cause the bizarre
behavior I could manufacture. I did locate the general logic where the Buffer would wait for a free
page (256 bytes) of memory should the write pointer address approach the read pointer address.
Dropping or skipping a page of memory was occurring somewhere in this logic when the data pointers
were near the end of memory, but I could not find the wrong logic. I’m sure it was some silly addition
error, probably involving a carry bit, when transitioning from the 0x3FFxx page to the 0x000xx page
of the 256 KB buffer.

I decided to scrape the original code and write my own version of this firmware. Of course, I had to
borrow the logic to access and refresh RAM, but I thought I could do a better job at controlling the
data pointers and handling the memory overflow situation. I set up hardware to emulate a 2716
EPROM so I could compile and test my software without having to burn an EPROM. This hardware
setup made it extremely easy to develop MCS-8048 software for the 8035-microprocessor. In May,
1989, I was successful in developing firmware for the Buffer that did not fail any of my previous
Buffer overflow tests. This firmware also behaved exactly like the original firmware for Pause Mode
and the Copy function. The Reset function also behaved exactly like the original firmware. I burned a
2716 EPROM, installed it, and used the Buffer with this firmware thereafter.

I performed timing tests and documented the results for the original firmware and for my new Buffer
firmware. The initialization routine did not take as long to complete for the original firmware, but that
time did not agree with what I had calculated the time should be if all 256 KB was tested with a
minimum of a write followed by a read and a compare. My initialization routine actually took
precisely the time to complete I had predicted. I also timed how long each firmware took to fill
memory with Pause Mode enabled and disabled. With Pause Mode enabled the original firmware took
about 2.5 times longer to fill memory: 2.91 KB/sec versus 7.28 KB/sec for my firmware. With Pause
Mode disabled the results were 2.91 KB/sec versus 6.90 KB/sec for my firmware. I sent a letter to JFD
explaining what I had observed when memory overflow occurred, my timing test predictions and
results, and a printed copy of my firmware. I did not receive even an acknowledgement to my letter
from JFD. I was terribly disappointed.

Recently I took some time to look over and review the Buffer firmware I wrote back in 1989. I’ve had
a lot of time to add to and mature my programming skills vis-à-vis hardware architecture. I noticed
that I used the built-in 8035-microprocessor Interval Timer for timing events such as pushbutton
debounce, for example, as in the original Buffer firmware. What a waste of a perfectly good Interval
Timer I thought. What became especially clear to me was how to use the Interval Timer to provide the

 242

basic timing for dynamic RAM refresh without having to guess and hope that the RAM refresh routine
was called often enough. In my original firmware as well as the JFD firmware the MAIN loop called
the REFRESH routine, the CHECKT0 routine, and, if the printer was ready to accept another data
character, the SENDMEM routine in that order in an infinite loop. The CHECKT0 routine checked if
the Copy pushbutton was pressed, and if so, would flash the LED on and off at a 0.5 Hz rate in order to
set the number of desired copies. CHECKT0 could take huge amounts of time away from the
REFRESH routine leaving me pondering why memory never became corrupted. I wonder if this was
the actual cause of the bizarre behavior I observed so many years ago? Or, did this Buffer RAM have
built-in refresh capability? If I followed the 1257-15 dynamic RAM data sheet requirement to perform
a RAS-only refresh every 4.0 milliseconds or less I could use the Interval Timer. The Interval Timer
could also serve as the base for all other timing requirements like pushbutton debounce and LED flash
rate. Central to the 8035-microprocessor are the RESET interrupt, the EXTIRQ interrupt, and the
TIMRIRQ interrupt. The Reset pushbutton is connected to the RESET Interrupt pin, the Input
connector from the computer is connected to the External Interrupt pin, and the Interval Timer is
connected to the Timer Interrupt pin of the 8035-microprocessor. Each of these events is handled by a
unique vector to a handler routine at a hard-wired address in page-zero of EPROM memory. There are
also 32 bytes of indexed User RAM in internal microprocessor memory that is only slightly clumsy to
access, but nevertheless available for use to store program variables and data.

The 8035-microprocessor is clocked using a 6.0 MHz external crystal. This frequency is divided by 15
internal to the microprocessor, so the cycle time (i.e. Tcy for instructions) is 2.5 microseconds. Most
instructions require one cycle, and all other instructions require two cycles. The Interval Timer
prescaler divides Tcy by 32 making it 80 microseconds in duration. Thus, loading the timer counter
with a value of 0xFF will cause a TIMRIRQ interrupt in 80 microseconds when the timer counter
overflows to 0x00. Loading the timer with a value of 0xCF will cause a TIMRIRQ interrupt in 3.920
milliseconds. However, the instructions to reset the Interval Timer require 8 cycles, so the total timer
interval is 3.940 milliseconds. This time is certainly within specifications to refresh the 1257-15
dynamic RAM. Part of the Interval Timer handler routine is to increment a 2-byte counter. Whatever
value is pre-loaded into this counter is incremented every 3.94 milliseconds. Naturally, a number
representing the negative of a number would be ideal to use in this application such that when the most
significant byte becomes 0x00, the desired time has been reached. For example, if a 63-millisecond
debounce time is desired, then -16 must be pre-loaded into the 2-byte counter, or 0xFFF0. Also, an
approximate 1.0 second wait time period can be achieved by loading 0xFF00 into the 2-byte counter;
that is, 3.940 msec. * 256 = 1.00864 seconds.

Using the Interval Timer as the primary method to refresh the Buffer dynamic RAM changed the code
only for the MAIN routine. Now, MAIN simply calls the CHECKT0 routine and the SENDMEM
routine if the printer is ready to accept another data character, in an infinite loop. The CHECKT0 can
take all the time it needs in order to count the number of LED flashes representing the desired number
of copies. I added another bit-flag to the System Flag Bits byte called the Overflow State Flag. If the
write pointer should ever reach 0x00000 and overflow memory, the Overflow State Flag will be turned
ON. If that flag is ON the Buffer software will bypass the copy counting logic in the CHECKT0
routine and, as protection, not allow whatever there is in memory to be sent to the printer as another
copy. Of course, pressing the Reset pushbutton will reset all the State Flag bits including the Overflow
State Flag bit, and re-enable the ability to make copies of whatever there is in memory. If copies are
selected using the Copy pushbutton immediately after pressing the Reset pushbutton nothing should be
printed as expected. I burned a 2716 EPROM with this version of the firmware, installed it, and will
be using the Buffer with this firmware thereafter.

 243

To assemble the Printer Buffer source code place the DOS 4.1 Tools volume “DOS4.1.ToolsL” in
disk drive 1, boot, and start Lisa. Enter the “SE” command-line command to select the “SETUP”
program in order to verify or set the “Start of Source Code” to 0x2100 and the “End of
Source Code” to 0x6000. Place the Printer Buffer Source volume “PRINTBUFFER.Source” in
disk drive 2, load the “PPB.L” file into memory, and start the assembler by entering either the “A”
command-line command or the “Z” command-line command. If a printed version of the screen output
is desired simply preface the “A” or “Z” command with the “P1” command-line command. The
complete binary image will be saved to the Printer Buffer Source volume as “PPB”. A 2716 EPROM
can be burned with the “PPB” file.

 244

22. Last Concluding Thoughts
There have been many books and articles published telling the story about the history, evolution, and
people, some of whom are definitely characters, who have been involved in the Computer Revolution.
I must say that I was part of that revolution, though perhaps more realistically on the periphery of that
revolution. Ken Williams did attract a host of other entrepreneurs to Oakhurst, California, where
Sierra Online was located. Like others, he was involved with developing programs targeted for the
soon-to-be-released Apple][c. It was fascinating to be there in that period of time witnessing those
events personally and to know that Wozniak and Jobs were among those who occasionally visited
Williams. I know there are many others like me who look back on those years with a high degree of
nostalgia. It was a glorious time to be writing software for the Apple][family of computers!

Even today I must admit that the Apple][computer holds a unique charm for me that continuously
draws me into its technical and software environment. People like Gerard Putter and Richard Dreher
certainly must also experience this Apple][charm as well, for they have created invaluable tools, one
software and the other hardware, that keep Apple][enthusiasts like me motivated and excited about
creating more and more useful software and hardware products for this computer today. I believe that
in creating DOS 4.1 is my way of acknowledging and demonstrating the level of understanding I have
for the Apple][computer solely in terms of its hardware. It was fortunate that I studied Electrical
Engineering at University rather than Computer Science. I certainly absorbed enough Computer
Science during my professional career writing software.

Also, DOS 4.1 is the culmination of all the ideas from my DOS “Wish List” and from the DOS
“Parameter Needs” of a large number of commercial software programs. Understanding those
commercial software programs was vital to focus my attention in providing an interface between DOS
4.1 internals and DOS 4.1 users. I suppose that studying Control Systems in terms of a “black box”
having inputs, outputs, and feedback loops all contributed to how I wanted to design DOS 4.1 as the
proverbial “black box” not to have its internals recklessly poked and prodded. At least for the most
part I believe I have succeeded in designing an Apple][operating system that fulfills all of my needs.
I certainly think that it might fulfill the needs of others, particularly the owners of the CFFA card and
the users of commercial programs like Family Roots who do not use ProDOS. This has been an
incredible journey for me and I have enjoyed solving every problem and issue that has come my way
while I was developing DOS 4.1

I still believe there is a huge potential use for the 6502-microprocesser IRQ and NMI interrupts in
some sort of hardware/software product. What that product is, is yet another mystery to me. But I still
keep thinking about it in view of how much fun I had implementing those interrupts on my clock card.
And that is part of the charm the Apple][generates because of its open architecture. It allows people
to build their own interface slot cards and plug them into a slot in a real computer. I was so fortunate
to have the opportunity to experiment and design and tryout my ideas that significantly increased my
knowledge and understanding of digital hardware and software design. There is no better classroom
than an engineer’s laboratory, which happened to be my garage. Others may have a basement or a
spare room for their laboratory. The point is, book knowledge is essential for understanding theory,
but the real learning happens when you apply that theory and build something that is your own design,
be it something intellectual or something tangible. At least that is the case for me especially when I
recall that the original Apple 1 was first built in a garage.

I have yet to explore integrating my love for the Apple][hardware and software and my love for
model railroading, specifically S-gauge used by the American Flyer model trains. I have boxes and

 245

boxes of those trains and many accessories stored in the garage. Perhaps it is time I introduce Mr.
American Flyer to Mr. Apple. The relationship could be rather exciting if not downright explosive.
Oh, not in the sense of Addams Family explosive, but in the sense of opening up a whole new world of
awesome challenges and a whole lot of downright fun.

Today’s generation of young engineers have the opportunity to explore computer-assisted or computer-
associated projects with the Raspberry Pi computer. The Raspberry Pi is the size of a credit card
having four USB ports, an Ethernet port, HDMI, raw video, and stereo sound outputs, and it only
requires 5 volts at 2.4 amps for full operation and control. The computer uses a micro SD card that
hosts its UNIX operating system and its C language compiler and linker. It provides around 26
Peripheral Input/Output (i.e. PIO) connections to the outside world. The PIOs are software
configurable to be an input or an output for 3.3-volt signals.

I designed my Sunrise/Sunset controller around the Raspberry Pi to control all my outside decorative
lightening. My software considers my location on planet Earth in terms of longitude, latitude, and
azimuth to calculate precisely sunrise and sunset. The software refers to an input configuration file for
selectable offsets in order to adjust timing so that my decorative lights turn ON 30 minutes after sunset
and they turn OFF 45 minutes before sunrise. One PIO port is used as a 3.3-volt output port to
illuminate the LED of a TRIAC controller. When the TRIAC is turned ON, AC voltage is gated to a
moderate-duty AC relay. This relay can control a load up to 15 amps at 240 volts AC. The AC
transformer that provides the 12 volts AC to the decorative lights draws no more than 8 amps at 120
volts AC through the relay. As the days become longer and the nights shorter my decorative lights
turn ON and OFF according to sunset and sunrise, respectively. And, as the days become shorter and
the nights longer my decorative lights are appropriately turned ON and OFF.

This Raspberry Pi computer/controller is totally maintenance free because it receives its time of day
from the Internet by means of a USB wireless adapter that communicates with my wireless Internet
Router. There must be an interesting project or two that could tie Mr. Apple to Mr. Raspberry Pi. I
already use a Keyspan serial to USB adapter with my Apple //e and my Apple G4 dual processor
tower. And I already have the programming tools on the Raspberry Pi to write some serious C
language programs. The best part is that the Raspberry Pi only costs about $40.00: massive
programming power and agility for pennies.

Would I trade those early years learning to program on an Apple][for present day years to program on
the Raspberry Pi or another “little” computer? I am very fond of all those past memories, and software
in those years did not change very often. It is surprising how many years DOS 3.3 lived. Today, my
iPad or my iPhone receives a new iOS update every other month. Software development occurs at a
frenzy pace now, and considerations for size of application and available memory are totally
unimportant. Of course I could not last ten minutes in today’s aerospace industry because I don’t have
the experience or the tools young engineers have today nor do I have their intellectual growth
processes. So I am satisfied with my memories and the fascinating experiences I had and the
interesting characters I met along the way. It is comforting to know that I may have touched someone
else’s curiosity.

